初中数学几何定理汇总
初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。
2. 对顶角定理:对顶角相等。
3. 同旁内角定理:同旁内角互补。
4. 外角定理:与一个多边形任意一内角相对的外角相等。
5. 内角和定理:n边形的内角和为180度×(n-2)。
6. 相关角定理:相邻角互补,对顶角互相相等。
7. 垂直直角定理:垂线与直线相交,形成直角。
8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。
9. 三角形内角和定理:三角形内角和为180度。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 等边三角形定理:等边三角形的三个内角均为60度。
12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。
13. 等角定理:两角相等的两个三角形全等。
14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。
15. 中线定理:连接三角形两边的中线相等。
16. 中位线定理:连接三角形两边中点的线段平分第三边。
17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。
18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。
19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。
20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。
三条边为大圆弧。
21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。
22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。
23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。
24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。
(完整版)初中几何几个著名定理及证明

① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。
己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。
求证:A 、B 、C 、D 四点共圆。
证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。
己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。
证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。
3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。
〈托勒密定理可视作托勒密不等式的特殊情况。
)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。
(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全直线和角度1. 同位角相等定理:若两条直线被一条横切,同位角相等。
同位角相等定理:若两条直线被一条横切,同位角相等。
2. 内错角相等定理:若两条直线被一条横切,内错角相等。
内错角相等定理:若两条直线被一条横切,内错角相等。
3. 同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。
同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。
4. 平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。
平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。
5. 直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。
直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。
线段1. 线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。
线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。
2. 线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。
线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。
三角形1. 三角形内角和定理:一个三角形的内角和为180度。
三角形内角和定理:一个三角形的内角和为180度。
2. 等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。
等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。
3. 全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。
全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。
4. 直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。
直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。
初中几何定理大全:初中数学几何121个定理总结

初中几何定理大全:初中数学几何121个定理总结今天小编为大家整理了一篇有关初中几何定理大全:初中数学几何121个定理总结的相关内容 ,以供大家阅读!1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和直线垂直6直线外一点与直线上各点连接的所有线段中 ,垂线段最短7平行公理经过直线外一点 ,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行 ,这两条直线也互相平行9同位角相等 ,两直线平行10内错角相等 ,两直线平行11同旁内角互补 ,两直线平行12两直线平行 ,同位角相等13两直线平行 ,内错角相等14两直线平行 ,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点 ,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角〕31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等 ,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等 ,那么这两个角所对的边也相等〔等角对等边〕35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中 ,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等?40逆定理和一条线段两个端点距离相等的点 ,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称 ,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称 ,如果它们的对应线段或延长线相交 ,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分 ,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方 ,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于〔n-2〕18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直 ,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半 ,即S=〔ab〕267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角 ,四条边都相等70正方形性质定理2正方形的两条对角线相等 ,并且互相垂直平分 ,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形 ,对称点连线都经过对称中心 ,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点 ,并且被这一点平分 ,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等 ,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线 ,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线 ,必平分第三边81三角形中位线定理三角形的中位线平行于第三边 ,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底 ,并且等于两底和的一半L=〔a+b〕2 S=Lh83(1)比例的根本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线 ,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边〔或两边的延长线〕 ,所得的对应线段成比例88定理如果一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比例 ,那么这条直线平行于三角形的第三边89平行于三角形的一边 ,并且和其他两边相交的直线 ,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边〔或两边的延长线〕相交 ,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等 ,两三角形相似〔ASA〕92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等 ,两三角形相似〔SAS〕94判定定理3三边对应成比例 ,两三角形相似〔SSS〕95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 ,那么这两个直角三角形相似96性质定理1相似三角形对应高的比 ,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值 ,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值 ,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹 ,是以定点为圆心 ,定长为半径的圆106和线段两个端点的距离相等的点的轨迹 ,是着条线段的垂直平分线107到角的两边距离相等的点的轨迹 ,是这个角的平分线108到两条平行线距离相等的点的轨迹 ,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中数学地所有几何定理及公式

初中数学地所有几何定理及公式初中数学中涉及的几何定理和公式较多,以下列举其中常见的一些定理和公式。
一、直线与角度1.垂线定理:若两条直线相交且所成的四个相邻角中,有两个互补,则这两条直线互相垂直。
2.等角定理:当直线与两条平行线相交时,所成的对应角或同位角相等。
3.同旁内角定理:两条直线被一条第三条直线截断,所成的同旁内角互补。
4.同弧定理:在一个圆周上,两个弧所对的圆心角相等。
二、四边形1.矩形定理:矩形的四条边互相平行两两相等,对角线互相垂直且相等。
2.平行四边形定理:平行四边形的对边互相平行且相等,对角线互相平分且相等。
3.正方形定理:正方形的四条边互相平行且相等,对角线互相垂直且相等。
4.菱形定理:菱形的对角线互相垂直,对角线相等。
5.梯形定理:梯形的底边平行,两斜边或两底角相等。
三、三角形1.直角三角形定理:直角三角形斜边的平方等于两直角边平方的和。
2.等腰三角形定理:等腰三角形的两底角相等,两腰相等。
3.等边三角形定理:等边三角形三条边相等,三个内角为60度。
四、面积和周长1.三角形面积公式:三角形的面积等于底边乘以高再除以22.矩形面积公式:矩形的面积等于长乘以宽。
3.正方形面积公式:正方形的面积等于边长的平方。
4.圆面积公式:圆的面积等于半径的平方乘以π。
5.圆周长公式:圆的周长等于直径乘以π。
五、相似和全等1.相似三角形定理:两个三角形对应的各边成比例,这两个三角形相似。
2.全等三角形定理:两个三角形的三条边分别相等,这两个三角形全等。
六、勾股定理在直角三角形中,直角边的平方等于两直角边所对的锐角的两个外角的和的平方。
以上仅是初中数学中的一些常见的几何定理和公式,希望可以帮到你。
如果有需要可以继续探讨其他内容。
(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。
初中数学几何定理总结

初中数学几何定理总结
一、初中数学几何定理
1、直角三角形定理
(1)直角三角形的两条直角边的乘积等于斜边的平方,即a*b=c2;
(2)两条直角边的和大于斜边,即a+b>c;
(3)两条直角边的差小于斜边,即a-b<c。
2、相似三角形定理
(1)两个相似三角形的两个相对应的角等于,即A=A’,B=B’,C=C’;
(2)两个相似三角形的两个相对应的边成比例,即
a:a’=b:b'=c:c’。
3、勾股定理
(1)直角三角形的两边的平方和等于斜边的平方,即a2+b2=c2;
(2)斜边大于两边之和,即c>a+b;
(3)两边之差小于斜边,即,a-b,<c。
4、周长和面积公式
(1)矩形的面积公式,即S=a*b;
(2)矩形的周长公式,即C=2*(a+b);
(3)三角形的面积公式,即S=1/2*a*h;
(4)三角形的周长公式,即C=a+b+c;(5)梯形的面积公式,即S=1/2*(a+b)*h;(6)梯形的周长公式,即C=a+b+c+d;(7)椭圆的面积公式,即S=π*a*b;(8)圆的面积公式,即S=π*r2;
(9)圆的周长公式,即C=2π*r。
5、体积公式
(1)正方体的体积公式,即V=a3;
(2)圆柱的体积公式,即V=π*r2*h;(3)圆球的体积公式,即V=4/3*π*r3
6、圆的角度公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。
学习几何,需要证明,这时定理就很重要!
点的定理:
1、过两点有且只有一条直线
2、两点之间线段最短
角的定理:
1、同角或等角的补角相等
2、同角或等角的余角相等
直线定理:
1、过一点有且只有一条直线和已知直线垂直
2、直线外一点与直线上各点连接的所有线段中,垂线段最短
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行
两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
定理:全等三角形的对应边、对应角相等
边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
边边边定理(SSS):有三边对应相等的两个三角形全等
斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
定理1:在角的平分线上的点到这个角的两边的距离相等
定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)
推论1:
等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
定理:线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1:关于某条直线对称的两个图形是全等形
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
判定定理:直角三角形斜边上的中线等于斜边上的一半
勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
定理:四边形的内角和等于360°;四边形的外角和等于360°
多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°
平行四边形性质定理:
1.平行四边形的对角相等
2.平行四边形的对边相等
3.平行四边形的对角线互相平分
推论:夹在两条平行线间的平行线段相等
平行四边形判定定理:
1.两组对角分别相等的四边形是平行四边形
2.两组对边分别相等的四边形是平行四边形
3.对角线互相平分的四边形是平行四边形
4.一组对边平行相等的四边形是平行四边形
矩形性质定理1:矩形的四个角都是直角
矩形性质定理2:矩形的对角线相等
矩形判定定理1:有三个角是直角的四边形是矩形
矩形判定定理2:对角线相等的平行四边形是矩形
菱形性质定理1:菱形的四条边都相等
菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形判定定理1:四边都相等的四边形是菱形
菱形判定定理2:对角线互相垂直的平行四边形是菱形
正方形性质定理1:正方形的四个角都是直角,四条边都相等
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
定理1:关于中心对称的两个图形是全等的
定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
等腰梯形性质定理:
1.等腰梯形在同一底上的两个角相等
2.等腰梯形的两条对角线相等
等腰梯形判定定理:
1.在同一底上的两个角相等的梯形是等腰梯形
2.对角线相等的梯形是等腰梯形
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理:
1.两角对应相等,两三角形相似(ASA)
2.两边对应成比例且夹角相等,两三角形相似(SAS)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理3:三边对应成比例,两三角形相似(SSS)
相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理:
1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
2.相似三角形周长的比等于相似比
3.相似三角形面积的比等于相似比的平方
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
定理:过不共线的三个点,可以作且只可以作一个圆
定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧
推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧
推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧
推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧
定理:
1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等
2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线
3.圆的切线垂直经过切点的半径
4.三角形的三个内角平分线交于一点,这点是三角形的内心
5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
6.圆的外切四边形的两组对边的和相等
7.如果四边形两组对边的和相等,那么它必有内切圆
8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等
比例的基本性质
如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
合比性质
如果a/b=c/d,那么(a±b)/b=(c±d)/d
等比性质
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b。