理想气体与实际气体共49页文档
8-3 理想气体的状态方程(49张PPT)

第八章
第三节
成才之路 ·物理 ·人教版 · 选修3-3
A.一定不变 B.一定减小 C.一定增加 D.不能判定怎样变化
答案:D
第八章
第三节
成才之路 ·物理 ·人教版 · 选修3-3
解析:由图可以看出气体从A到B的过程中压强增大、温 pV 度升高,由状态方程 T =C知V不确定,若BA的反向延长线 p 过-273℃,则 T 恒定,V不变,现在BA的反向延长线是否通 过-273℃,或是在-273℃的左侧还是右侧,题目无法确 定,故体积V的变化不确定。
第八章
第三节
成才之路 ·物理 ·人教版 · 选修3-3
(2012· 济南模拟)如图所示,一个密闭的汽缸,被活塞分 成体积相等的左、右两室,汽缸壁与活塞是不导热的;它们 之间没有摩擦,两室中气体的温度相等。现利用电热丝对右 3 室加热一段时间,达到平衡后, 左室的体积变为原来的 , 4 气体的温度T1=300K,求右室气体的温度。
第八章
第三节
成才之路 ·物理 ·人教版 · 选修3-3
用掉的占原有的百分比为 V2-V1 146.5-100 = =31.7% V2 146.5 方法二:取剩下的气体为研究对象 初状态:p1=30atm,体积V1=?T1=300K 末状态:p2=20atm,体积V2=100L,T2=293K p1V1 p2V2 p2V2T1 20×100×300 由 = 得V1= = L=68.3L T1 T2 p1T2 20×293
第八章
第三节
成才之路 ·物理 ·人教版 · 选修3-3
p2=80mmHg,T2=310K。 p0V0 p2V2 由理想气体状态方程: = , T0 T2 p0V0T2 760×5×310 得V2= = mL≈49.1mL。 p2T0 300×80
实际气体

∴在相同的对比温度Tr和对比压力Pr下,不同 气体有相同的压缩因子
这样一张不同对比压力,对比温度下的压缩因 子图就可以适用于大部分气体
气体状态方程
2.压缩因子• Z=P源自/(nRT) Z= PVm/(RT)
• Z=1与理想气体没有偏差
• Z>1比理气难压缩 • Z(p,T),Z(T,Vm) Z<1比理气易压缩
范德华(Van der Waals)方程
• 对理想气体PVm=RT可理解为: (气体分子所受的总压力)(1mol分子的自 由活动空间)=RT • 理想气体:气体分子所受的总压力=P(外压) 1mol分子的自由活动空间=Vm • 范德华采用硬球模型来处理实际气体 气体分子所受的总压力=P(外压)+P(内压) 1mol分子的自由活动空间=Vm-b P(内压)∝1/r6 P(内压)=a/Vm2
• Z的量纲为1 • 理想气体Z=1 • 真实气体,若Z<1说明它比理想气体易压缩 若Z>1说明它比理想气体难压缩 压缩因子方程形式虽然简单,但对每种气体在 不同温度,压力下的Z值都要实测,对比状态 原理的发现,使这一难题得以解决。
• 设某实际气体的临界参数为Pc,Tc,vc • 定义 对比压力 Pr=P/Pc 对比温度 Tr=T/Tc 对比体积 Vr=Vm/Vc ∵不同的气体在相同的对比温度和对比压力下 具有相同的对比体积 且,Z=PVm/RT=(PcVc/Tc) · PrVr/RTr 对大部分气体,(PcVc/Tc)的值接近一个常数
实际气体
目录
• 气体状态方程
• 压缩因子方程与对比状态原理 • Joule-Thomson实验
气体状态方程
1.实际气体与理想气体的差别 (1)实际气体分子本身占有体积比理想气体 难压缩 (2)实际气体分子间有相互作用力(以引力 为主)比理想气体易压缩,总的结果:有时 PV>nRT,有时PV<nRT,有时PV=nRT (3)实际气体可以液化(理想气体不能)
参考资料实际气体与理想气体的差别

参考资料●实际气体与理想气体的差异精确的实验说明,一切实际气体都只是近似地遵守玻意耳定律、查理定律和盖·吕萨克定律.当气体压强不太大〔与大气压比拟〕、温度不太低〔与室温比拟〕时,实际测量的结果与上述定律得出的结果相差不大.当压强很大、温度很低时,实际测量结果和由上述定律得出的结果有很大差异.下面的表列出了几种常见气体在0℃和不同压强下,压强和体积的乘积PV的实验值.实验所取的气体在0℃、1.013×105Pa时的体积为1L.从下页的表可见,在气体压强为1.013×105Pa至1.013×107Pa之间时,实验结果与玻意耳定律相差不大;压强超过1.013×107Pa时,实验值跟理论值之间已有显著的偏离;当压强到达1.013×108Pa时,玻意耳定律已完全不能适用了.为什么实际气体在压强很大时不能遵守玻意耳定律呢?这是因为玻意耳定律只适用于理想气体.理想气体是一个理论模型,从分子动理论的观点来看,这个理论模型主要有如下三点:〔1〕分子本身的大小比起分子之间的平均距离来可以忽略不计.〔2〕气体分子在做无规那么运动过程中,除发生碰撞的瞬间外,分子相互之间以及分子与容器器壁之间,都没有相互作用力.〔3〕分子之间以及分子与器壁之间的碰撞是完全弹性的,即气体分子的总动能不因碰撞而损失.这个模型,对于压强很大、体积大大缩小的真实气体,显然是不适用的.理由有二:〔1〕分子本身占有一定的体积分子半径的数量级为10-10m,把它看成小球,每个分子的固有体积约为V=πr3≈4×10-30 m3.在标准状态下,1m3气体中的分子数n0≈3×1025.分子总的固有体积为n0V≈1.2×10-4m3,跟气体的体积比拟,约为它的万分之一,可以忽略不计.这时,实际气体的性质近似于理想气体,能遵守玻意耳定律.当压强很大时,例如p=1000×1.013×105Pa,假定玻意耳定律仍能适用,气体的体积结果看,气体体积也缩小为原来的五百分之一,分子的固有体积约占气了.所以在高压下的气体性质表现出与理想气体有偏离,由于气体能压缩的体积只是分子和分子之间的那一局部空间,分子本身的体积是不能压缩的,即气体的可压缩的体积比它的实际体积小,这种效应,使得实际气体的pV值,在压强较大时,比由玻意耳定律给出的理论值偏大.〔2〕分子间有相互作用力当压强较小时,气体分子间距离较大,分子间的相互作用力可以不计,因此实际气体的性质近似于理想气体.但当压强很大时,分子间距离变小,分子间的相互吸引力增大,靠近器壁的气体分子受到向内的吸引力,使分子在垂直于器壁方向上的动量减小,因而气体对器壁的压强比不存在分子间的吸引力时的压强要小.这种效应,使得实际气体在压强较大时实测的PV值比由玻意耳定律计算出来的理论值偏小.以上两种效应,哪一方面占优势,实验值就向哪一方面偏离.图8-20是实际气体的等温线〔实线〕与理想气体的等温线〔虚线〕的差异示意图.密度小〔V大〕时二者完全一致;对于中等密度,实际气体的压强,比把它看作理想气体时的压强小;对于高密度,实际气体的压强,比把它看作理想气体时的压强大.但是,在温度很高时,两种等温线实际上完全相合,在这种情况下,实际气体可以看成是理想气体.同样,查理定律和盖·吕萨克定律用于实际气体也有偏差,任何一种气体的相对压力系数和体胀系数并不总是等于1/273℃,都随温度略有变化.各种气体的压强系数和体胀系数也略有差异,如上表所示.这种差异,也是前面讲的两个原因造成的。
气体的理想状态与实际状态

气体的理想状态与实际状态气体是一种物态,具有独特的性质和行为。
根据理想气体定律,气体在一定条件下可以被描述为理想气体,即气体分子之间不存在相互作用力,分子体积可以忽略,并且分子碰撞完全弹性。
然而,在实际情况下,气体往往会与理想气体有所不同,存在各种相互作用和非理想行为。
一、理想气体状态方程理想气体状态方程通常用于描述理想气体的状态。
根据理想气体状态方程,可以得到以下公式:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的温度。
二、理想气体的特征理想气体具有以下几个主要特征:1. 理想气体的分子之间没有相互作用力:理想气体的分子之间不存在吸引力或斥力,它们之间的碰撞是弹性碰撞。
2. 分子体积可以忽略不计:理想气体的分子具有很小的体积,可以忽略不计,只考虑气体所占据的总体积。
3. 分子碰撞是完全弹性碰撞:理想气体的分子碰撞过程中没有能量的损失,动能可以完全转移。
三、实际气体与理想气体的差异尽管理想气体状态方程对许多气体系统的近似是可行的,但实际气体与理想气体之间仍然存在一些差异。
1. 分子之间的相互作用:实际气体中,分子之间会存在相互作用力,如吸引力或斥力。
这些作用力会影响分子的行为,导致实际气体的行为与理想气体的行为有所不同。
2. 分子体积的考虑:实际气体分子具有一定的体积,特别是在高压或低温条件下,分子体积的影响就会变得显著,无法忽略。
3. 气体的压力与温度关系:理想气体状态方程中假设温度与压强成正比,但在实际情况下,气体可能会存在偏离的现象,特别是在高压或低温下。
4. 气体的相变行为:理想气体状态方程无法描述气体的相变行为,如液化或冷凝。
四、修正理想气体模型为了更准确地描述实际气体的行为,科学家们提出了多种修正理想气体模型,如范德瓦尔斯方程、柯西方程等。
这些修正模型通过引入修正因子或修正项,考虑了相互作用力和分子体积的影响,从而更好地适应实际气体的状态。
理想气体性质

2
u 1 cV dT
2
h 1 cpdT
✓工程上的几种计算方法:
➢ 按定值比热容计算:
2
u 1 cV dT cV (T2 T1)
2
h 1 cpdT cp (T2 T1)
➢按真实比热容计算:
u R 2 CV ,m dT M1 R R 2 ( 1 T T 2 T 3 T 4 )dT M1
三、定压比热容与定容比热容的关系
➢ 迈耶公式:
c p cV Rg C p,m CV ,m R
迈耶公式
注意其物理意义
➢ 比热比:
cp C p,m
cV CV ,m
1
cV
1 Rg
cp 1 Rg
四、理想气体比热容的计算
✓1、 真实比热容
将实验测得的不同气体的比热容随温 度的变化关系,表达为多项式形式:
cV
dT T
Rg
dv v
ds qrev
T
dT dp cp T Rg p
3.以 ( p, v) 为参数
ds qrev
T
cV
dp p
cp
dv v
✓理想气体熵方程:
微分形式:
积分形式:
ds
cV
dT T
Rg
dv v
ds
cp
dT T
Rg
dp p
ds
cV
dp p
cp
dv v
s12
2
h R 2 C p,m dT M1 R R 2 ( T T 2 T 3 T 4 )dT M1
➢按平均比热容计算:
u
t2 t1
cV
dt
cV
t2 t1
(t2
第二章理想气体性质

2 N pv=RT,R NB,N= 3 m 2 2 N 2N MR= MNB= M B= B 3 3 m 3 n0 m N n0= ,摩尔数,则 表示每摩尔物质所具有 M n0 N 的分子数,由阿佛家得罗定律可知, 为常数 n0 令MR=R 0,则R 0为常数。且与物质种类无关。
思考:
注意!
体积热容的容积是标准状态下的容积。 三种热容间的换算关系:
3种不同单位的比热的关系:
Mc c c 0 22.4
二、定容比热与定压比热
1、定容比热:定容情况下,单位物量的物体, 温度变化1k所吸收或者放出的热量,称为 该气体的定容比热。
cv
qv
dT
2、定压比热 定压比热:定压条件下,单位物量 的物体,温度变化1k所吸收或者放 出的热量,称为该气体的定压比热。
cp cv=R cp k cv
得到比热的计算式
R cv k 1 kR cp= k 1
验证,对于空气,按双原子气体
R 0.287 cv 0.72kJ / kg k k 1 1.4-1 5 8.314 Mcv 2 cv= 0.72kJ / kg k M 28.97
i2 k i
真实比热与平均比热
真实比热:
Mcp a0 aiT
i 1
n
i
Mcv Mcp R 0 a0 R 0 aiT
i 1
n
i
平均比热:
根据面积相等原理 q cdt cm t2 t1 t
t2
1
q cdt= cdt cdt c | -c |
实际气体( real gas)
实际气体: 如果气体有很高的密 度,以致气体本身的分子体积及分 子间作用力不能忽略不计时,就为 实际气体了。“制冷剂”或“蒸汽” 是实际气体。不能用简单的式子描 述.
气体的理想气体与非理想气体

气体的理想气体与非理想气体气体是物质的一种形态,具有独特的物理性质和行为规律。
在研究气体的性质时,理想气体与非理想气体是两个重要的概念。
本文将介绍气体的理想气体与非理想气体的特点、性质以及它们在不同条件下的行为。
一、理想气体的特点与性质理想气体是一种理论模型,它满足理想气体状态方程PV=nRT(其中P为压强,V为体积,n为摩尔数,R为气体常数,T为温度)。
理想气体具有以下几个特点:1. 分子无体积:在理想气体模型中,假设气体分子的体积可以忽略不计,分子之间不存在相互作用力。
这样可以简化计算过程,使得理论分析更加简便。
2. 分子运动无阻碍:理想气体的分子之间不存在相互作用力,它们可以自由地运动,碰撞时彼此间只有弹性碰撞而无能量损失。
这个假设符合低密度气体的特点。
3. 温度与分子平均动能成正比:理想气体的温度与分子的平均动能成正比。
这意味着在给定温度下,不同种类的气体分子具有相同的平均动能。
除了以上特点,理想气体还具有压强与温度成正比,体积与温度成反比的性质。
二、非理想气体的特点与性质非理想气体是指与理想气体模型假设不完全相符的气体。
现实中的气体往往不能完全满足理想气体的特点,因为其中的分子之间存在相互吸引或排斥的作用力。
以下是非理想气体的一些特点与性质:1. 分子之间存在相互作用力:非理想气体的分子之间存在相互作用力,如范德华力、静电力等。
这些作用力会导致气体分子间的相互吸引或排斥,使得气体不再具有理想气体的特点。
2. 气体性质受温度和压强影响较大:非理想气体的性质在不同温度和压强下会发生显著的变化。
当温度较低或压强较高时,分子之间的相互作用力会变得更为明显,导致气体的性质与理想气体有所差异。
3. 凝聚现象的出现:在高压或低温条件下,非理想气体的分子之间的相互作用力会使得气体发生凝聚现象,即由气体转变为液体或固体。
三、理想气体与非理想气体的比较理想气体与非理想气体在性质上存在一定的差异。
首先,理想气体仅是一种理论模型,它的特点和性质是根据一些简化假设推导得出的。
理想气体和气体混合

理想气体的压强、 温度和体积之间的 关系遵循理想气体 状态方程
理想气体应用场景
气象学:预测 天气和气候变
化
航空航天:计 算飞行器在空 气中的阻力和
升力
化学工程:设 计化学反应器
和分离器
环境科学:研 究大气污染和 全球变暖问题
02 气体混合
气体混合物的组成
理想气体:分子间无相互作用,分子本身体积可忽略不计
航天航空
火箭推进剂:使用液态氢和液态氧作为燃料,通过燃烧产生高速气体,推动火箭升空 航天器姿态控制:使用气体喷射器来调整航天器的姿态和轨道 航天器热防护:使用气凝胶等材料来隔离高温气体,保护航天器内部设备 航空器气动设计:通过优化气体流动,提高航空器的气动性能和燃油效率
05
理想气体和气体混合的 未来发展
混合气体的黏度:各气体黏 度之和
混合气体的扩散系数:各气 体扩散系数之和
气体混合物的分类
按照气体混合物 的组成成分,可 以分为单组分气 体混合物和多组 分气体混合物。
按照气体混合物 的物理状态,可 以分为气体混合 物和液态气体混 合物。
按照气体混合物 的化学性质,可 以分为可燃性气 体混合物和不可 燃性气体混合物。
理想气体的状态方程:PV=nRT,其 中P是压力,V是体积,n是物质的量, R是气体常数,T是热力学温度。
理想气体的性质:温度、压力和体积 之间的关系,以及气体的压缩性和膨 胀性。
理想气体的应用:在工程和科学研究 中,理想气体模型被广泛应用于气体 性质的研究和计算。
理想气体状态方程
理想气体的定义:忽略分子间作用 力的气体
添加标题
添加标题
添加标题
添加标题
气体混合在化工生产中的应用:气 体分离、净化、合成等过程