数学中考试题-2019年山东省临沂市中考真题

合集下载

2019年山东省临沂市中考数学试卷及答案(word版)

2019年山东省临沂市中考数学试卷及答案(word版)

2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.|﹣2019|=()A.2019B.﹣2019C.D.﹣2.如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.如图所示,正三棱柱的左视图()A.B.C.D.5.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.27.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.计算:×﹣tan45°=.16.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.解方程:=.21.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE 沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年山东省临沂市中考数学答案一、选择题(每小题3分,共42分)1-5 ABDAC 6-10 BCBAB 11-14 ADAD二、填空题:(每题3分,共15分)15.﹣1.16.(﹣2,2).17.11.18.±1019.8.三、解答题:(共63分)20.解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.21.解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.22.解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.23.(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.24.解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.25.解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.26.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。

2019年山东省临沂市中考数学试题(word版,含解析)

2019年山东省临沂市中考数学试题(word版,含解析)

山东省临沂市2019年中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.D﹣2.(3分)(2019•临沂)根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为3.(3分)(2019•临沂)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()..C.D.组的解集,再求出其公共解集,并在数轴上表示出来即可.解:∵由题意可得6.(3分)(2019•临沂)当a=2时,÷(﹣1)的结果是().D﹣÷•,=.8.(3分)(2019•临沂)某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,.=.==D=由题意得,=.9.(3分)(2019•临沂)如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()..D=.11.(3分)(2019•临沂)一个几何体的三视图如图所示,这个几何体的侧面积为()12.(3分)(2019•临沂)请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)13.(3分)(2019•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()ABC===BC=2014.(3分)(2019•临沂)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的的图象,再求出交点个数.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2019•临沂)在实数范围内分解因式:x3﹣6x=x(x+)(x﹣).)x+)则这50名学生一周的平均课外阅读时间是 5.3小时.解:该组数据的平均数=17.(3分)(2019•临沂)如图,在▱ABCD中,BC=10,sinB=,AC=BC,则▱ABCD的面积是18.,×=9BE===AB=2BE=229=18案是:.18.(3分)(2019•临沂)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y=.)(),)y=的图象经过直角三角形x)y=.19.(3分)(2019•临沂)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B={﹣3,﹣2,0,1,3,5,7}.三、解答题(本大题共7小题,共63分)20.(7分)(2019•临沂)计算:﹣sin60°+×.+4×﹣+2.本题考查了二次根式的混合运算以及特殊角的三角函数值,21.(7分)(2019•临沂)随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行n 35%125 25%m=20%,n=175,a=500;(2)在答题卡中,补全条形统计图;(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?项×22.(7分)(2019•临沂)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.CD=,AD=BD=2,AB××,AD=2,OD××,=DE=×3=S=×S×=﹣﹣=23.(9分)(2019•临沂)对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.(1)证明:∠ABE=30°;(2)证明:四边形BFB′E为菱形.A=90直平分ABE=×24.(9分)(2019•临沂)某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)的距离为:解得:的速度至少为:≈25.(11分)(2019•临沂)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.D=∠26.(13分)(2019•临沂)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.,,;(,OE=,由勾股定理得:CE==1+×,的距离为,化简得:PQ===PG=PQ=CG===10QG=PQ=PQ=.=OM+GM=OM+NQ=1+3=4。

2019临沂数学中考真题(解析版)-

2019临沂数学中考真题(解析版)-

2019临沂数学中考真题一、单选题(共14小题)1.|﹣2019|等于()A.2019 B.﹣2019 C.D.﹣2.如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°3.不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x4.如图所示,正三棱柱的左视图()A.B.C.D.5.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.27.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题(共5小题)15.计算:×﹣tan45°=﹣.16.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是﹣.17.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题(共7小题)20.解方程:=.21.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 8185 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019临沂数学中考真题(解析版)参考答案一、单选题(共14小题)1.【解答】解:|﹣2019|=2019.故选:A.【知识点】绝对值2.【解答】解:∵a∥b,∴∠1=∠3=110°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=70°,故选:C.【知识点】平行线的性质3.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【知识点】解一元一次不等式4.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【知识点】简单几何体的三视图5.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【知识点】提公因式法与公式法的综合运用6.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【知识点】全等三角形的判定与性质7.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【知识点】同底数幂的除法、幂的乘方与积的乘方、合并同类项、负整数指数幂、单项式乘单项式8.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【知识点】列表法与树状图法9.【解答】解:原式=,=,=.故选:B.【知识点】分式的加减法10.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【知识点】加权平均数11.【解答】解:作OD⊥BC,则BD=CD,连接OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.【知识点】扇形面积的计算、圆周角定理12.【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【知识点】一次函数的性质13.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【知识点】矩形的判定、全等三角形的判定与性质、平行四边形的性质14.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【知识点】二次函数的应用二、填空题(共5小题)15.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【知识点】二次根式的混合运算、特殊角的三角函数值16.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【知识点】坐标与图形变化-对称17.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【知识点】二元一次方程组的应用18.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【知识点】分数指数幂、实数的性质19.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【知识点】解直角三角形、全等三角形的判定与性质三、解答题(共7小题)20.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【知识点】解分式方程21.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【知识点】中位数、频数(率)分布直方图、用样本估计总体、频数(率)分布表22.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【知识点】解直角三角形的应用23.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:连接AD,∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【知识点】切线的判定与性质、圆周角定理24.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【知识点】一次函数的应用25.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.【知识点】正方形的性质、翻折变换(折叠问题)26.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【知识点】二次函数综合题。

2019年山东省临沂市中考数学试题(含答案)

2019年山东省临沂市中考数学试题(含答案)

2019年山东省临沂市中考试卷数学一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.27.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S﹣S△BOC是解题的关键.扇形BOC12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b 对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x =﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年临沂市中考数学试卷(带答案解析)

2019年临沂市中考数学试卷(带答案解析)

2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019 B.﹣2019 C.D.﹣2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x4.(3分)如图所示,正三棱柱的左视图();A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.B.1 C.D.27.(3分)下列计算错误的是()¥A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A .B .C .D .9.(3分)计算﹣a﹣1的正确结果是()A .﹣B .C .﹣D .10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:3天数(天) 1 2 :1最高气温(℃)22 26 28 29则这周最高气温的平均值是()A.℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O 中,=,∠ACB=75°,BC=2,则阴影部分的面积是()。

A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND《14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.'16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B 两种型号的钢板共块.18.(3分)一般地,如果x 4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:;成绩(分)频数78≤x<82 582≤x<86 a86≤x<90 1190≤x<94 b{94≤x<982回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.,(1)求证:CF是⊙O的切线.(2)若∠A=°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.12 14 16 18 20x/h0 2 4 6 8 .1018 12 9 8y/m14 15 16 ¥17(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.》(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由./2019年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.【解答】解:|﹣2019|=2019.故选:A.2.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.@3.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.4.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.5.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.6.【解答】解:∵CF∥AB,】∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.7.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确#选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.8.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.9.【解答】解:原式=,=,<=.故选:B.10.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.11.【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,.∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,)∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,】∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.13.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.14.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,|∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=或t=,∴小球的高度h=30m时,t=或,故④错误;故选:D.二、填空题:(每题3分,共15分)15.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.16.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).17.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.18.【解答】解:∵=10,∴m4=104,*∴m=±10.故答案为:±1019.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,】∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.三、解答题:(共63分)20.【解答】解:去分母得:5x=3x﹣6,*解得:x=﹣3,经检验x=﹣3是分式方程的解.21.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.22.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.23.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,…∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,-∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.!24.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.《25.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,∴AF=AB,又∵AG=AG,,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠FAE,∠BAG=∠FAG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,$∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,)∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.26.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。

2019年山东省临沂市中考数学试卷(含答案解析)

2019年山东省临沂市中考数学试卷(含答案解析)

2019年山东省临沂市中考数学试卷(含答案解析)一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣2.(3分)如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.27.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=110°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=70°,故选:C.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:B.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)1213最高气温(℃)22262829则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,∵AD⊥BC,AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S﹣S△BOC是解题的关键.扇形BOC12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b 对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:连接AD,∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x =﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

数学2019年中考试题-2019年山东省临沂市中考真题试题及答案详解

数学2019年中考试题-2019年山东省临沂市中考真题试题及答案详解

2019 年山东省临沂市中考数学试卷一、选择题(每小题3 分 ,共 42 分)1.|﹣ 2019|=( )A . 2019B .﹣ 2019C .D .﹣ ﹣【答案】 A【解析】 |﹣2019|= 2019. 故选: A .2.如图,a ∥b ,若∠ 1= 100°,则∠ 2 的度数是( )【答案】 B【解析】∵ a ∥ b ,∴∠ 1=∠ 3= 100°.答案】 D解析】移项,得﹣ 2x ≥﹣ 1,系数化为 1,得 A .x ≥2C .x ≤2D .所以,不等式的解集为 x ≤ ,故选:A .110°B . 80°C . 70°∵∠ 2+∠3=180°,∴∠ 2= 180°﹣∠ 3= 80°,故选: B .3.不等式 1﹣2x ≥0 的解集是 4.如图所示,正三棱柱的左视图解析】主视图是一个矩形,俯视图是两个矩形,左视图是三角形, 故选: A .35.将 a 3b ﹣ab 进行因式分解,正确的是()22A .a (a 2b ﹣ b ) B .ab (a ﹣1) 22C . ab (a+1)( a ﹣ 1)D .ab (a 2﹣1)【答案】 C【解析】 a 3b ﹣ab =ab (a 2﹣1)= ab ( a+1)(a ﹣ 1),故选: C .6.如图, D 是 AB 上一点, DF 交 AC 于点 E ,DE =FE ,FC ∥ AB ,若 AB =4,CF =3,则【解析】∵ CF ∥AB ,∴∠ A =∠ FCE ,∠ ADE =∠ F ,,∴△ ADE ≌△ CFE (AAS ),∴AD =CF =3,∵ AB =4,∴ DB =AB ﹣AD =4﹣3=1.故选: B .7.下列计算错误的是()3 24 3A .(a 3b )?(ab 2)= a 4b 35﹣ 2 3C .a5÷a ﹣2=a 3【答案】 C【解析】选项 A ,单项式×单项式, (a 3b )?(ab 2)= a 3?a?b?b 2=a 4b 3,选项正确, 选项 B ,积的乘方, (﹣ mn 3) 2=m 2n 6,选项正确, 选项 C ,同底数幂的除法, a 5÷ a ﹣2=a 5﹣(﹣2)= a 7,选项错误,D .B .1C .1.5D . 2B .C . 答案】 A答案】 B故选: C .8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是(答案】 B解析】画“树形图”如图所示:∵这两辆汽车行驶方向共有 9 种可能的结果,其中一辆向右转,一辆向左转的情况有 ∴一辆向右转,一辆向左转的概率为;故选: B .9.计算﹣a ﹣1 的正确结果是( )答案】 A则这周最高气温的平均值是( )A .26.25℃B . 27℃C . 28℃答案】 B1× 22+2×26+1× 28+3×29)=27(℃); 故选: B .选项 D ,合并同类项, xy 2xy 2 = xy 2xy 2= xy 2,选项正确,B .C .D .2 种,A .C .D .解析】原式= 故选: A . ,列成如天数(天) 1 2 1 3 最高气温(℃)22262829D .29℃解析】这周最高气温的平均值为 A10.小明记录了临沂市五月份某周每天的日最高气温(单11.如图,⊙ O 中, = ,∠ ACB = 75°, BC = 2,则阴影部分的面积是(∵∠ ACB =75°,∴∠ ABC =∠ ACB =75°,∴∠ BAC =30°,∴∠ BOC =60°,∵ OB = OC ,∴△ BOC 是等边三角形, ∴OA =OB =OC = BC =2, 作 AD ⊥BC ,∵AB =AC ,∴BD =CD ,∴ AD 经过圆心 O , ∴OD =OB = ,∴ AD =2+,∴S △ ABC = BC ?AD =2+ , S △BOC = BC?OD = ,∴S阴影=S △ ABC +S扇形BOC ﹣S△BOC= 2+ + ﹣ =2+ ,故选: A .的说法,错误的是(A .图象经过第一、二、四象限 C .图象与 y 轴交于点( 0,b )答案】 D解析】∵ y =kx+b ( k <0, b >0),∴图象经过第一、二、四象限, A 正确;答案】 A 解析】= ,∴ AB = AC ,B .y 随 x 的增大而减小 D .当 x >﹣ 时, y > 0y =kx+b (k <0,b >0)∵k<0,∴y随x的增大而减小,B 正确;令x=0 时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0 时,x=﹣,当x>﹣时,y<0;D 不正确;故选:D.13.如图,在平行四边形ABCD 中,M、N 是BD 上两点,BM =DN ,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN 是矩形,这个条件是(C.BD⊥AC D .∠ AMB =∠ CND 答案】A解析】∵四边形ABCD 是平行四边形,∴ OA=OC,OB=OD,∵对角线BD 上的两点M、N 满足BM=DN ,∴OB﹣BM=OD﹣DN,即OM =ON,∴四边形AMCN 是平行四边形,∵OM=AC,∴ MN =AC,∴四边形AMCN 是矩形.故选:A.14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3 秒后,速度越来越快;③小球抛出3 秒时速度为0;④小球的高度h=30m 时,t=1.5s.C.②③④D.②③答案】D解析】①由图象知小球在空中达到的最大高度是40m;故①错误;距离为 3,∴点 P ′的横坐标为 1﹣ 3=﹣ 2,∴对称点 P ′的坐标为(﹣ 2, 2).故答案为:种产品和 2件乙种产品;要生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A 、B 两种型 号的钢板共 11 块.解析】设需用 A 型钢板 x 块, B 型钢板 y 块, ,① +②)÷ 5,得: x+y = 11.故答案为: 11.18.一般地, 如果 x 4= a ( a ≥ 0),则称 x 为 a 的四次方根, 一个正数 a 的四次方根有两个. 它②小球抛出 3 秒后,速度越来越快;故②正确; ③小球抛出 3 秒时达到最高点即速度为 0;故③正确; ④设函数解析式为: h =a (t ﹣ 3) 2+40,把 O (0,0)代入得 0= a (0﹣3)2+40,解得 a =﹣ ∴函数解析式为 h =﹣(t ﹣3)2+40,把 h = 30 代入解析式得, 30 =﹣t ﹣3)2+40,解得: t =4.5 或 t =1.5,∴小球的高度 h =30m 时, t = 1.5s 或 4.5s ,故④错误;故选: D . 二、填空题: (每题 3 分,共 15 分)15.计算:× ﹣tan45°= ﹣ 1× ﹣ tan45°﹣ 1= ﹣ 1 ,故答案为:﹣ 1.16.在平面直角坐标系中,点 P (4,2)关于直线 x =1 的对称点的坐标是(﹣ 2,2)解析】∵点 P ( 4, 2),∴点 P 到直线 x =1 的距离为 4﹣1= 3,∴点 P 关于直线 x = 1 的对称点 P ′到直线 x =1 的﹣ 2, 2).1件乙种产品;用 1块 B 型钢板可制成 3 件甲依题意,得:解析】解析】∵ = 10,∴ m 4= 104,∴ m =± 10.故答案为:± 10.19.如图,在△ ABC 中,∠ ACB =120°,BC =4,D 为 AB 的中点, DC ⊥BC ,则△ ABC 的 面积是 8 .【解析】∵ DC ⊥BC ,∴∠ BCD =90°, ∵∠ ACB =120°,∴∠ ACD =30°, 延长 CD 到 H 使 DH = CD , ∵D 为 AB 的中点,∴ AD =BD ,在△ ADH 与△ BCD 中, ,∴△ ADH ≌△ BCD (SAS ),∴AH =BC =4,∠ H =∠ BCD = 90°, ∵∠ ACH =30°,∴ CH = AH =4 ,∴CD =2 ,解:去分母得: 5x =3x ﹣ 6,解得: x =﹣ 3,经检验 x =﹣ 3 是分式方程的解.21.(7 分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取 30 名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:们互为相反数,记为±,若 =10,则 m = ±10成绩(分)频数78≤ x<82 582≤ x<86 a86≤ x<90 1190≤ x< 94 b94≤ x< 98 2回答下列问题:1)以上30 个数据中,中位数是86 ;频数分布表中a=6 ;b=6 ;2)补全频数分布直方图;3)若成绩不低于86 分为优秀,估计该校七年级300 名学生中,达到优秀等级的人数.81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:3)根据题意得:300×=190 ,则该校七年级300 名学生中,达到优秀等级的人数为190 人.22.(7 分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D 共线)处同时施工.测得∠CAB =30°,AB=4km ,∠ ABD =105°,求BD 的长.解:作BE⊥ AD于点E,∵∠ CAB=30°,AB=4km,∴∠ ABE=60°,BE=2km,∵∠ ABD=105°,∴∠ EBD =45°,∴∠ EDB =45°,∴BE=DE=2km,∴BD==2 km,即BD 的长是2 km.23.(9分)如图,AB是⊙ O的直径,C是⊙ O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF 是⊙ O 的切线.(2)若∠ A=22.5°,求证:AC=DC.1)证明:∵ AB 是⊙ O 的直径,∴∠ ACB=∠ ACD=90°,∵点F 是ED 的中点,∴ CF=EF=DF,∴∠ AEO=∠ FEC =∠ FCE ,∵OA=OC,∴∠ OCA=∠ OAC ,∵ OD ⊥ AB,∴∠OAC+∠AEO=90°,∴∠ OCA+∠FCE=90°,即OC⊥FC,∴ CF 与⊙ O 相切;(2)解:∵ OD ⊥ AB,AC⊥ BD,∴∠ AOE=∠ ACD=90°,∵∠ AEO=∠ DEC ,∴∠ OAE=∠ CDE =22.5°,∵AO=BO,∴ AD =BD ,∴∠ ADO=∠ BDO =22.5°,∴∠ ADB =45°,∴∠ CAD =∠ ADC =45°,∴ AC=CD.24.(9 分)汛期到来,山洪暴发.下表记录了某水库20h 内水位的变化情况,其中x 表示时间(单位:h),y 表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0< x< 8时,y与x 可能是一次函数关系:设 y =kx+b ,把( 0,14),(8,18)代入得解得: k = ,b =14,y 与 x 的关系式为: y = x+14,观察图象当 x >8 时,y 与 x 就不是一次函数关系:通过观察数据发现: 8× 18=10×10.4=12×12=16× 9=18×8= 144.x >8).3)当 y =6 时, 6= ,解得: x = 24,因此预计 24h 水位达到 6m .25.(11 分)如图,在正方形 ABCD 中,E 是 DC 边上一点,(与 D 、 C 不重合),连接 AE , 将△ADE 沿 AE 所在的直线折叠得到△ AFE ,延长 EF 交 BC 于 G ,连接 AG ,作 GH ⊥AG , 与 AE 的延长线交于点 H ,连接 CH .显然 AE 是∠DAF 的平分线, EA 是∠ DEF 的平分线.仔 细观察,请逐一找出图中其他的角平分线(仅限于小于 180°的角平分线) ,并说明理由.解:过点 H 作 HN ⊥BM 于 N ,则∠ HNC = 90°,∵四边形 ABCD 为正方形, ∴AD =AB = BC ,∠ D =∠ DAB =∠ B =∠ DCB =∠ DCM = 90°, ① ∵将△ ADE 沿 AE 所在的直线折叠得到△ AFE ,∴△ ADE ≌△ AFE ,∴∠ D =∠ AFE =∠ AFG = 90°, AD = AF ,∠ DAE =∠ FAE ,∴ AF = AB ,又∵ AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴∠ BAG =∠ FAG ,∠ AGB =∠ AGF ,经验证( 2, 15),(4,16),(6,17)都满足 因此放水前 y 与 x 的关系式为: y = x+14(0<x <8)因此放水后 y 与 x 的关系最符合反比例函数,关系式为:x >8), y = x+14( 0< x <8)和x+14∴AG 是∠ BAF 的平分线,GA 是∠ BGF 的平分线;②由①知,∠ DAE=∠ FAE,∠ BAG=∠ FAG,又∵∠ BAD =90°,∴∠ GAF+∠EAF=×90°=45°,即∠ GAH =45°,∵GH ⊥ AG ,∴∠ GHA =90°﹣∠ GAH =45°,∴△AGH 为等腰直角三角形,∴ AG=GH,∵∠ AGB+∠BAG=90°,∠ AGB+∠HGN=90°,∴∠ BAG=∠ NGH,又∵∠ B=∠HNG=90°,AG=GH,∴△ ABG≌△ GNH (AAS ),∴BG=NH,AB=GN,∴ BC=GN,∵BC﹣CG=GN﹣CG,∴ BG=CN,∴CN=HN,∵∠ DCM =90°,∴∠ NCH=∠ NHC=× 90°=45°,∴∠ DCH =∠ DCM ﹣∠ NCH =45°,∴∠ DCH =∠ NCH,∴CH 是∠ DCN 的平分线;③∵∠ AGB+∠HGN=90°,∠ AGF + ∠EGH =90°,由①知,∠ AGB=∠ AGF ,∴∠ HGN =∠ EGH ,∴ GH 是∠EGM 的平分线;综上所述,AG是∠ BAF 的平分线,GA是∠ BGF的平分线,CH 是∠ DCN的平分线,GH26.(13 分)在平面直角坐标系中,直线y=x+2 与x 轴交于点A,与y 轴交于点B,抛物线2y=ax +bx+ c (a< 0)经过点A、B.(1)求a、b 满足的关系式及c 的值.(2)当x<0 时,若y=ax2+bx+c(a<0)的函数值随x 的增大而增大,求a 的取值范围.(3)如图,当a=﹣1 时,在抛物线上是否存在点P,使△ PAB 的面积为1?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B 的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A 坐标代入上式并整理得:b=2a+1 ;(2)当x<0 时,若y=ax2+bx+c(a< 0)的函数值随x 的增大而增大,则函数对称轴x=﹣≥ 0,而b=2a+1,即﹣≥ 0,解得:a ,故:a 的取值范围为:﹣≤a< 0;(3)当a=﹣1 时,二次函数表达式为:y=﹣x2﹣x+2,过点P 作直线l∥AB,作PQ∥y轴交BA 于点Q,作PH⊥AB 于点H,∵OA=OB,∴∠ BAO=∠ PQH =45°,S△PAB=× AB×PH= 2 ×PQ× =1,则y P﹣y Q=1,在直线AB 下方作直线m,使直线m 和l 与直线AB 等距离,则直线m与抛物线两个交点坐标,分别与点AB 组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1 ,故点P(﹣1,2)或(﹣1 ,1)或(﹣1﹣,﹣).。

山东省临沂市2019年中考数学试题(含解析)

山东省临沂市2019年中考数学试题(含解析)

2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.27.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>013.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.三、解答题:(共63分)20.(7分)解方程:=.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.2019年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)|﹣2019|=()A.2019B.﹣2019C.D.﹣【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:|﹣2019|=2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.【点评】此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.3.(3分)不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.【解答】解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.【点评】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.(3分)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【分析】多项式a3b﹣ab有公因式ab,首先考虑用提公因式法提公因式ab,提公因式后,得到多项式(x2﹣1),再利用平方差公式进行分解.【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.【点评】此题主要考查了了提公因式法和平方差公式综合应用,因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;即:一提二套三分组.6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF =3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.【点评】本题主要考查单项式乘单项式,合并同类项,幂的乘方与积的乘方,同底数幂的除法,熟练运用各运算公式是解题的关键.8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.9.(3分)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.【点评】本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.【点评】本题考查了加权平均数公式;熟练掌握加权平均数的计算是解决问题的关键.11.(3分)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S△ABC+S﹣S△BOC是解题的关键.扇形BOC12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;【解答】解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y=kx+b中,k与b 对函数图象的影响是解题的关键.13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.【点评】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.二、填空题:(每题3分,共15分)15.(3分)计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.【解答】解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【分析】利用题中四次方根的定义求解.【解答】解:∵=10,∴m4=104,∴m=±10.故答案为:±10【点评】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【分析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.【解答】解:∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.【点评】本题考查了全等三角形的判定和性质,解直角三角形,三角形的面积的计算,正确的作出辅助线是解题的关键.三、解答题:(共63分)20.(7分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.【分析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.【解答】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【点评】本题考查了切线的判定,等腰三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【分析】过点H作HN⊥BM于N,利用正方形的性质及轴对称的性质,证明△ABG≌△AFG,可推出AG是∠BAF的平分线,GA是∠BGF的平分线;证明△ABG≌△GNH,推出HN=CN,得到∠DCH=∠NCH,推出CH是∠DCN的平分线;再证∠HGN=∠EGH,可知GH是∠EGM的平分线.【解答】解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质等,解题关键是能够灵活运用轴对称的性质及全等的判定方法.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x =﹣≥0,而b=2a+1,即:﹣≥0,即可求解;(3)过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沂市2019年初中学业水平考试数学试题
一、选择题:(每题3分,共42分) 1. 2019-=( ) A. 2019
B. -2019
C.
1
2019
D. 12019
-
2.如图,a b P ,若1100?o ,则2Ð的度数是( )
A. 110o
B. 80o
C. 70o
D. 60o
3.不等式120x -?的解集是( )
A.
2x ≥
B. 1
2
x ≥
C.
2x ≤
D. 12
x ≤
4.如图所示,正三棱柱的左视图( )
5.将进行因式分解,正确的是( )
A. 2()a a b b -
B. 2(1)ab a -
C. (1)(1)ab a a +-
D. 2
(1)ab a -
6. 如图,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB ,若AB =4,CF =3,则BD 的长是
( )
A. 0.5
B. 1
C. 1.5
D. 2
7.下列计算错误的是( )
A. 3243
()()a b ab a b ⋅=
B. 3226
()mn m n -=
C. 523a a a -÷=
D. 2221455
xy xy xy -
= 8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( ) A.
2
3
B.
2
9
C.
1
3
D.
19
9.计算
2
11
a a a ---的正确结果是( ) A. 1
1
a -
- B.
11a - C. 211a a --- D. 211
a a -- 10. 小明记录了临沂市五月份某周每天的日最高气温(单位:C o ),列成下表:
则这周最高气温的平均值是( ) A. 26.25C o
B. 27C o
C. 28C o
D. 29C o
11.如图,O e 中,AB AC =︵

,∠ACB =75°,BC =2,则阴影部分的面积是( )
A. 22π3+
B. 22π3+
C. 24π3+
D. 4
2π3
+ 12. 下列关于一次函数(00y kx b k b =+<,>)的说法,错误的是( )
A. 图象经过第一、二、四象限
B. y 随x 的增大而减小
C. 图象与y 轴交于点(0,b )
D. 当b
x k
-
>时,0y > 13.如图,在ABCD Y 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )
A. OM =
1
2
AC B. MB =MO C. BD ⊥AC D. AMB CND ∠=∠ 14.从地面竖直向上抛出一小球,小球的高度h (单位:m)与小球运动时间t (单位:s)之间的函数关系如图所示.下列结论:
①小球在空中经过的路程是40 m ;②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0;④小球的高度h =30m 时,t =1.5s. 其中正确的是( )
A.①④
B. ①②
C. ②③④
D. ②③
二、填空题:(每题3分,共15分)
15.tan 45=o . 16.在平面直角坐标系中,点P (4,2)关于直线1x =的对称点的坐标是 .
17. 用1块A 型钢板可制成4件甲种产品和1件乙种产品; 用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 块.
18.一般地,如果()4
0x a a =≥,那么x 叫a 的四次方根,一个正数a 的四次方根有两个,
它们互为相反数,记为10=,则m = .
19. 如图,在ABC ∆中,120ACB ∠=o ,BC =4,D 为AB 的中点,DC BC ^,则ABC

的面积是_ .
三、解答题:(共63分)
20.(7分)解方程:
53
2
x x
=
-
.
21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)
整理上面的数据得到频数分布表和频数分布直方图:
回答下列问题:
(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;
(3)若成绩不低于86 分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山,如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (A 、C 、D 共线)处同时施工.测得∠CAB =30°,AB =4km ,∠ABD =105°,求BD 的长.
23.(9分)如图,AB 是O e 的直径,C 是O e 上一点,过点O 作OD AB ^,交BC 的延长
线于D ,交AC 于点E ,F 是DE 的中点,连接CF .
(1)求证:CF 是O e 的切线. (2)若∠A =22.5°,求证:AC =DC .
24.(9分)汛期到来,山洪暴发,下表记录了某水库20h 内水位的变化情况,其中x 表示时
间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.
25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,
与AE 的延长线交于点H ,连接CH ,显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线,仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.
26.(13分)在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物
线2
(0)y ax bx c a =++<经过点A 、B .
(1)求a b 、满足的关系式及c 的值.
(2)当0x <时,若2
(0)y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围.
(3)如图,当1a =-时,在抛物线上是否存在点P ,使△P AB 的面积为1,若存在,请求出符合条件的所有点P 的坐标,若不存在,请说明理由.。

相关文档
最新文档