2010年全国各地高考数学试题及解答分类大全(导数及其应用)

合集下载

2010高考数学试卷(全)

2010高考数学试卷(全)

2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90°(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 8332010年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S x =12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.。

2010高考数学答案

2010高考数学答案

2010高考数学答案2010高考数学答案(上)1.(1)将f(x)与y = 0相交,即f(x) = 0,解方程f(x) = (x - 2)(5 - x) + 1 = 0,得x = 4。

(2)首先求函数f(x)在定义域上的单调性。

f(x)的定义域为R,可得f(x)=x^2-7x+10,求导得f'(x)=2x-7,令f'(x)=0得x = 7/2,即可得函数f(x)在定义域上递增的区间为(-∞,7/2),递减的区间为(7/2,+∞)。

将x坐标的变化范围分为(-∞,4),(4,7/2),(7/2,+∞)三段。

然后将x = 4,7/2代入函数f(x)中,即可得到对应的y坐标。

计算得(4, 2)为对应点,(7/2,9/4)为对应点。

将以上结果代入图像中,即可得函数f(x)的图像。

2.(1)mAB = -3,通过直线AB确定的线段长度为3。

(2)由题意可知,直线AB的斜率为-3,又知直线AB经过点(-1,2),可得直线AB的方程为y = -3(x + 1) + 2,即y = -3x - 1。

(3)将直线AB与y = 0相交,即使y = -3x - 1 = 0,可解得x = - 1/3,即交点为( - 1/3,0)。

(4)由于mAB = -3,斜率为负数,所以直线AB向下倾斜。

通过直线AB进一步可知,在直线上从A到B的过程中,x 坐标减小了3个单位,y坐标减小了9个单位。

因此,直线AB 的斜率为-3,AB的长度为3。

3.(1)首先计算正方体的表面积。

由题意可得,正方体的边长为1 m,那么正方体的表面积为6×1×1=6 m²。

(2)旋转体的表面积等于绕轴旋转的曲线段的饼体的表面积。

所以我们求绕y轴旋转的曲线段的饼体的表面积。

曲线y=x^2的旋转体的表面积为∫[a,b]2πx·√(1+f'^2)dx,即∫[0,1]2πx·√(1+(2x)^2)dx= 2π∫[0,1]x·√(1+4x^2)dx= π∫[0,1]2x·√(1+4x^2)dx= π[x·√(1+4x^2) - ∫√(1+4x^2)dx]= π[x·√(1+4x^2) - (1/4)·(2x)·√(1+4x^2) -(1/4)·sinh^(-1)2x]∣[0,1]= π[(1/4)·√5 - (1/4)·arcsinh2]4.(1)如果f(x)是定义在实数集上的奇函数,那么f(-x) = -f(x)。

2010年高考数学试题(新课程卷)分类解析(二)——函数与导数

2010年高考数学试题(新课程卷)分类解析(二)——函数与导数

的全过 程 ,是 历年 高考 考查 力度 最 大的主 线之 一 ,笔 者针 对 的 函数) 的导 数” 了解定 积分与 微积分 基本定理 ” 、“ ,体会导
21 0 0年 高考教 学的 “ 函数与导数”的试题进行分析 ,对本 专题 数方 法在 研究 函数 性质 中的一般 性 和有 效性 .因此 ,理 科要 被 考查的知识点的分类统计 分析 ,对常规典 型题 和新颖题给 出 求高 于文 科 .文 、理 科 对 这部 分考 查 涉及 所有 题 型——选择 解法示例与点评 ,希望能给备战 高考的读 者一些有益的启示. 习建议 题 、填 空题 、解答 题都 有题 目涉 及 函数 问题 ,除 了单独 考查 关键词 :高考数 学 ;试题解析 ;函数 导数 ;示例评析 ;复 函数 的 题 目,还有 多 个题 目涉 及 函数 与其 他 内容综 合 考查 . 在解答 题 中 ,函数 题往 往是 作为 压轴 题 出现 的 ,由于新 课程 高考凭 借 “ 数 ”这一 重要 而强 有力 的工 具 ,对 函数 的考查 导
被联合考查的其他 逻辑 数列 不等式 不等式 专题的主要知识点 用语 解法 证 明 曲线的切线方程 图形 的平移与对称 合情推理 三角 函数与 向量 几何 概型与随机模拟试验
考查 频 数


1 0
1 5





收 稿 日期 :2 1— 7 0 000— l
其 中重点是不等式 ,尤 其是不等式恒成 立问题 时的参 数取值范
本题 的解题 方法思路是 :运用导数公 式求导 ,解方程求 导
作者简介 :蔡 芙蓉 (9 2 ) 16 一 ,女 ,海南海口人 ,中学高级教 师,海 口市教 育研 究培训院高 中数学教研 员.主要 从事 中学数 学课 堂教 学研 究和 高

2010年浙江高考数学理科卷带详解

2010年浙江高考数学理科卷带详解

2010年普通高等学校招生全国统一考试(浙江卷)理科数学一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四项中,只有一项是符合题目要求的.1.设{4}P x x =<,2{4}Q x x =<,则 ( ) A .P Q ⊆ B .Q P ⊆ C .p Q ⊆R ð D .Q P ⊆R ð 【测量目标】集合间的关系.【考查方式】给出两集合,求集合间的关系. 【难易程度】容易 【参考答案】B 【试题解析】P ={x 4x <},{}{}2422Q x x x x =<=-<<,Q P ∴⊆,故B 正确.2.某程序框图如图所示,若输出的S =57,则判断框内为 ( ) A . k >4? B .k >5? C . k >6? D .k >7?第2题图【测量目标】循环结构的程序框图.【考查方式】给出循环结构的程序框图,根据输出结果,求出所缺条件. 【难易程度】容易 【参考答案】A【试题解析】程序在运行过程中变量值变化如下表: k s 是否继续循环 循环前 1 1第一圈 2 4 是 第二圈 3 11 是 第三圈 4 26 是 第四圈 5 57 否故退出循环的条件应为k >4.故选答案A.3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = ( ) A .11 B .5 C .8- D .11- 【测量目标】等比数列的通项公式与等比数列前n 项和公式.【考查方式】给出等比数列两项之间的关系式,求出公比,根据等比数列前n 项和公式求解. 【难易程度】容易 【参考答案】D【试题解析】由2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,所以55221111S q S q-==--.故选A. 4.设π02x <<,则“2sin 1x x <”是“sin 1x x <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出两不等式,判断两者之间的关系. 【难易程度】容易 【参考答案】B【试题解析】因为0<x <2π,所以0<sin 1x <,故2sin sin x x x x <,结合x sin 2x 与x sin x 的取值范围相同,可知“2sin 1x x <”是“sin 1x x <”的必要而不充分条件.5.对任意复数()i ,z x y x y =+∈R ,i 为虚数单位,则下列结论正确的是 ( ) A .2z z y -= B .222z x y =+ C .2z z x -… D .z x y +…【测量目标】复数代数形式的四则运算,共轭复数. 【考查方式】根据复数代数形式的四则运算及共轭复数的概念判断. 【难易程度】容易 【参考答案】D【试题解析】可对选项逐个检查,A 项,2z z y -…,故A 错,B 项,2222i z x y xy =-+,故B 错,C 项,2z z y -…,故C 错,故选D .6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m ∥,则m α⊥ C .若l α∥,m α⊂,则l m ∥ D .若l α∥,m α∥,则l m ∥ 【测量目标】线面平行与垂直的判定.【考查方式】给出两条直线与平面,根据线面平行与垂直的定理判断位置关系. 【难易程度】容易 【参考答案】B【试题解析】A :根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确; C :lα,,m α⊂则lm 或两线异面,故不正确;D :平行于同一平面的两直线可能平行、异面、相交,故不正确;B :由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面,故正确.7.若实数x ,y 满足不等式组330,230,10x y x y x my +-⎧⎪--⎨⎪-+⎩………,且x y +的最大值为9,则实数m =( )A .2-B .1-C .1D .2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出不等式组,给出目标函数的最大值,逆向求出系数大小. 【难易程度】中等 【参考答案】C【试题解析】先根据约束条件画出可行域,设z x y =+,将最大值转化为y 轴上的截距,当直线z x y =+经过直线230x y --=的交点A (4,5)时,z 值最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入10x my -+=得1m =,故选C.第7题图8.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( ) A .340x y ±= B .350x y ±= C .430x y ±= D .540x y ±= 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线上一点与两焦点距离的关系,根据双曲线的性质求解其渐近线方程. 【难易程度】中等 【参考答案】C【试题解析】依题意212PF F F =,可知三角形21PF F 是一个等腰三角形,2F 在直线1PF 的投影是其中点,由勾股定理可知14PF b ==.(步骤1) 根据双曲线定义可知422b c a -=,整理得2c b a =-,代入222c a b =+整理得2340b ab -=,求得43b a =,∴双曲线渐近线方程为430x y ±=.故选C. (步骤2)9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 ( ) A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4 【测量目标】函数零点的求解与判断,三角函数图象的变换.【考查方式】给出函数解析式求零点,将其转化为一元一次函数与三角函数图象的交点问题求解.【难易程度】中等【参考答案】A【试题解析】在同一坐标系中画出()4sin(21)g x x =+与()h x x =的图象,由图可知()4sin(21)g x x =+与()h x x =的图象在区间[]4,2--上无交点,由图可知函数()4sin(21)f x x x =+-在区间[]4,2--上没有零点.故选A.第9题图10.设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 ( ) A .4 B .6 C .8 D .10 【测量目标】集合的基本运算,对数函数的图象与性质.【考查方式】给出一个函数集合与一个点集,判断两集合的交集个数. 【难易程度】较难 【参考答案】B【试题解析】将数据代入验证知:当a =0,b =0;a =0,b =1;a =21,b =0; a =21,b =1;a =1,b =-1;a =1,b =1时满足题意,故答案选B.二、填空题:本大题共7小题,每小题4分,共28分.11.函数2π()sin(2)4f x x x =--的最小正周期是__________________ . 【测量目标】两角和与差的正弦,三角函数的周期性.【考查方式】给出三角函数解析式,利用两角和与差的正弦将其化为同名三角函数再求周期. 【难易程度】中等 【参考答案】π【试题解析】 2π()sin(2)4f x x x =--=2πsin(2)2sin )4x x -+-(步骤1)=πsin(2)24x x -+πsin(2)4x +2) 2ω=,故最小正周期为πT =,故答案为:π.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .第12题图【测量目标】平面图形的直观图与三视图,柱、锥、台的体积.【考查方式】给出三视图,判断空间几何体的直观图,判断其构成,在根据体积公式求解. 【难易程度】容易【参考答案】144【试题解析】图为一四棱台和长方体的组合体的三视图,由公式计算得体积为13(166********⨯⨯++⨯=,故答案为:144. 14.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________. 【测量目标】抛物线的定义,抛物线的简单几何性质.【考查方式】利用抛物线的定义求出p ,根据抛物线的性质求出B 到准线的距离. 【难易程度】容易【参考答案】4【试题解析】依题意可知F 坐标为(,0)2p ,B ∴的坐标为(,1)4p代入抛物线方程得212p =,解得p =,∴抛物线准线方程为2x =-,所以点B 到抛物线准线的距离为14.设112,,(2)(3)23n nn n x x ∈+-+N …2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a kn 剟的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅其中n T =__________________ . 【测量目标】合情推理.【考查方式】给出前几项,归纳推理出第n 项,考查学生的推理能力. 【难易程度】中等【参考答案】011,23nn n n ⎧⎪⎨-⎪⎩,为偶数为奇数 【试题解析】根据n T 的定义,列出n T 的前几项:01233345556011162301123011230T T T T T T T ===-==-==-=由此规律,我们可以判断:011,23n n n n T n ⎧⎪=⎨-⎪⎩,为偶数为奇数 故答案:011,23n nn n ⎧⎪⎨-⎪⎩,为偶数为奇数. 15.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .【测量目标】等差数列前n 项和.【考查方式】给出关于等差数列前n 项和的等式,求出公差的范围. 【难易程度】中等【参考答案】(),22,⎡-∞-+∞⎣【试题解析】因为56150S S +=,所以11(510)(615)150a d a d +++=,整理得2211291010a a d d +++=,(步骤1) 此方程可看作关于1a 的一元二次方程,它一定有根,故有222(9)42(101)80,d d d ∆=-⨯⨯+=-…整理得28d …,解得d …或d -…,则d的取值范围是(),22,⎡-∞-+∞⎣,故答案为:(),22,⎡-∞-+∞⎣.(步骤2)16.已知平面向量,(,)≠≠0αβααβ满足1=β,且a 与-βα的夹角为120,则α的取值范围是__________________ .【测量目标】平面向量线性运算、平面向量在平面几何中的应用和正弦定理.【考查方式】根据平面向量的三角形法则判断两向量的夹角,再利用正弦定理求解. 【难易程度】中等 【参考答案】 【试题解析】如图,设,OA OB ==αβ,则AB =-βα,∵a 与-βα的夹角为120,即OA 与AB 的夹角为120,∴60OAB ∠=.由正弦定理可得:sin sin OA OB BA=,即sin sin BA=αβ,(步骤1)∴sin sin sin sin 60BB B A===βα,∵0120B <<,∴sin (0,1]B ∈,∴(0,3∈α. (步骤2)第16题图17.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共 有______________种(用数字作答). 【测量目标】排列组合及其应用.【考查方式】通过实际生活的实例,求出不同的安排方式. 【难易程度】较难 【参考答案】264【试题解析】先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、 “台阶”测试,共有44A 种不同安排方式;(步骤1) 接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A B C 、、同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D 同学选择“握力”测试,安排A B C 、、同学分别交叉测试,有2种;(步骤2) 若D 同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有13A 种方式,安排A B C 、、同学进行测试有3种;根据计数原理共有安排方式的种数为4143A (2A 3)264+⨯=.(步骤3)三、解答题:本大题共5小题.共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知1cos 24C =- (Ⅰ)求sin C 的值;(Ⅱ)当a =2,2sin sin A C =时,求b 及c 的长. 【测量目标】二倍角,正弦定理,余弦定理.【考查方式】给出二倍角化简求解;给出两角正弦值之间的关系及三角形一边,结合正弦定理求一条边长,再应用余弦定理求另一边.【难易程度】中等【试题解析】(Ⅰ)因为21cos 212sin 4C C =-=-,及0πC <<,所以sin C =.(步骤1)(Ⅱ)当2a =,2sin sin A C =时,由正弦定理sin sin a cA C=,得4c =,(步骤2)由21cos 22cos 14C C =-=-,及0<πC <得cos C =.由余弦定理2222cos c a b ab C =+-,得2120b -=.解得b =所以4b c ⎧=⎪⎨=⎪⎩4b c ⎧=⎪⎨=⎪⎩.(步骤3) 19.(本题满分l4分)如图,一个小球从M 处投入,通过管道自上而下落A 或B 或C .已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A ,B ,C ,则分别设为l ,2,3等奖. (I )已知获得l ,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k (k =1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望E ξ;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求(2)P η=.第19题图【测量目标】离散型随机变量的分布列与期望,二项分布.【考查方式】结合实际问题,列出随机变量求其分布列,由公式求期望;判断二项分布,求概率.【难易程度】中等【试题解析】(Ⅰ)由题意得ξ的分布列为则337350%70%90%168164E ξ=⨯+⨯+⨯=.(步骤1) (Ⅱ)由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916.由题意得9~(3,)16η.则223991701(2)C ()(1)16164096P η==-=.(步骤2)20.(本题满分15分)如图,在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.第20题图【测量目标】二面角,平面图形的折叠问题,空间向量的应用.【考查方式】根据条件建立空间直角坐标系设向量求解;由空间线面垂直判定找出二面角求解.【难易程度】较难【试题解析】(Ⅰ)取线段EF 的中点H ,连结A H ',因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF .如图建立空间直角坐标系A xyz -则(22A ',,(1080)C ,,,(400)F ,,,(1000)D ,,.故(22FA '=-,u u u r ,(6,0,0)FD =uu u r . (步骤1)设(,,)x y z =n 为平面A FD '的一个法向量,所以220,60x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,=-n .又平面BEF 的一个法向量(0,0,1)=m ,故3cos ,3〈〉==n m n m n m .所以二面角的余弦值为3. (步骤2)第20题图 (1)(Ⅱ)设,FM x =则(4,0,0)M x +,因为翻折后,C 与A '重合,所以CM A M '=,故 222222(6)80=22x x -++--++()(,得214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤3) 方法二:(Ⅰ)取线段EF 的中点H ,AF 的中点G ,连结,,A G A H GH ''. 因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥又因为平面A EF '⊥平面BEF ,所以A H '⊥平面BEF ,(步骤1) 又AF ⊂平面BEF ,故A H '⊥AF ,又因为G 、H 是AF 、EF 的中点,易知GH AB ∥,所以GH ⊥AF ,于是AF ⊥面A GH ', 所以A GH '∠为二面角A DF C '--的平面角, (步骤2)在Rt A GH '△中,A H '=,GH =2,A G '=所以cos 3A GH '∠=.故二面角A DF C '--的余弦值为3. (步骤3) (Ⅱ)设FM x =,因为翻折后,C 与A '重合,所以CM A M '=,而222228(6)CM DC DM x =+=+-,222222A M A H MH A H MG GH '''=+=++22(2)4x =+++,22CM A M '=,∴214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤4)第20题图(2)21.(本题满分15分)已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,12F F ,分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F △, 12BF F △的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.第21题图【测量目标】直线的方程,椭圆的简单几何性质,直线与椭圆的位置关系,圆锥曲线中的范围问题.【考查方式】给出直线与椭圆的含参方程,通过对两者之间的位置关系求解出参数;联立方程,根据点与圆的关系求解参数范围.【难易程度】较难【试题解析】(Ⅰ)因为直线:l 202m x my --=经过2F ,22m =,得22m =,又因为1m >,所以m =,故直线l 的方程为10x --=.(步骤1)(Ⅱ)设1122(,),(,)A x y B x y由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得,222104m y my ++-= 则由2228(1)804m m m ∆=--=-+>,知28m < 且有212121,282m m y y y y +=-=-.(步骤2)由于12(,0),(,0),F c F c -故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1122(,),(,),3333x y x y G H 2221212()()99x x y y GH --=+ 设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<,而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)(步骤3) 所以21082m -<,即24m <. 又因为1m >且0∆>,所以12m <<. 所以m 的取值范围是(1,2).(步骤4)22.(本题满分14分)已知a 是给定的实常数,设函数2()()()e xf x x a x b =-+,b ∈R ,x a =是()f x 的一个极大值点.(Ⅰ)求b 的取值范围;(Ⅱ)设123,,x x x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1234,,,x x x x 的某种排列1234,,,i i i i x x x x (其中{}1234,,,i i i i ={}1,2,3,4)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【测量目标】导数的运算,利用导数求函数的极值,等差数列的性质.【考查方式】给出函数解析式与极大值点,求参数的求参数的范围,间接考查了利用导数求 函数的极值;结合等差数列性质判断所求值. 【难易程度】较难【试题解析】(Ⅰ)2()e ()(3)2,x f x x a x a b x b ab a '⎡⎤=-+-++--⎣⎦令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80,a b b ab a a b ∆=-+---=+-+>(步骤1)于是,假设12,x x 是()0g x =的两个实根,且12x x <.(1) 当1x a =或2x a =时,则x a =不是()f x 的极值点,此时不合题意. (2) 当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<. 即()0g a <即2(3)20a a b a b ab a +-++--< 所以b a <-所以b 的取值范围是()a -∞-,.(步骤2) (Ⅱ)由(Ⅰ)可知,假设存在b 及4x 满足题意,则 ⑴当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--.即3b a =--.此时4223x x a a b =-=--+a a =+或4223x x a a b =-=--a a =-3)⑵当21x a a x -=-时,则212()x a a x -=-或122()a x x a -=-, ①若212()x a a x -=-,则242a x x +=,于是1232a x x =+=3(3)a b =-++,于是1a b +-=92--,此时242a x x +=2(3)3(3)4a ab a b +---++=3b =--a = (步骤4) ②若122()a x x a -=-,则242a x x +=于是2132a x x =+=3(3)a b =++,于是1a b +-=,此时42(3)3(3)13242a x a ab a b x b a ++---++===--=+(步骤5) 综上所述,存在b 满足题意,当3b a =--时,4x a =±当72b a +=--时,412x a +=+,当b a =-4x a =+.(步骤6)。

2010年全国统一高考数学试卷(理科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(理科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=( )A.B.C.1D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为( )A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( )A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选:C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )A.100B.200C.300D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=( )A.B.C.2D.﹣2【考点】GF:三角函数的恒等变换及化简求值;GW:半角的三角函数.【专题】11:计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为( )A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为( )A.B.C.D.【考点】KB:双曲线的标准方程;KH:直线与圆锥曲线的综合.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而k==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为 .【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是 三棱锥、三棱柱、圆锥(其他正确答案同样给分) (写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C 的方程为 (x﹣3)2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC= 60° .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】MA:向量的数量积判断向量的共线与垂直;MI:直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力. 19.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由. P (K 2≥k )0.050 0.010 0.0013.8416.63510.828附:K 2=.【考点】BL :独立性检验.【专题】11:计算题;5I :概率与统计.【分析】(1)由样本的频率率估计总体的概率, (2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010全国各地高考数学文科试题分类汇编函数与导数

2010全国各地高考数学文科试题分类汇编函数与导数

2010全国各地高考数学文科试题分类汇编函数与导数2010安徽文(20)(本小题满分12分)设函数()sin cos 1 , 02f x x x x x π=-++<<,求函数()f x 的单调区间与极值。

2010北京文(18) (本小题共14分) 设定函数32()(0)3a f x x bx cx d a =+++ ,且方程'()90f x x -=的两个根分别为1,4。

(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式; (Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。

2010湖南文21.(本小题满分13分) 已知函数()(1)ln 15,af x x a x a x=++-+其中a<0,且a ≠-1. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设函数332(23646),1(),1(){x x ax ax a a e x e f x x g x -++--≤⋅>=(e 是自然数的底数)。

是否存在a ,使()g x 在[a,-a]上为减函数?若存在,求a 的取值范围;若不存在,请说明理由。

2010辽宁文(21)(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-。

(21)(本小题满分12分) 已知函数1()ln 1()af x x ax a R x-=-+-∈ (I )当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;(II )当12a ≤时,讨论()f x 的单调性. 2010陕西文21、(本小题满分14分)已知函数f (x )g (x )=alnx ,a ∈R 。

(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a 的值及该切线的方程; (2)设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值ϕ(a )的解析式; (3) 对(2)中的ϕ(a ),证明:当a ∈(0,+∞)时, ϕ(a )≤1.2010天津文(20)(本小题满分12分)已知函数f (x )=3231()2ax x x R -+∈,其中a>0.(Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程;(Ⅱ)若在区间11,22⎡⎤-⎢⎥⎣⎦上,f (x )>0恒成立,求a 的取值范围.2010新课标全国卷文 (21)本小题满分12分) 设函数()()21x x f x e ax =-- (Ⅰ)若a=12,求()x f 的单调区间; (Ⅱ)若当x ≥0时()x f ≥0,求a 的取值范围(19)(本小题满分12分。

例析导数在2010年高考试题中的应用

例析导数在2010年高考试题中的应用
异 号・定 义 在 闭 区 间 上 的初 等 函 数 必 存
般地 , 决有关 不等式 恒成 立 问 解


当日 时 , ()a ()fx - , ≥0 令h x= x x +()x 则 f
基 本 策 略是 构 造 恰 当 的辅 助 函数 . 利

用 函数 的 单调 性
最 值 ( 上 、F B )图 或 - ̄ 、
点上 下一 瞬 间 时 , () 然 变 大 , 时在 口 S t突 此
合 , 得 整 合后 的试 题 具 有 较 强 的综 合 性 使
和 思 考 性.笔 者 现 对 2 1 年 各 省 市 高 考 00
试 题 分类 导 析 如下
个 正 五 角 星 薄 片 ( 对 称 轴 与 水 面 垂 其
投 藕: i v 3 O 稿 s k i1 r x @ p6C n
数学教学通 讯 《 教师版 )
试题 研究 > 题探究 试
例析导数在2 1 年高考试题中的应用 00
吴纯 良
福 建石 狮 第一 中 学
320 670
要 : 文通 过 实例 分 析 导数 在 函数 、 本 不等 式 、 实际 问题 方 面 的 应 用 。 高 中数 学教 师 阅读提 供 参 考 为
07 5
试 题研究> 题探究 一 一 一 … 一 一 试 … 一
一 一 数 学教学通讯 ( 师版 ) 教
投 f sk v 3o 稿晦 x@ i1 .r 5 l p6cn 箱:
练 反 映导 数 本质 的 认识 和 理解 的 习 题

导 数 在 不 等 式证 明 方 面 的
所 以  ̄x - 时 >I
例 1 (0 0 国 高 考 卷 Ⅱ( )0 若 21全 理 1)

2010年高考数学试题及答案

2010年高考数学试题及答案

2010年高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x)=x^2-4x+c,且f(1)=0,则c的值为()A. 1B. 3C. 5D. 7答案:B2. 已知向量a=(3, -4),向量b=(-2, 1),则向量a与向量b的点积为()A. -14B. 5C. -5D. 14答案:A3. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为()A. 1B. 2C. 3D. 44. 已知直线l的方程为y=2x+1,点P(-1, 2),则点P到直线l的距离为()A. √5B. √2C. √3D. √6答案:A5. 已知函数f(x)=x^3-3x,求f'(x)的值为()A. 3x^2-3B. x^2-3C. 3x^2+3D. x^2+3答案:A6. 已知等差数列{a_n}的首项a_1=1,公差d=2,则a_5的值为()A. 9B. 11C. 13D. 15答案:B7. 已知抛物线方程为y^2=4x,求抛物线的焦点坐标为()A. (1, 0)B. (0, 2)C. (1, 2)答案:D8. 已知函数f(x)=x^2-6x+8,求f(x)的最小值为()A. -2B. 2C. 8D. 10答案:A9. 已知复数z=1+i,求|z|的值为()A. √2B. 2C. √3D. 1答案:A10. 已知圆的方程为(x-2)^2+(y+3)^2=16,求圆心坐标为()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A二、填空题(本题共5小题,每小题5分,共25分。

)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为()。

答案:3x^2-6x12. 已知等比数列{a_n}的首项a_1=3,公比q=2,则a_4的值为()。

答案:4813. 已知向量a=(1, 2),向量b=(3, 4),则向量a与向量b的叉积为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年全国各地高考数学试题及解答分类大全(导数及其应用)一、选择题:1.(2010全国Ⅱ卷文)若曲线b ax x y ++=2在点(0,b )处的切线方程是10x y -+=则()(A )a=1,b=1(B )a=-1,b=1(C )a=1,b =-1(D )a=-1,b=-1【解析】A:本题考查了导数的几何意思即求曲线上一点处的切线方程∵2x y x aa='=+=,∴1a =,(0,)b 在切线10x y -+=,∴1b =2.(2010全国Ⅱ卷理)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =()(A)64(B)32(C)16(D)8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.3.(2010全国新课标卷文)曲线3y 21x x =-+在点(1,0)处的切线方程为()(A)1y x =-(B)1y x =-+(C)22y x =-(D)22y x =-+解析:'2y 32,1,1x k y x =-∴==-切线方程为,选A命题意图:本题考查导数的几何意义4.(2010全国新课标卷理)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A 【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义5.(2010江西理)等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =--- ,则()'0f =()A.62 B.92 C.122 D.152【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。

考虑到求导中,含有x 项均取0,则()'0f只与函数()f x 的一次项有关;得:412123818()2a a a a a a ⋅⋅== 。

【答案】C6.(2010江西文)若42()f x ax bx c =++满足(1)2f '=,则(1)f '-=()A .4-B .2-C .2D .4【答案】B【解析】考查函数的奇偶性,求导后导函数为奇函数,所以选择B7.(2010江西理)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。

最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D 的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A。

8、(2010湖南理)421dx x⎰等于()A、2ln 2-B、2ln 2C、ln 2-D、ln 29.(2010辽宁文、理)已知点P 在曲线41xy e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()(A)[0,4π)(B)[,42ππ(C)3(,24ππ(D)3[,)4ππ解析:选D.2441212x x xx x e y e e e e'=-=-++++,12,10xx e y e '+≥∴-≤< ,即1tan 0α-≤<,3[,)4παπ∴∈【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。

10.(2010福建理)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k b ,为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有0()()0()()f x h x m h x g x m <-<⎧⎨<-<⎩,,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”。

给出定义域均为D={}1x x >的四组函数如下:①2()f x x =,()g x =;②()102xf x -=+,()g x =23x x-;③()f x 21x x +,()g x =ln 1ln x x x+;④22()1x f x x =+,()2(1)xg x x e -=--.其中,曲线()y f x =与()y g x =存在“分渐近线”的是()A.①④B.②③C.②④D.③④【答案】C【命题意图】本题从大学数列极限定义的角度出发,仿造构造了分渐近线函数,目的是考查学生分析问题、解决问题的能力,考生需要抓住本质:存在分渐近线的充要条件是∞→x 时,0)()(→-x g x f 进行做答,是一道好题,思维灵活。

【解析】要透过现象看本质,存在分渐近线的充要条件是∞→x 时,0)()(→-x g x f 。

对于○1,当1>x 时便不符合,所以○1不存在;对于○2,肯定存在分渐近线,因为当时,0)()(→-x g x f ;对于○3,x x x g x f ln 11)()(-=-,设01)(",ln )(2>=-=xx x x x λλ且x x <ln ,所以当∞→x 时x x ln -越来愈大,从而)()(x g x f -会越来越小,不会趋近于0,所以不存在分渐近线;○4当0→x 时,022112)()(→+++-=-x e x x g x f ,因此存在分渐近线。

故,存在分渐近线的是②④选C11.(2010山东文)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为()(A)13万件(B)11万件(C)9万件(D)7万件12.(2010山东文)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=()(A)()f x (B)()f x -(C)()g x (D)()g x -【答案】D【解析】由给出的例子可以归纳推理得出:若函数()f x 是偶函数,则它的导函数是奇函数,因为定义在R 上的函数()f x 满足()()f x f x -=,即函数()f x 是偶函数,所以它的导函数是奇函数,即有()g x -=()g x -,故选D。

【命题意图】本题考查函数、归纳推理等基础知识,考查同学们类比归纳的能力。

13.(2010山东理)由曲线y=2x ,y=3x 围成的封闭图形面积为()(A )112(B)14(C)13(D)712【解析】由题意得:所求封闭图形的面积为1230-)=x x dx ⎰(11111=3412⨯-⨯,故选A 。

【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。

二、填空题:1、(2010江苏)函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=_________[解析]考查函数的切线方程、数列的通项。

在点(a k ,a k 2)处的切线方程为:22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以1135,1641212kk a a a a a +=++=++=。

2、(2010江苏)将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是________。

[解析]考查函数中的建模应用,等价转化思想。

一题多解。

设剪成的小正三角形的边长为x,则:222(3)(01)1x S x x -==<<-(方法一)利用导数求函数最小值。

22(3)()1x S x x -=-,2222(26)(1)(3)(2)()(1)x x x x S x x -⋅---⋅-'=-222222(26)(1)(3)(2)2(31)(3)(1)(1)x x x x x x x x -⋅---⋅----==--1()0,01,3S x x x '=<<=,当1(0,3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增;故当13x =时,S的最小值是3。

(方法二)利用函数的方法求最小值。

令1113,(2,3),(,)32x t t t -=∈∈,则:222186681t S t t t t==-+--+-故当131,83x t ==时,S的最小值是3。

3.(2010陕西理)从如图所示的长方形区域内任取一个点M(x,y),则点M 取自阴影部分部分的概率为13解析:长方形区域的面积为3,阴影部分部分的面积为1321=⎰dx x ,所以点M 取自阴影部分部分的概率为134.(2010四川理)下列四个图像所表示的函数,在点0x =处连续的是()(A )(B )(C )(D )解析:由图象及函数连续的性质知,D 正确.答案:D三、解答题:1.(2010安徽文)设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值。

1.【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力.1.(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力。

解:由()sin cos 1,02f x x x x x π=-++<<,知()cos sin 1,f x x x '=++于是23()0,sin(),.422f x x x πππ'=+=-=从而得或x=当x 变化时,(),()f x f x '变化情况如下表:因此,由上表知()f x 的单调递增区间是(0,)(,2)2ππ与,单调递减区间是(,2π,【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.2、(2010安徽理)设a 为实数,函数()22,x f x e x a x =-+∈R 。

相关文档
最新文档