2015-2016学年北京市海淀区七年级第一学期期末数学试卷(含答案)

合集下载

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。

11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。

北师大七年级(上)期末数学试卷(含解析) (12)

北师大七年级(上)期末数学试卷(含解析) (12)

2015-2016学年重庆市巴蜀中学七年级(上)期末数学试卷一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.22.对于单项式5πR2,下列说法正确的是()A.系数为5 B.系数为5πC.次数为3 D.次数为4 3.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.4.下列说法正确的是()A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B.事件发生的频率就是它的概率C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件5.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm6.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°7.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.28.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y 9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=311.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=1012.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181二、填空题(每空3分,共30分)13.5的相反数是.14.计算2a﹣(﹣1+2a)=.15.如果收入50元记作+50元,那么支出20元记作.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为人.17.如图,数轴上点A、B所表示的两个数的和的绝对值是.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是度.20.一块手表上午10:45时针和分针所夹锐角的度数是.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了元.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人;扇形统计图中a=;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?2015-2016学年重庆市巴蜀中学七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.2【考点】有理数大小比较.【分析】因为正数大于一切负数,0大于负数,所以负数最小,﹣2<﹣1,所以﹣2最小.【解答】解:﹣2<﹣1<0<2,故选A.2.对于单项式5πR2,下列说法正确的是()A.系数为5 B.系数为5πC.次数为3 D.次数为4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5πR2的系数是5π,次数是2,故选:B.3.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.4.下列说法正确的是()A.一对农村育龄夫妇第一胎生女孩,四年后还允许生一胎,有人说第二胎必为男孩B.事件发生的频率就是它的概率C.质检部门在某超市的化妆品柜台任意抽取100件化妆品进行质量检测,发现有2件为不合格产品,我们就说这个柜台的产品合格率为98%D.成语“万无一失”,从数学上看,就是指“失败”是一种不可能事件【考点】用样本估计总体;随机事件;概率的意义.【分析】正确理解频率和概率的概念,掌握随机事件的概念,分析即可.【解答】解:A、第二胎可能是男孩,也可能是女孩,是随机事件,错误;B、事件发生的频率就是它的概率,概率并不等同于频率,概念混淆,错误;C、符合用样本估计总体的统计思想,正确;D、混淆了频率与概率的概念,错误.故选C.5.如图,AB=12cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.4cm B.6cm C.8cm D.10cm【考点】两点间的距离.【分析】根据中点的定义求出AC、BC的长,根据题意求出AD,结合图形计算即可.【解答】解:∵AB=12cm,C为AB的中点,∴AC=BC=AB=6cm,∵AD:CB=1:3,∴AD=2cm,∴DC=AC﹣AD=4cm,∴DB=DC+BC=10cm,故选:D.6.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°【考点】角的计算.【分析】由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°﹣∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选:B.7.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.2【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.8.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.9.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人【考点】二元一次方程组的应用.【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.本题中有2个定量:工程队的人数,沙的吨数,可根据定量找到两个等量关系:挖沙人数+运沙人数=27,4×挖沙人数=5×运沙人数.根据这两个等量关系可列出方程组.【解答】解:设分配挖沙x人,运沙y人,则,解得,∴应分配挖沙15人,运沙12人.故选C.10.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.11.已知方程组的解也是方程3x﹣2y=0的解,则k的值是()A.k=﹣5 B.k=5 C.k=﹣10 D.k=10【考点】解三元一次方程组.【分析】根据三元一次方程组的概念,先解方程组,得到x,y的值后,代入4x﹣3y+k=0求得k的值.【解答】解:解方程组,得:,把x,y代入4x﹣3y+k=0得:﹣40+45+k=0解得:k=﹣5.故选A.12.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有()个.A.145 B.146 C.180 D.181【考点】规律型:图形的变化类.【分析】根据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10﹣1)2=181个.【解答】解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10﹣1)2=181个.故选D.二、填空题(每空3分,共30分)13.5的相反数是﹣5.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.14.计算2a﹣(﹣1+2a)=1.【考点】整式的加减.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=2a+1﹣2a=1.故答案为:1.15.如果收入50元记作+50元,那么支出20元记作﹣20元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:如果收入50元记作+50元,那么支出20元记作﹣20元,故答案为:﹣20元.16.每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.17.如图,数轴上点A、B所表示的两个数的和的绝对值是1.【考点】数轴;绝对值;有理数的加法.【分析】首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.【解答】解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【考点】简单组合体的三视图.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.19.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是135度.【考点】角平分线的定义.【分析】本题是有公共定点的两个直角三角形问题,通过图形可知∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,同时∠AOC+∠BOC+∠BOD+∠BOC=180°,可以通过角平分线性质求解.【解答】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为:135.20.一块手表上午10:45时针和分针所夹锐角的度数是52.5°.【考点】钟面角.【分析】首先根据题意画出草图,再根据钟表表盘的特征:表面上每一格30°,进行解答.【解答】解:10:45,时针和分针中间相差1个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午10:45时针和分针所夹锐角的度数是1×30°=52.5°.故答案为:52.5°.21.圣诞节到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省28元,那么妈妈购买这件衣服实际花费了112元.【考点】一元一次方程的应用.【分析】设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,由题意可得出关于x的一元一次方程,解之即可求出x的值,故妈妈购买这件衣服实际花费的钱数即可得出.【解答】解:设这件运动服的标价为x元,则妈妈购买这件衣服实际花费了0.8x元,根据题意得,x﹣0.8x=28,解得:x=140,0.8x=112,故妈妈购买这件衣服实际花费了112元.故答案为112.22.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是45%.【考点】分式方程的应用.【分析】可设甲、乙的进价,甲种款式售出的件数为未知数,根据售出的乙种款式比售出的甲种款式的件数少40%时,这个老板得到的总利润率为40%得到甲、乙进价之间的关系,进而求得当售出的乙种款式的件数比甲种款式的件数多80%时,这个老板的总利润率即可.【解答】解:设甲种款式进价为a元,则售出价为1.3a元;乙种款式的进价为b元,则售出价为1.5b元;若售出甲种款式x件,则售出乙种款式0.6x件,依题意有=40%,解得:a=0.6b,当售出的乙种款式的件数比甲种款式的件数多80%时,设甲种款式的件数为y件,则乙种款式的件数1.8y件,则==45%.答:这个老板得到的总利润率是45%.故答案为:45%.三、解答题(共27题)23.计算:(1)18﹣6÷(﹣2)×(﹣);(2)(﹣﹣)×24+(1﹣0.5)+3×.【考点】有理数的混合运算.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式利用乘法分配律及乘法法则计算即可得到结果.【解答】解:(1)原式=18﹣1=17;(2)原式=21﹣4﹣18++2=1.24.解方程(组):(1)7﹣3(x+1)=2(4﹣x)(2).【考点】解二元一次方程组;解一元一次方程.【分析】(1)根据一元一次方程的解法即可解答;(2)利用加减消元法即可解答.【解答】解:(1)7﹣3(x+1)=2(4﹣x)7﹣3x﹣3=8﹣2x﹣3x+2x=8﹣7﹣x=1x=﹣1.(2)整理方程组得:①×2得:12x﹣4y=10③③﹣②得:9x=4,解得:x=,把x=代入①得:﹣2y=5,解得:y=﹣.所以方程组的解为:.25.先化简,再求值:3(x2﹣2xy)﹣4[xy﹣1+(﹣xy+x2)],其中x=﹣4,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣6xy﹣xy+4+6xy﹣6x2=﹣3x2﹣xy+4,当x=﹣4,y=时,原式=﹣48+2+4=﹣42.26.巴蜀中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有300人;扇形统计图中a=12;(2)补全条形统计图;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)男生人数为20+40+60+180=300;8分对应百分数用8分的总人数÷500;(2)8分以下总人数=500×10%=50,其中女生=50﹣20,10分总人数=500×62%=310,其中女生人数=310﹣180=130,进而补全直方图;(3)可利用样本的百分数去估计总体的概率,即可求出答案.【解答】解(1)如图,男生人数为20+40+60+180=300,8分对应百分数为(40+20)÷500=12%,故答案为:300,12;(2)补图如图所示:(3)500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是=.27.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【考点】角平分线的定义.(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=【分析】∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC﹣∠CON,即∠MON=45°;(2)同理可得,∠MOC=(α+β),∠CON=β,根据图形便可推出∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45°;(2)同理可得,∠MOC=(α+β),∠CON=β,则∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.28.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.【考点】二元一次方程的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)根据:“A型汽车价格上涨的部分+B型汽车价格上涨的部分=同时购买A、B型汽车比原价高的部分”列方程求解可得.【解答】解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)根据题意,得:18×m%+26×3m%=(18+26)×12%,解得:m=5.5,答:m的值为5.5.29.张老师周末到某家居建材市场购买沙发、橱窗和地板三样物品,碰巧该市场推出“迎圣诞元旦双节”优惠活动,具体优惠情况如下:(1)若购买三样物品原价8000元,请求出张老师实际的付款金额?(2)若购买三样物品实际花费了6820元.①请求出三件物品的原价总共是多少钱?②几天后,张老师发现地板的样式不适合需要退货,该市场规定:消费者需支付优惠差额(即退货商品在购买时所享受的优惠),并且还要支付商品原价5%的手续费,最终该市场退还了张老师2345元,请问地板原价是多少钱?【考点】一元一次方程的应用.【分析】(1)设三件物品的原价总共是x元,由花费的钱数可知,商品的原价应在5000元﹣10000元之间,根据原价﹣优惠的钱数=花费的钱数列出方程解答即可;(2)设地板的原价为a元,由退回的钱数可知,商品的原价应在5000元之内,根据原价﹣优惠的钱数﹣支付原价的手续费=2345,列出方程解答即可.【解答】解:(1)购买三样物品原价8000元,张老师实际的付款金额为8000×80%=6400元;(2)设三件家电的原价总共是x元,由题意得,x﹣5000×10%﹣(x﹣5000)×20%=6820,解得:x=7900.答:三件家电的原价总共是7900元.(2)设地板的原价为a元,由题意得a﹣10%a﹣20%a=2345,解得:a=3350.答:地板的原价为3350元.2017年2月15日。

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)2018年11月6日上午,在上海召开的首届中国国际进口博览会北京主题活动上,北京市交易团重点发布了2022北京冬奥会、北京大兴国际机场等北京未来发展的重要规划及采购需求,现场签约金额总计超过50000000000元人民币,将50000000000科学记数法表示应为()A.0.5×1010B.5×1010C.5×1011D.50×1092.(3分)下列计算正确的是()A.b﹣5b=﹣4B.2m+n=2mn C.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b 3.(3分)如果x=3是关于x的方程2x+m=7的解,那么m的值为()A.1B.2C.﹣1D.﹣24.(3分)用四舍五入法将3.694精确到0.01,所得到的近似数为()A.3.6B.3.69C.3.7D.3.705.(2分)如果2x2﹣x﹣2=0,那么6x2﹣3x﹣1的值等于()A.5B.3C.﹣7D.﹣96.(2分)如图1,南非曾发行过一个可折叠邮政包装箱的邮票小全张,将其中包装箱的展开图截下,并按图1中左下角所示方法进行折叠,使画面朝外,那么与图2中图案所在的面相对的面上的图案是()A .B .C .D .7.(2分)以下说法正确的是()A.两点之间直线最短B.延长直线AB到点E,使BE=ABC.钝角的一半一定不会小于45°D.连接两点间的线段就是这两点的距离8.(2分)下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xC.由3(x﹣2)=2(x+3),得3x﹣6=2x+6D .由=2,得2x﹣2﹣x+2=129.(2分)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④10.(2分)南水北调工程中线自2014年12月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复,若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:以下关于2013年以来北京地下水水位的说法不正确的是()A.从2014年底开始,北京地下水水位的下降趋势得到缓解B.从2015年底到2016年底,北京地下水水位首次回升C.2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年D.2018年9月底的地下水水位低于2012年底的地下水水位二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.(2分)﹣6的相反数等于.12.(3分)如果|m+3|+(n﹣2)2=0,那么m=,n=,m n=.13.(2分)45°25′的余角等于°′.14.(2分)写出一个次数为4的单项式,要求其中所含字母只有x,y:.15.(3分)如图,在以下建筑物的图片上做标记得到三个角α,β,γ,将这三个角按从大到小的顺序排列:,,.16.(2分)一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.17.(2分)线段AB=6,在直线AB上截取线段BC=3AB,D为线段AB的中点,E为线段BC的中点,那么线段DE的长为.18.(4分)我国现行的二代身份证号码是18位数字,由前17位数字本体码和最后1位校验码组成.校验码通过前17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码,现将前17位数字本体码记为A1A2A3…A16A17,其中A i(i=1,…,17)表示第i位置上的身份证号码数字值,按下表中的规定分别给出每个位置上的一个对应的值W i.现以号码N=440524************为例,先将该号码N的前17位数字本体码填入表中(现已填好),依照以下操作步骤计算相应的校验码进行校验:(1)对前17位数字本体码,按下列方式求和,并将和记为S:S=A1×W1+A2×W2+……+A17×W17.现经计算,已得出A1×W1+A2×W2+…+A13×W13=189,继续求得S=;(2)计算S÷11,所得的余数记为Y,那么Y=;(3)查阅下表得到对应的校验码(其中X为罗马数字,用来代替10):所得到的校验码为,与号码N中的最后一位进行对比,由此判断号码N是(填“真”或“假”)身份证号.三、解答题(本题共56分)19.(8分)计算:(1)﹣8+12﹣25+6(2)﹣9×(﹣)220.(8分)计算:(1)[﹣(﹣)+2]÷(﹣).(2)﹣4+(﹣2)4÷4﹣(﹣0.28)×.21.(5分)先化简,再求值:3(x2﹣xy﹣2y)﹣2(x2﹣3y),其中x=﹣1,y=2.22.(5分)解方程:﹣=223.(5分)解方程组:.24.(5分)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).25.(4分)任务画图已知:如图,在正方形网格中,∠AOB=α.任务:在网格中画出一个顶点为O且等于180°﹣2α的角.要求:画图并标记符合要求的角,写出简要的画图步骤.(说明:可以借助网格、量角器)26.(5分)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.27.(5分)列方程(组)解决问题某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰,为此组织活动的老师设计了如下表格进行统计.已知获得二等奖的人数比一等奖的人数多5人.问:获得三种奖项的同学各多少人?28.(6分)如图,数轴上A,B两点对应的有理数分别为x A=﹣5和x B=6,动点P从点A 出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P=,PQ=;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.参考答案与试题解析一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:50000000000=5×1010,故选:B.2.【解答】解:A、b﹣5b=﹣4b,错误;B、2m与n不是同类项,不能合并,错误;C、2a4与4a2不是同类项,不能合并,错误;D、﹣2a2b+5a2b=3a2b,正确;故选:D.3.【解答】解:把x=3代入方程2x+m=7得:6+m=7,解得:m=1,故选:A.4.【解答】解:3.694≈3.69(精确到0.01).故选:B.5.【解答】解:∵2x2﹣x﹣2=0,∴2x2﹣x=2,则6x2﹣3x﹣1=3(2x2﹣x)﹣1=3×2﹣1=6﹣1=5,故选:A.6.【解答】解:根据正方体的展开图,可得与图2中图案所在的面相对的面上的图案为:故选:A.7.【解答】解:A、两点之间线段最短,故原来的说法错误,不符合题意;B、延长线段AB到点E,使BE=AB,故原来的说法错误,不符合题意;C、说法正确,符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:C.8.【解答】解:A、2x+4=3x+1,2x﹣3x=1﹣4,故本选项错误;B、0.5x﹣0.7x=5﹣1.3x,5x﹣7x=50﹣13x,故本选项错误;C、3(x﹣2)=2(x+3),3x﹣6=2x+6,故本选项正确;D、=2,3x﹣3﹣x﹣2=12,故本选项错误;故选:C.9.【解答】解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.10.【解答】解:A、从2014年底开始,北京地下水水位的下降趋势得到缓解,正确;B、从2015年底到2016年底,北京地下水水位首次回升,正确;C、2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年,正确;D、∵2018年9月底的地下水水位与2012年底的地下水水位无法比较,∴2018年9月底的地下水水位低于2012年底的地下水水位错误.故选:D.二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.【解答】解:﹣6的相反数等于:6.故答案为:6.12.【解答】解:∵|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得:m=﹣3,n=2,故m n=(﹣3)2=9.故答案为:﹣3,2,9.13.【解答】解:45°25′的余角等于90°﹣45°25′=44°35'.故答案为:44,35.14.【解答】解:由题意得,答案不唯一:如x2y2等.故答案为:如x2y2等.15.【解答】解:由图可得,β>γ>α.∴三个角按从大到小的顺序排列为:β,γ,α.故答案为:β,γ,α.16.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:17.【解答】解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9﹣3=6;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9+3=12.故线段DE的长为6或12.故答案为:6或12.18.【解答】解:(1)根据求和规律可得到A14×W14=5,A15×W15=0,A16×W16=0,A17×W17=2,从而得到S=189+5+0+0+2=196;(2)S÷11=196÷11=17……9;(3)查表得,所得到的校验码为3,再与原身份证的最后一位是6比较,判断号码N是假身份证号.三、解答题(本题共56分)19.【解答】解:(1)原式=4+6﹣25=10﹣25=﹣15;(2)原式=﹣9××=﹣.20.【解答】解:(1)原式=(++)×(﹣)=×(﹣)+×(﹣)+×(﹣)=﹣2﹣﹣6=﹣8;(2)原式=﹣4+16÷4+0.07=﹣4+4+0.07=0.07.21.【解答】解:原式=3x2﹣3xy﹣6y﹣2x2+6y=x2﹣3xy,把x=﹣1,y=2代入x2﹣3xy=(﹣1)2﹣3×(﹣1)×2=7.22.【解答】解:去分母得:4(2x﹣1)﹣3(3x﹣5)=24,8x﹣4﹣9x+15=24,8x﹣9x=24+4﹣15,﹣x=13,x=﹣13.23.【解答】解:,①+②×3得:11x=33,解得:x=3,把x=3代入②得:y=﹣1,则方程组的解为.24.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠OBC.(理由:同角的余角相等)∵CA平分∠OCD∴∠ACD=∠OCA.(理由:角平分线的定义)∴∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.25.【解答】解:如图所示,①利用OB边上的格点C,在网格中画出∠AOB关于直线OA的对称的∠AOD,则∠AOD=∠AOB=α,∠COD=2α;②画平角∠DOE,那么∠BOE=180°﹣2α.26.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B上的数字y.27.【解答】解:设一等奖的人数有x人,根据题意得:4x+3(x+5)+2(35﹣2x)=100,解得:x=5,则二等奖的人数有x+5=5+5=10人,三等奖的人数有35﹣2x=35﹣2×5=25人,答:一等奖的人数有5人,二等奖的人数有10人,三等奖的人数有25人;故答案为:x,x+5,40﹣x﹣(x+5),4x,3(x+5),2(35﹣2x).28.【解答】解:(1)当t=2时,点P对应的有理数x P=﹣5+1×2=﹣3,点Q对应的有理数x Q=6﹣2×2=2,∴PQ=2﹣(﹣3)=5.故答案为﹣3,5;(2)∵x A=﹣5,x B=6,∴OA=5,OB=6.由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.对于点P,因为它的运动速度v P=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.对于点Q,因为它的运动速度v Q=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴|5﹣t|=|6﹣2t|,解得t=1或t=.检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.∴t=1;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴t﹣5=16﹣2t,解得t=7.检验:当t=7时符合题意.∴t=7.综上可知,t=1或7;(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,2(t﹣5.5)=t,解得t=11,追击点对应的数为﹣5+11=6.故当P,Q两点第一次在整点处重合时,此整点对应的数为6.。

北京市海淀区七级上期末数学试卷含答案解析

北京市海淀区七级上期末数学试卷含答案解析

2015-2016学年北京市海淀区七年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣22.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列计算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.用四舍五入法对0.02015(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.02026.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.47.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+289.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<010.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T 均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.计算:180°﹣20°40′=.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为.17.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.2015-2016学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.2.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万用科学记数法表示为3×106.故选C.3.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|【考点】正数和负数.【分析】根据小于零的数是负数,可得答案.【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.4.下列计算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.用四舍五入法对0.02015(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.0202【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】解:0.02015≈0.020(精确到千分位).故选B.6.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.4【考点】余角和补角.【分析】根据图形和余角的概念解答即可.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣【考点】同解方程.【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+28【考点】由实际问题抽象出一元一次方程.【分析】设这件夹克衫的成本价是x元,根据题意可得,利润=标价×80%﹣成本价,据此列出方程.【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】数轴.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.10.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T 均在PB上)四个点中,它最有可能经过的点是()A.M B.N C.S D.T【考点】线段的性质:两点之间线段最短;几何体的展开图;平面展开-最短路径问题.【分析】根据圆锥画出侧面展开图,根据两点之间线段最短可得它最有可能经过的点是N.【解答】解:如图所示:根据圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB 上)四个点中,它最有可能经过的点是N,,故选B.二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是1,+,0.(写出所有符合题意的数)【考点】有理数.【分析】根据大于或等于零的有理数是非负有理数,可得答案.【解答】解:非负有理数是1,+,0.故答案为:1,+,0.12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为120°.【考点】余角和补角.【分析】先根据图形得出∠AOB=60°,再根据和为180度的两个角互为补角即可求解.【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.13.计算:180°﹣20°40′=159°20′.【考点】度分秒的换算.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)【考点】列代数式.【分析】根据4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.【解答】解:(4x+15)÷4=(件).答:这4名工人此月实际人均工作量为件.故答案为:.15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是数轴上表示﹣2的点与原点的距离;若|x|=2,则x的值是±2.【考点】绝对值;数轴.【分析】直接利用绝对值的定义得出|﹣2|的含义以及求出x的值.【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设该小组共有x名同学,根据题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.【解答】解:设该小组共有x名同学,由题意得,+=1.故答案为:+=1.17.如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【考点】线段的性质:两点之间线段最短.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE>DC,从而得到AB+CD <AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=7;②若|x+x1+x2+x3+…+x20|的值最小,则x3=﹣3.【考点】规律型:图形的变化类.【分析】(1)按照规律写出x14即可.(2)当x=﹣6时,|x+x1+x2+x3+…+x20|的值最小,由此可以解决问题.【解答】解:①由题意:x1=2,x2=3,x3=4,x4=5,x5=6,x6=7,x7=4,x8=,5,x9=6,x10=7,x11=4,x12=5,x13=6,x14=7.故答案为x14=7.②由题意当x=﹣6时,x1=﹣5,x2=﹣4,x3=﹣3,x4=﹣2,x5=﹣1,x6=0,x7=1,x8=2,x9=3,x10=4,x11=5,x12=6,x13=7,x14=4,x15=5,x16=6,x17=7,x18=4,x19=5,x20=6,|x+x1+x2+x3+…+x20|=50最小,∴x3=﹣3.故答案为﹣3.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法进行计算即可;(2)根据有理数的乘方、除法、乘法和减法进行计算即可.【解答】解:(1)3﹣6×=3﹣6×=3﹣1=2;(2)﹣42÷(﹣2)3﹣×=﹣16÷(﹣8)﹣=2﹣1=1.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为90°(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是BC=AC;对于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是BC′=AC′.【考点】作图—复杂作图.【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.【解答】解:(1)如图所示:直线DC即为所求;(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.【考点】两点间的距离.【分析】根据点A在线段CB上,AC=,点D是线段BC的中点,CD=3,可以求得BC的长,从而可以求得CA的长,从而得到AD的长.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?【考点】一元一次方程的应用.【分析】设②号小球运动了x米,根据图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.【解答】解:设②号小球运动了x米,由题意可得方程:=,解方程得:x=2答:从造型一到造型二,②号小球运动了2米.五.解答题(本大题共12分,第25题6分,第26题各6分)25.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯一);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是,,,.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【考点】角的计算.【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.【解答】解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2+=4α,解得:.(3),,(4)对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止.2016年6月9日。

2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一卷二)含解析

2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B.C.D. 0和77-7±2. 两个非零有理数的和为零,则它们的商是( )A. B. C. D. 没有能确01-1定3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1 D. 多项式的次数是423abc-29517m mn --4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A. 0个B. 1个C. 2个D. 3个5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A. B. a b >0 C. a+b >0 D. ab <0a b <6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×1057. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A . x 1=(26 x )+2 B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 28. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏 B. 盈利10元 C. 亏损10元 D. 盈利50元9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±110. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.12. 比较大小:___(小“>“,“<”或“=“).12-13-13. 当x=_____时,式子与的值互为相反数.256x +114x x ++14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{…}分数集合{ …}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.18. 计算:(1); (2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦19. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克?(2)10袋小麦中哪一个记数重量最接近标准重量?(3)每袋小麦的平均重量是多少千克?23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x k k x -=-24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为 ;小正方形(阴影部分)的边长为 .(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为 .7,6a b ab +==()-a b2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷一)一、选一选(本大题共10小题,每小题4分,共40分.)1. 值等于7的数是( ).A. 7B. C. D. 0和77-7±【正确答案】C 【详解】值等于7的数是,故选C.7±2. 两个非零有理数的和为零,则它们的商是()A. B. C. D. 没有能确1-1定【正确答案】B 【分析】首先根据条件判断这两个数是一对非零的相反数,由相反数的性质,可知它们符号相反,值相等,再根据有理数的除法法则得出结果.【详解】∵ 两个非零有理数的和为零,∴ 这两个数是一对相反数,∴ 它们符号没有同,值相等,∴ 它们的商是.1-故选.B 本题考查了相反数的定义、性质及有理数的除法运算法则:两数相除,同号得正,异号得负,并把值相除.3. 下列说法中正确的是( ).A. a 是单项式B. 的系数是222r πC. 的次数是1D. 多项式的次数是423abc -29517m mn --【正确答案】A【详解】选项A . a 是单项式,正确.选项 B . 的系数是,错误.22r π2π选项C . 的次数是,错误.23abc-3选项 D .多项式的次数是2,错误.29517m mn --故选:A .4. 下列说法:①如果两个数的积为1,则这两个数互为倒数;②如果两个数和为0,则至少有一个数为0;③值是本身的有理数只有1;④倒数是本身的数是﹣1,0,1.⑤零有相反数.其中错误的个数是( )A . 0个 B. 1个 C. 2个 D. 3个【正确答案】D【详解】①如果两个数的积为1,则这两个数互为倒数,故本项错误;②相如果两个数积为0,则至少有一个数为0,正确;③值等于其本身的有理数是零和正数,故本项错误;④倒数等于其本身的有理数是1和−1,故本项错误;错误的有①③④,共3个.故选D.点睛:本题考查了倒数的定义,有理数的乘法,相反数的定义,值的性质,是基础概念题,熟记概念是解题的关键.5. 已知有理数a ,b在数轴上表示的点如图所示,则下列式子中没有正确的是( )A.B. a b >0C. a+b >0D. ab <00a b <【正确答案】C 【详解】选项C ,b 的值大于a,所以a+b <0,故选C.6. 中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×105【正确答案】D 【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】解:370000=3.7×105.故选D .本题考查科学记数法—表示较大的数7. 一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( )A. x 1=(26 x )+2B. x 1=(13 x )+2C. x+1=(26 x ) 2D. x+1=(13 x ) 2【正确答案】B 【详解】根据题意可得:长方形的宽为(13-x)cm ,根据题意可得:x -1=(13-x)+2.故选B.考点:一元方程的应用8. 已知某商店有两个进价没有同的计算器都卖了80元,其中一个盈利,另一个亏损60%,在这次买卖中,这家商店( ).20%A. 没有盈没有亏B. 盈利10元C. 亏损10元D. 盈利50元【正确答案】B 【分析】设盈利的计算器的进价为,则,亏损的计算器的进价为,则x (160%)80x +=y ,用售价减去进价即可.(120%)80y -=【详解】设个计算器的进价为x 元,第二个计算器的进价为y 元,则,(160%)80x +=,解得,.(120%)80y -=50x =100y =因为(元),8025010010⨯--=所以盈利了10元.故选:B .本题考查了一元方程的应用,找准等量关系列出方程是解题的关键.9. 如果|a+b+1|+(b 1)2=0,则(a+b )2017的值是( )A. 0B. 1C. 1D. ±1【正确答案】C【详解】由题意得,,1010a b b ++=⎧⎨-=⎩解得,a=−2,b=1,则=−1,2017()a b +故选C.10. 将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )A. 114B. 104C. 85D. 76【正确答案】A 【详解】解:第1个图形中小圆的个数为6;124=⨯+第2个图形中小圆的个数为10;234=⨯+第3个图形中小圆的个数为16;344=⨯+第4个图形中小圆的个数为24;454=⨯+······则知第n 个图形中小圆的个数为n (n +1)+4.故第10个图形中小圆的个数为10×11+4=114个.故选A二、填 空 题(本题共6小题,每小题3分,共18分)11. 平方等于16的数是______.【正确答案】4±【分析】根据平方运算的概念,即可求解.【详解】∵,∴平方等于16的数是.22416,(4)16=-=4±掌握平方运算的反则,是解题的关键.12. 比较大小:___(小“>“,“<”或“=“).12-13-【正确答案】<【分析】根据“两个负数比较大小,值大的其值反而小”进行比较.【详解】因为,1111||||2233-=>-=所以<.12-13-故<.考查了有理数的比较大小,解题关键关键是掌握有理数的比较大小的法则(两个负数比较大小,值大的其值反而小).13. 当x=_____时,式子与的值互为相反数.256x +114x x ++【正确答案】4319-【分析】式子与的值互为相反数就是已知这两个式子的和是0,就可以得到256x +114x x++一个关于x 的方程,解方程就可以求出x 的值.【详解】由题意得:,2511064x x x ++++=去分母得:2(2x+5)+3(x+11)+12x=0,去括号得:4x+10+3x+33+12x=0,移项、合并同类项得:19x=﹣43,系数化1得:x=.4319-故答案为.4319-14. 当x=1时,代数式px 3+qx+1的值为2016,则代数式2p+2q+1的值为_____.【正确答案】4031【详解】时,代数式的值为2016,1x =31px qx ++p+q +1=2016, p+q=2015,2.()22121p q p q ++=++=201514031⨯+=故答案为4031.点睛:整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.15. 轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.【正确答案】504【分析】根据时间关系列方程求解.此题考查了学生对顺水速度,逆水速度的理解,这与顺风逆风类似.【详解】解:设A 港和B 港相距x 千米,根据题意得: ,3262262x x +=+-解得:x =504.答:A 港和B 港相距504千米.此题考查一元方程的应用,解题关键是理解顺流与逆流的关系,顺水速度=水流速度+静水速度,逆水速度=静水速度−水流速度.16. 规定一种新运算“*”:a *b =a -b ,则方程x *2=1*x 的解为________.1314【正确答案】107【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:x -×2=×1-,13141314xx =,71256解得:x =,107故答案为x =.107此题的关键是掌握新运算规则,转化成一元方程,再解这个一元方程即可.三、解 答 题(本题9小题,共92分.)17. (1)将下列各数填在相应的集合里.﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0,,﹣1.5;122正数集合{ …}分数集合{…}(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<“号把这些数连接.【正确答案】(1) {﹣(﹣2.5),(﹣1)2, ,…}, {﹣(﹣2.5),,﹣1.5 …};(2)见解122122析【分析】(1)按有理数的分类标准进行分类即可;(2)先在数轴上表示各个数字,然后再进行比较即可.【详解】(1)正数集合{﹣(﹣2.5),(﹣1)2,…};122分数集合{﹣(﹣2.5),,﹣1.5…};122(2)如图所示:用“<“号把这些数连接为:﹣22<﹣|﹣2|<﹣1.5<0<(﹣1)2<=﹣(﹣2.5).12218. 计算:(1);(2).()2718732-+--()2411236⎡⎤--⨯--⎣⎦【正确答案】(1)-30;(2)16【详解】试题分析:(1)直接计算.(2)按照有理数混合运算法则计算.试题解析:(1)原式=27+(-18)+(-7)+(-32)= -30.(2)原式=()11296--⨯-=()1176--⨯-=716-+=.1619. 解下列方程:(1) 2(x 2)=12(2).13124x x -+=-【正确答案】(1)x= 4;(2)x=1.【详解】试题分析:(1)按去括号、移项、合并同类项、系数化为1的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:(1)去括号得:﹣2x+4=12,移项得:﹣2x=12 4,合并同类项得:﹣2x=8,系数化为1得:x= 4;(2)去分母得:2(x 1)=4 (x+3),去括号得:2x 2=4 x 3,移项得:2x+x=4 3+2,合并同类项得:3x=3,系数化为1得:x=1.20. 先化简再求值:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3),其中x= 3,y= 2.【正确答案】 y 2 2x+2y ,-2【详解】试题分析:先去括号,然后合并同类项,代入数值进行计算即可.试题解析:2(x 3 2y 2) (x 2y ) (x 3y 2+2x 3)=2x 3 4y 2 x+2y x+3y 2 2x 3= y 2 2x+2y ,当x= 3,y= 2时,原式= ( 2)2 2×( 3)+2×( 2)= 4+6 4= 2.21. (8分)一项工程,甲单独完成要20天,乙单独完成要25天,现由甲先做2天,然后甲、乙合做余下的部分还要多少天才能完成这项工程.【正确答案】10【详解】分析:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据总工程=甲单独完成的部分+甲、乙合作完成的部分即可得出关于x 的一元方程,解之即可得出结论.本题解析:解:设甲、乙合做余下的部分还要x 天才能完成这项工程,根据题意得: +(+)x=1,220120125解得:x=10.答:甲、乙合做余下的部分还要10天才能完成这项工程.22. 10袋小麦以每袋150千克为准,超过的千克数记为正数,没有足的千克数记为负数,分别记为:-6,-3,0,-3,+7,+3,+4,-3,-2,+1.(1)与标准重量相比较,10袋小麦总计超过或没有足多少千克? (2)10袋小麦中哪一个记数重量最接近标准重量? (3)每袋小麦的平均重量是多少千克?【正确答案】(1)没有足2千克;(2)第三个;(3)149.8千克【分析】(1)先求﹣6,﹣3,0,﹣3,+7,+3,+4,﹣3,﹣2,+1的和,是正数,则超过,是负数,则没有足;(2)根据值即可进行判断,值最小的接近标准重量;(3)求得10袋小麦以每袋150千克为准时的总量,再加上(1)中的结果,然后用总量除以10,即可求得每袋小麦的平均重量.【详解】试题解析:(1)﹣6+(﹣3)+0+(﹣3)+7+3+4+(﹣3)+(﹣2)+1=﹣2<0,所以,10袋小麦总计没有足2千克;(2)因为|0|=0,所以第三个记数重量最接近标准重量;(3)(150×10-2)÷10=149.8,所以,每袋小麦的平均重量是149.8千克.本题考查了正数与负数的意义,有理数的加法运算,值等,弄清题意是解题的关键.23. 若关于x 的方程2x 3=1和有相同的解,求k 的值.32x kk x-=-【正确答案】k=143【详解】方程2x-3=1的解是x=2,把x=2代入=k-3x ,得解得2x k -26,2kk -=-143k =24. 某商场用元购进,两种新型节能台灯共盏,这两种台灯的进价,标价如下表2750A B 50所示:类型型 A 型B 进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)若型台灯按标价的折出售,型台灯按标价的折出售,那么这批台灯全部售出后,A 9B 8商场共获利多少元?【正确答案】(1)购进型台灯盏,则购进型台灯盏;(2)元.A 20B 30730【分析】(1)设购进型台灯盏,则购进型台灯盏,根据购买型台灯的钱数A xB ()50x -A 购买型台灯的钱数总钱数,列出方程求解即可;+B =2750(2)根据型台灯总售价型台灯总售价总进价利润,代入数据求解即可.A +B -=【详解】解:(1)设购进型台灯盏,则购进型台灯盏.A xB ()50x -根据题意列方程得:,()4065502750x x +-=解得:,20x =所以(盏)502030-=答:设购进型台灯盏,则购进型台灯盏.A 20B 30(2)(元),6090%2010080%302750730⨯⨯+⨯⨯-=答:这批台灯全部售出后,商场共获利730元.本题考查了一元方程的应用,解题的关键是找准等量关系列出方程求解即可.25. 如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线2a 2b a b a b >用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.图1图2(1)图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含、a 的代数式表示)b (2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间22(),(),a b a b ab +-的相等关系,并选取适合,的数值加以验证.a b (3)已知.则代数式的值为.7,6a b ab +==()-a b 【正确答案】(1),;(2)+,验证见解析;(3).a b +-a b ()()22a b a b +=-4ab 5【分析】(1)观察图形即可得出大正方形边长为小长方形的长与宽的和,而小正方形边长为小长方形的长与宽的差,据此求解即可;(2)观察图形可得大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 据此即可列出代数式,然后进一步代入合适的数字检验即可;(3)由(2)中的关系式进一步变形计算即可.【详解】(1)由图形可得:大正方形的边长为;小正方形(阴影部分)的边长为a b +a b -,故,;a b +a b -(2)由图可得:大正方形面积等于小正方形面积加上原长方形面积,()2a b +()2a b -4ab 即:+;()()22a b a b +=-4ab 当,时,=49,+=49,5a =2b =()2a b +()2a b -4ab ∴+成立;()()22a b a b +=-4ab (3)由(2)得:+,()()22a b a b +=-4ab ∴当时,+,7,6a b ab +==()227a b =-46⨯即:,()2492425a b -=-=∴或,5a b -=5a b -=-∵,a b >∴.5a b -=本题主要考查了代数式的探究类问题,准确地找出题中三者面积之间的关系是解题关键.2022-2023学年北京市海淀区七年级上册数学期末专项提升模拟卷(卷二)一、选一选(共10个小题,每小题3分,共30分。

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。

1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。

9.如果将盈利2万元记作2万元,那么-4万元表示_________________。

10. 绝对值等于6的数是___________。

11. 2ab+b 2+( )=3ab-b 2。

12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

北京市海淀区初一年级第一学期期末数学试卷图片版含答案

七年级第一学期期末调研数学参考答案 2019.1一、选择题(本大题共30分,每小题3分)二、填空题(本大题共16分,每小题2分) 11. <12. 2, 58 (答56,57,59,60均算正确)13. 答案不唯一,如:32x ﻩﻩ 14. 42b a - 15. COD ∠ ,EOF ∠(写对1个得1分,全对得2分) 16. (2700)5900x x -+=17. -2或18(写对1个得1分,全对得2分)18. (1) -2; (2) 2(每空1分)三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分) 19.(每小题4分)解:(1)原式=59(3)-÷- …………………………………………………………………2分=53+=8………………………………………………………………………………4分(2)原式=15(8)(8)1(8)24-⨯+-⨯--⨯=4810--+ ………………………………………………………………………3分 =2-…………………………………………………………………………………4分 (若是先做括号,则括号内加减法正确得3分,最后一步也正确,得4分)20. (每小题4分) 解:(1)5812x x +=-5218x x +=- ……………………………………………………………………2分77x =- ……………………………………………………………………3分 1x =- ……………………………………………………………………4分(2)12323x x+-=解:3(1)2(23)x x +=- ……………………………………………………………………1分3346x x +=- ……………………………………………………………………2分91x = ……………………………………………………………………………3分 19x = ……………………………………………………………………………4分21.(本小题4分)解:原式22612364ab a b ab a b =-+-++ …………………………………………2分84a b =-+ ……………………………………………………………………3分∵22a b -=-,∴原式844(2)4(2)8a b a b =-+=--=-⨯-=.……………………………………4分EA C22.(本小题4分)(1)-(3)如图所示:正确画出OD ,O E……………………1分正确画出点F …………………………2分正确画出点P …………………………3分(4) 两点之间,线段最短 . …………………………4分四.解答题(本大题共11分,23题6分,24题5分)23.(本小题6分)(1)解:方法一:∵8AC =,2CB =,∴10AB AC CB =+=,…………………………………………………………………1分 ∵点M 为线段AB 的中点, ∴152BM AB ==. .………….………………………………………………………2分 ∴523CM BM CB =-=-=..…………….…………………………………………3分 或者∴853CM AC AM =-=-=.…………….……………………………………………3分(2)解:点M 是线段CD 的中点,理由如下:方法一:∵8BD AC ==,…………………………………………………………………………4分 ∴由(1)可知,853DM DB MB =-=-=. ……………………………………………5分∴3DM MC ==,∴由图可知,点M 是线段CD 的中点. ……………………………………………6分方法二:∵AC BD =,∴AC DC BD DC -=-,∴AD CB =. ………………………………………………………………………………4分∵点M 为线段AB 的中点,∴AM MB =,………………………………………………………………………………5分 ∴AM AD MB CB -=-,∴DM MC =∴由图可知,点M 是线段CD 的中点. …………………………………………………6分24.(本小题5分)解:(1)15S =. ………………………………………………………………………………2分(2)由计算知:123...945++++=, ………………………………………………3分依题意可列方程:415345x ⨯-=, ……………………………………………4分 解得:5x =. ……………………………………………………………………5分(注:过程中体现出45,得第3分.)25.(本小题6分)解:(1)2x =. ……………………………………………………………………………1分(2)答案不唯一,如:1k =,3b =.(只需满足3b k =即可) …………………2分(3)方法一:依题意:40k b +=, …………………………………………………………3分∵0k ≠, ∴4b k =-. ………………………………………………………………………4分解关于y 的方程:32b y k+=, ∴324y +=-. …………………………………………………………………5分 解得:2y =-. …………………………………………………………………6分方法二:依题意:40k b +=, …………………………………………………………3分 ∴4b k =-.解关于y 的方程:(32)(4)0k y k +--=,……………………………………4分360ky k +=,∵0k ≠,∴360y +=. …………………………………………………………5分 解得:2y =-. …………………………………………………………6分 ﻬ62.(本小题6分)解:(1)50BOD ∠=︒ ………………………………………………………1分(2)①补全图形如下:……………………………………………………2分 45AON α∠=+︒….…………………………………………………………………3分 ②情形一:点D 在BOC ∠内.此时,45AON α︒∠=+,90COD ︒∠=,依题意可得:4590180α︒︒++=︒,解得:45α︒=. ……………………………………………………………………………4分 情形二:点D 在BOC ∠外.在0°α<≤45°的条件下,补全图形如下: 此时,45AON ︒∠=,…………………………………………………………………5分 90+2COD α︒∠=,依题意可得:B AB A45902180α︒︒++=︒解得:22.5α︒=.………………………………………………………………………6分 综上,α的取值为45︒或22.5︒.27.(本小题7分)解:(1)2;………………………………………………………………………… 1分1,2,3 …………………………………………………………………………2分 (注:只答1,2不扣分)(2)①是; …………………………………………………………………………3分②∵122*=,∴21(12)1*=**∵()a b c a c **=*∴(12)111**=*∵aa=a∴111*=∴211*=. …………………5分(3) 不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的,,a b c 有:()()a c a b c b a c b c *=**=**=*,这说明数阵每一列的数均相同.∵111*=,222*=,333*=,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴12=2*,21=1*,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵. ……………………………………7分 方法二:由条件二可知,a b *只能取1,2或3,由此可以考虑a b *取值的不同情形.*:例如考虑12*=.情形一:121*=,若满足交换律,则211*可知:再次计算12*=**=*=,矛盾;12(21)2222*=情形二:122*=,由(2)可知, 211*≠*,不满足交换律,矛盾;1221*=情形三:123*=,若满足交换律,即213*可知:再次计算22*=**=*=**=*=,22(21)232(12)2123*=矛盾.与222综上,不存在满足交换律的“有趣的”数阵. ……………………………………7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海 淀 区 七 年 级 第 一 学 期 期末 练 习数 学2016.1班级 姓名 成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.21的相反数是 A . 2 B .21- C . 21D .-22. 石墨烯(Graphene )是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体. 石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯. 300万用科学记数法表示为A . 430010⨯B . 5310⨯C . 6310⨯ D . 30000003.下列各式结果为负数的是A .1--()B .41-() C .1-- D .12-4.下列计算正确的是A . 2a a a =+B . 3265a a a-=C .532523a a a =+D . b a ba b a 22243-=-5.用四舍五入法对0.02015(精确到千分位)取近似数是A .0.02B .0.020 C .0.0201 D .0.0202 6.如图所示,在三角形ABC 中,点D 是边AB 上的一点. 已知90ACB ∠=︒,90CDB ∠=︒,则图中与A ∠互余的角的个数是A .1B .2C .3D .4DCBA7.若方程211x +=-的解是关于x 的方程12()2x a --=的解,则a 的值为A .1-B .1C .32-D .12- 8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是 A .0.8(10.5)28x x +=+B .0.8(10.5)28x x +=-C .0.8(10.5)28x x +=-D .0.8(10.5)28x x +=+9.在数轴上表示有理数a ,b ,c 的点如图所示,若ac <0,b +a <0,则A . 0b c +<B . <b cC . >a bD . 0abc <10.已知AB 是圆锥(如图1)底面的直径,P 是圆锥的顶点,此圆锥的侧面展开图如图2所示. 一只蚂蚁从A 点出发,沿着圆锥侧面经过PB 上一点,最后回到A 点. 若此蚂蚁所走的路线最短,那么,,,M N S T (,,,M N S T 均在PB 上)四个点中,它最有可能经过的点是TS N M PBA图1 图2A . MB . NC . SD . T二.填空题(本大题共24分,每小题3分)abc11.在“11,0.3,,0, 3.33⋅-+-”这五个数中,非负..有理数是 .(写出所有符合题意的数)12.AOB ∠的大小可由量角器测得(如图所示),则AOB ∠的补角的大小为 ︒.13.计算:1802040'︒-= .14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均..工作量为 件.(用含x 的式子表示) 15.a 的含义是:数轴上表示数a 的点与原点的距离.则2-的含义是_ ____________;若2x =,则x 的值是_ ___.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成. 现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作. 假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .17.如图所示,AB CD +______AC BD +.(填“<”,“>”或“=”)18.已知数轴上动点A 从表示整数x 的点的位置开始移动,每次移动的规则如下:当点A 所BOA180180170170160160150140150140130130120120110110100100908080707060605050404030302020101000ACBD在位置表示的数是7的整数倍时,点A 向左移动3个单位,否则,点A 向右移动1个单位.按此规则,点A 移动n 次后所在位置表示的数记做n x .例如:当1x =时,34x =,67x =,74x =,85x =.①若1x =,则14x = ;②若12320x x x x x +++++ 的值最小,则3x = .三.解答题(本大题共21分,第19题7分, 第20题4分,第21题10分) 19. 计算: (1)1136()23-⨯-; (2)232434(2)()92-÷--⨯-.20. 如图,已知三个点,,A B C . 按要求完成下列问题: (1)取线段AB 的中点D ,作直线DC ;(2)用量角器度量得ADC ∠的大小为_________(精确到度);(3)连接,BC AC ,则线段,BC AC 的大小关系是 ;对于直线DC 上的任意一点'C ,请你做一做实验,猜想线段'BC 与'AC 的大小关系是 .21. 解方程:BAC(1)()3+22+2x x -=; (2)7531164y y --=-.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22. 先化简,再求值:.2,1)2(2)3(22222-==---+-b a b a ab b a ab b a ,其中23. 如图所示,点A 在线段CB 上,12AC AB =,点D 是线段BC 的中点. 若3CD =,求线段AD 的长.24.列方程解应用题:DC BA为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力. 来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1)。

白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制. 图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a . 为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动. 已知⑦号小球比②号小球晚34秒到达相应位置,问②号小球运动了多少米?图2 图3五.解答题(本大题共12分,第25题6分,第26题各6分)图134567892134567892125. 一般情况下2323a b a b++=+不成立,但有些数可以使得它成立,例如:0a b ==. 我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(,)a b .(1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(,)a b ,其中0a ≠,且1a ≠; (3)若(,)m n 是“相伴数对”,求代数式22[42(31)]3m n m n ----的值.26.如图1,点O 是弹力墙MN 上一点,魔法棒从OM 的位置开始绕点O 向ON 的位置顺时针旋转,当转到ON 位置时,则从ON 位置弹回,继续向OM 位置旋转;当转到OM 位置时,再从OM 的位置弹回,继续转向ON 位置,…,如此反复. 按照这种方式将魔法棒进行如下步骤的旋转:第1步,从0OA (0OA 在OM 上)开始旋转α至1OA ;第2步,从1OA 开始继续旋转2α至2OA ;第3步,从2OA 开始继续旋转3α至3OA ,….图1 图2例如:当30α=︒时,1OA ,2OA ,3OA ,4OA 的位置如图2所示,其中3OA 恰好落在ON 上,34120A OA ∠=︒; 当20α=︒时,1OA ,2OA ,3OA ,4OA ,5OA 的位置如图3所示,其中第4步旋转到ON 后弹回,即3480A ON NOA ∠+∠=︒,而5OA 恰好与2OA 重合.图3 图4 解决如下问题:(1)若35α=︒,在图4中借助量角器画出2OA ,3OA ,其中32A OA ∠的度数是_____________; (2)若30α<︒,且4OA 所在的射线平分23A OA ∠,在下图中画出1OA ,2OA ,3OA ,4OA 并求出α的值;(3)若36α<︒,且2420A OA ∠=︒,则对应的α值是 .(4)(选做题)当i OA 所在的射线是j k A OA ∠(,,i j k 是正整数,且j OA 与k OA 不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且180α<︒),旋转是否可以停止?写出你的探究思路.A 0O N M A 4A 3A 2A 1M NOA 0(A 5)A 1A 2A 3A 4M N OA 0A 1M NO A 0A 0O NM海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2016.1一、选择题(本题共30分,每题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案BCCDBBDACB二、填空题(本题共24分,每题3分) 11.11,,03+(若答案不全,对一个给1分;若有错,则得0分) 12.120 13.15920'︒ 14.4154x + 15.数轴上表示2-的点与原点的距离;2或 2- 16.84(2)14040x x -+=(形式不唯一) 17.< 18.7;-1 (第一空1分,第2空2分)三、解答题(本大题共21分,第19题7分, 第20题4分,第21题10分) 19.(1)解:原式332=-+ 2=.----------------------3分 (2)解:原式4916(8)94=-÷--⨯21=-1=.---------------------- 7分20.(1)如图所示. ---------------------- 1分 (2)90︒(只要相差不大都给分).---------------------- 2分(3)BC AC =;''BC AC =DABC(若(2)中测得的角不等于90︒,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.) -------- 4分 21.(1)解:()2+22x =+21x =1x =-. ---------------------- 5分(2)解:14101293y y -=-+10912314y y -+=+- 1y -=1y =-.--10分四、解答题(本大题共13分,第22、23题各4分,第24题5分) 22.解:22222(3)2(2)a b ab a b ab a b -+---22222342a b ab a b ab a b =-+--+ 2ab =-当1,2a b ==-时,24ab -=-,即原式的值是4-. ----------------------4分23. 解:因为 D 是BC 的中点,3CD =,所以 26BC CD ==.因为 12AC AB =, 所以 111()(6)222AC AB CB AC AC ==-=-,即2AC =.所以 321AD CD AC =-=-=. ----------4分24. 解:设②号小球运动了x 米,由题意可得方程:24233x x -=. 解方程得:2x =答:从造型一到造型二,②号小球运动了2米. -----5分五、解答题(本大题共12分,第25题6分,第26题各6分)25.解:(1)因为 (1,)b 是“相伴数对”,所以 112323b b ++=+. 解得:94b =- -----2分 (2)9(2,)2- (答案不唯一) -----3分 (3)由(,)m n 是“相伴数对”可得:2323mnm n++=+.3265m nm n++=.即:940m n +=.所以 22[42(31)]3m n m n ----22(462)3m n m n =---+224623m n m n =--+-4323n m =---49223n m+=--=---6分 26.解:(1)解:如图所示. 45α=︒.1分 O NM A 3A 2A 1A 0(2)解:如图所示. O NM A 4A 3A 2A 1A 0因为 30α<︒,所以 03180A OA ∠<︒,4180α<︒.因为 4OA 平分23A OA ∠,所以 32(1806)42ααα︒-+=. 解得 720()29α=︒. 3分 (3)20()7︒或340()13︒或380()13︒ --6分 (4)对于角120α=︒,操作不能停止.(根据学生的回答,只要探索的思路有道理即可)注:选做题5分. 全卷总分不超过100分.。

相关文档
最新文档