地震子波波形显示及一维地震合成记录
人工合成地震记录作业

人工合成地震记录程序设计(一)、人工合成地震记录原理:地震记录上看到的反射波波形是地震子波在地下各反射界面上发生反射时形成的。
反射波的振幅有大有小(决定于界面反射系数的绝对值)、极性有正有负(取决于反射系数的正负)、到达时间有先有后(取决于反射界面的深度)的地震反射子波叠加的结果。
如果地震子波的波形用S (t )表示,地震剖面的反射系数为双程垂直反射时间t 的函数,用R (t )表示,那么反射波地震记录形成的物理过程在数学上就可以用S (t )的R (t )的褶积表示,即某一时刻的反射波地震记录f (t )是:)()()(t R t S t f *=其离散形式为:))(()()(1t m n R t m S t n f M m ∆-⋅∆=∆∑=如果大地为多层介质,在地面记录长度内可接收的反射波地震记录为:))(()()(11t m n R t m S t n f Mm N n ∆-⋅∆=∆∑∑== 式中,n 为合成地震记录的采样序号,n =1,2,3...N ;N 为合成一道地震记录的采样点数;m =1,2,3...M ,为离散子波的采样点数;△t 为采样间隔。
这种褶积模型将地震波的实际传播过程进行了简化:1、在合成地震记录的过程中没有考虑大地的吸收作用,所有薄层的反射波都与地震子波的形式相同,只是振幅和符号不同。
2、假设地震波垂直入射到界面上,并原路径返回。
3、假设地层横向是均匀的,在深度(纵向)方向上假设密度为常数,只是速度发生变化。
4、不考虑地震波在传播过程中的透射损失。
(二)、人工合成地震记录的方法1、 反射系数序列在有速度测井资料的情况下,可以用速度曲线代替波阻抗曲线,计算反射系数序列。
在没有速度资料的情况下,可根据干扰波调查剖面分析的结果设计地质模型。
如设计的地质模型如图a 所示,图中H 为层厚度,V 为层速度,根据下式计算反射系数: 11)(--+-=N N N N N V V V V H R 式中H 为反射界面的深度,N 为反射层序号,随深度变化的反射系数序列如图b 所示。
地震资料解释之合成记录制作

How To Do Troubleshooting?
Master the basic knowledge & skills ! Think about your trouble ! Always use your head to think and always use
your hands to do it !
地震记录 合成记录
声波曲线
最终得到一个较好的合成地震记录
五、怎样判别合成记录的好坏
相关系数:通过求取合成记录与地震的相关系数来进行定量的 判断。一般在目的层段内的时窗范围内,相关系数都应在0.6之 上,井过断层时除外。
相关系数0.8
与工区内平均速度对比 对做完合成地震记录的井按一定间隔提取其时间-深度对, 与工区的平均速度曲线相对比,应比较一致。
某工区内井的时深关系与平均速度对比图 (红的为平均速度)
剩余记录
地震剖面
合成记录
剩余记录
剩余记录 越少,合 成记录越 精确。
测井曲线
多元标定技术
地震记录
合成记录
测井曲线
综合利用电性曲线、岩性剖面及钻井地质分层的多种信息,精确标定出 地下某地质体的顶底界面,分析储层的横向变化,提高了标定的准确和 形象性,将其与对该区的整体构造与地质认识相对照,分析其是否符合 该区地质沉积规律,也可对合成地震记录起到检查的作用。
自然电位
多元标定技术在合成记录中的应用
横向对比法
通过任意连井线,将测井曲线(波阻抗、自然电位等)投在地震剖 面上,根据地震标准反射层与测井响应一致原则,使井与井之间的 地震地质标定的关系保持一致,从而检验空间地震地质标定的合理 性和一致性。
内容提要
13 为什么要制作合成地震记录 23 合成地震记录原理 3 制作合成地震记录的关键技术 43 体会与认识
Geoframe地震合成记录制作(绝对原版)

Stretch—sqeeze:局部拉伸收缩。微调。 中建选择拉伸点,左键实现拉伸 Bulkshift:对曲线进行整体漂移。粗略对应 地震层位。左键选好始终线实现漂移 时深曲线校正。前提是:有 checkshot。没有的话,用声波曲 线形成后保存checkshot
时深关系曲线编辑(velocity survey):
4. 子波的选取或提取。
选取的基本思路是:先用默认的雷克子波进行观察,看效果。如果不行,自己提取子 波。参数有频率、相位、波长、极性等,提取方法有自相关(默认)和维纳—莱文森 混相子波提取方法。
常用的极性判别方法:
1、单轨、双轨剖面判断法:在正极性剖面上,正反
射系数界面,如基岩顶面、海底、火成岩顶面等,表现为单轨 强峰;而负反射系数界面,如大套油页岩、煤层顶面,表现为 双轨强峰。在负极性剖面上,特征相反。
3dv—define—borehole appearance—synthetic
点亮display synthetics。 进行参数设置。
注意:点亮了沿井显示,则不
能在3dv—tools—synthetics上 移动(见菜单讲解大全)
Update –close。必要时可在marker 、curve将层位测井曲线投上
波长 极性 相位
5.对synthetic进行调整,使其与实际的地震剖面进行匹配。
点右键,选borehole投井,对井右键选appearance投synthetic和曲线 点右键,选content对子波类型选择
Post— correlation 投相关系 数。右键 Maximun correlation Values查看
2.合成记录(synthetic)制作界面的进入
IEXS---application---synthetics
地震子波 数字信号实验报告

根据所学知识对实验结果进行分析;
地震子波由震源激发,在地层中传播,因为在沉积地层中,每层介质的物理性质不相同,从而使得地震波的传播速度也不相同。当地震波传播到两层介质的分界面时,会发生反射,由于每层介质的反射系数不同,所以反射波的能量也不相同,检波器接收到不同时刻的、不同能量的反射波,形成一个地震记录。
subplot(2,2,4),plot(f2,'k'),title('最小相位子波地震记录')
f1(i)=0;
f2(i)=0;
end
fori=1:n+m-1%地震记录长度
forj=1:m%地层深度
ifi-j>0&i-j<=200%满足雷克子波的时间序列长度
a1(j)=r(j)*w1(i-j);
a2(j)=r(j)*w2(i-j);
f1(i)=f1(i)+a1(j);
f2(i)=f2(i)+a2(j);
地震子波波形显示及一维地震合成记录
姓名:杨肖迪学号:050422009040专业:地球信息科学与技术2009级
实验目的
1.认识地震子波(以雷克子波为例),对子波的波形有直观的认识。
2.利用褶积公式合成一维地震记录。
实验步骤
1.雷克子波
(零相位子波)
(最小相位子波)
其中 代表子波的中心频率, 代表子波宽度,随着 的增大,子波能量后移,当 =7时,最小相位子波可视为混合相位子波,这里 = 25 Hz, =4;
end
end
end
subplot(2,2,1),plot(w1,'k'),axis([0,200,-1,1]),title('零相位子波')
地震记录

地震子波:
震源产生的信号传播一段时间后,波形
趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的 介质中以冲击波的形式传播,当传播到一的 距离后,波形逐渐稳定,我们称这时的地震 波为地震子波。
地震波在传播过程中,其振幅会因各 种原因而衰减,但波形的变化是很小的, 在一定的条件下,可以看成不变。 地震子波在向下传播的过程中,遇到 波阻抗界面会发生反射和透射,最后,地
地震记录的褶积模型
这就是地震记录面貌形成的过程。
同时也说明了,地震记录上的波组与地下岩层
之间既有联系又有差别的关系。 上述地震记录面貌形成的物理过程可概括成如 下数学公式: X(t)=s(t)*R(t) 褶积运算 X(t)为人工合成地震记录;
S(t)为地震子波;
R(t)是各个地层界面的反射系数随界面双程反射时
间t的变化。由声波测井资料获得
右图为野外地 震记录和合成 地震记录的比 较。由此可见, 地震记录的褶 积模型理论是 基S点接收到的来自R1,R2,R3界面的地震子波,相互 迭加的结果,①+②+③的复波。
它已分不出哪是R1上的波形,哪是R2上的波 形,哪是R3上的波形。
这说明: 地震记录上看到的一个反射波组,并
不是简单的等于一个反射波,即:并不是来自一个
界面上的反射波,而是来自一组靠得很近的界面的
震子波从地下各个反射面反射回来。
这些反射回来的子波在波形上,严格讲是有 差别的,近似地可以认为一样,并且这些反射子 波在振幅上有大有小(主要决定于反射界面的反
射系数),极性有正有负(决定于子波反射系数
的正负),到达时间有先有后(决定于界面的深
度和波速)。
反射系数:
i1 i1 i Z i1 Z i Ki i1 i1 i i Z i1 Z i
第七章地震薄层一

二、薄层的地震响应为子波的一阶导数
子波与薄夹层的反射系数序列相褶积时,实际上变成子波与薄层顶和底两处反射系数值相乘积后 再求和,即
S (t) W (t)• R T W (t)• R B
此处S(t)为合成的波形,W(t)为地震子波,τ为薄层的时间厚度,RT和RB分别为薄层顶和底的反 射系数。
因为是均匀夹层,故反射系数符号相反、绝对值相等,若取其绝对值为R,且RT为正时,存在下 式:
三、合成地震记录
4、合成记录的作用 (1)是一维地震正演模型——模式作用 (2)建立井孔与地震剖面的联系
——地震标定作用
张海9井
地震标定作用 标定层位
张海6井
地震标定作用 标定层位
标定层位
T2 T3 T4 T5 T6
张海 9
庄海5
标定层位
标定层位
张参1
标定层位
第七章 地震薄层分析
第二节 薄层地震响应的基本特征
S(t)0ta()R(t)d
合成的地震记录波形与野外地震记录波形十分相近
第一节 合成地震记录
三、合成地震记录
3、基本特征 (1)与地面地震记录非常相似 (2)与地面地震记录不完全相同
第一节 合成地震记录 (1)与地面地震记录非常相似 (2)与地面地震记录不完全相同
合成地震记录与井旁道对比图
第一节 合成地震记录
时差保持不变
时差单调递减
一、楔状夹层地震响应特征
3、时差曲线变化特征 (1)当地层厚度相当大时
测量出的峰到谷双程时间与模型的实际厚度 (真厚度)非常吻合,因此位于图中的 45°线上。
(2)当厚度开始减小时 测量的时差先是慢慢偏离这条45°线。
(3)当厚度变得很小时 在某个点以后渐进地趋向于一个常数值。
Landmark地震合成记录和层位精细标定技术

5400
T
5 0
石 下 炭 统 系
C1k C11 b 3 l
5500
T
5 6
巴 楚 组
泥 岩 段
5600
C1 b
2
T5
6X
于奇西区块井震标定-YQ4井
GeoSun Energy Tech
Y Q 2
Y Q 3
Y Q 4
LN 20
GeoSun Energy Tech
YQ2-YQ3-YQ4-Ln20连井地震对比剖面
VSP资料
地质
地震 工区所有井
井的数量 井段
全井段
地震基准面和补芯海拔数据准确应用
地震基准面和补芯海拔
测井曲线 频率
声波、密度、井径、自然电位,电阻率
子波频率和地震频率匹配 子波极性和地震极性相一致 加深理解了地质和地震的关系 合成记录和地震极性相一致 时深关系和层速度
子波的应用
反射系数贡献 合成记录与地震数据极性
钻井平台高4.7米
这个点三种时深关系 1286—1898.0 1286—1874.1 1286—1869.4
地质数据 都必须换算 到基准面上
补芯海拔8.6米 地面海拔3.9米 基准面0米 海平0
地质分层1898米 地震反射1286ms
测井曲线
1、 用曲线观察器检查所加曲线,对有问题的曲线检查原始数据,找到原因修改后重新再加。
常态 测试
对 正 态 分 布 的 预 期 的 误 差 值
理论值 实际 值
此图为沿某一主测线的各 个CDP点与各个相关开始时间的 信噪比观察图,可以快速识别 最佳匹配子波位置。
稳态 测试
统 计 上图为(下图中的上中下四分位数的)79点平滑 平均(理想状态:三条红线为三条平行直线) 统 计 残 差
合成地震记录基础

软件 Discovery 微机Strata,logM 电子表格,Grapher TD.exe
用途 简易合成记录,层位标定 斜井合成记录 速度拟合 根据V0、β计算时深量版
cali实测ac微调后代偿ac真实ac微调前合成记录过井道微调后合成记录关于极性极性是能量传导过程中物质的疏密用波形表示时带来的一个概念
合成地震记录基础
ID:麦克龙
2012.02.19内部基础培训删节版 2013.12.02为阿果石油论坛修改
基本概念
■合成记录=测井(声波)合成地震记录:由测井资料得到“人工合成” 的过井地震道,是个正演过程。 ■作用:时间域(地震)和深度域(地质)的纽带,层位标定、时深转换。
h=exp((t∙V0∙β)/2‐1)/β ■取对数,得深‐时公式:
t=2∙ln(h∙β+1)/(V0∙β) 用反双曲余弦表示的形式:
t=2∙arcch((β2∙h2/(2+2∙β∙h)+1)/(V0∙β) 数学好的可以推导一下,两个公式是等价的。
速度模型
区域大断层
某井VSP层速度,相对连续
某井VSP层速度,速度阶跃
岩石的速度
此图引自教科书,不同岩石的大致速度范围
时间的概念
■旅行时(one‐way‐time):纵波自地面到达某深度所用的时间。 ■双程旅行时(two‐way‐time,T0):纵波自地面到达某深度后, 又反射回地面所用的时间,“垂直入射、水平叠加”时是单程 旅行时的2倍。
基准面(零)的概念
■测井零:钻机转盘方补心上平面,测井的零深度,地面之上。 ■海拔零:华北平原地区,地面之下10~20米。 ■地质零:测井零作补心高、海拔高校正。因海拔一般不测, 地面起伏不大时,地面可以作为地质零深度。 ■地震零:地震剖面双程时的0,是地震处理时一个虚拟的面, 深度未知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震勘探原理实验一地震子波波形显示及一维地震合成记录姓名: 学号:专业:地球物理勘察技术与工程 级 一、实验目的1. 认识子波,对子波的波形有直观的认识。
(名词:零相位子波,混合相位子波,最小相位子波;了解子波的分辨率与频宽的关系;) 2. 利用褶积公式合成一维地震记录。
二、实验步骤 1. 雷克子波()()))(21(22t f et r m t f m ππ-=- 零相位子波())2sin()ln(222t f et w m n t f m π-= (最小相位子波) n= m1/m2为最大波峰m1和最大波谷m2之比()())2cos(log *22xw t f et w m mt f m +=-π 钟型子波 xw 为初相m 为时间域主波峰与次波峰之比w(t)=exp(-2*Fm^2*t^2*ln(n))*sin(T-2*pi*Fm*t) n=m1/m2 最大相位子波(最大相位子波请同学们自己查找相关文献完成,非必须完成)其中f代表子波的中心频率, t =i*dt,dt为时间采样间隔,i为时间m离散点序号; 这里可以为f = 10,25,40,100 Hz等,采样间隔dt=0.002m秒,i为0~256;2.根据公式编程实现不同频率的零相位子波的波形显示;不同中心频率的零相位子波图f = 25:mf = 100:m3.其地质模型为:设计反射系数)(n r (n=512),n 为地层深度,其中0.1)100(=r ,为第一层介质深度;7.0)200(-=r ,为第二层介质深度;5.0)300(=r ,为第三层介质深度;4.0)400(=r ,为第四层介质深度;6.0)450(=r ,为第五层介质深度;其它为0。
地震波在介质中传播,当到达介质分界面时,发生反射和透射,反射波被检波器接受,生成地震记录。
反射系数表示地震波在两层介质分界面的能量重新分配,如r(100)=1.0,表示地震波入射到分界面时,只有一种波,反射纵波(或反射横波)。
反射系数不为1.0时,表示当地震波入射到分界面时,产生两种反射波。
反射系数为正,表示反射波相位与入射波相位相差2π;反射系数为负,表示反射波相位与入射波相位相差π,存在半波损失。
4. 应用褶积公式∑=-=*=Nm m n w m r n w n r n f 1)()()()()(合成一维地震记录,并图形显示;应用褶积公式求f (n )的程序为:#include<stdio.h> #include<math.h> #define PI 3.1415926 #define FM 100 void main() {double fac(double x[],double y[],double z[],int m,int n); FILE *fp;int i,j,x;double W,dt=0.002,t,a[256];double b[512]={0};double r[512]={0};r[100]=1.0;r[200]=-0.7;r[300]=0.5;r[400]=0.4;r[450]=0.6;fp=fopen("Date.txt","w+");printf("please input x:\n");scanf("%d",&x);for(i=0;i<256;i++){t=i*dt;if(x==1)W=exp(-2*FM*FM*t*t*log(2))*sin(2*PI*FM*t); else if (x==2)W=(1-2*pow(PI*FM*t,2))*exp(-pow(PI*FM*t,2)); else if (x==3)W=exp(-FM*FM*t*t*log(2))*cos(2*PI*FM*t+PI/4);a[i]=W;}fac(r,a,b,512,256);for(j=0;j<512;k++){fprintf(fp,"%f\n",b[j]);}}double fac(double x[],double y[],double z[],int m,int n){int i,j;for(i=0;i<=m+n-1;i++){double sum=0.0;for(j=0;j<=m;j++){if(i-j>0&&i-j<=256)sum+=x[j]*y[i-j];}z[i]=sum;}}三、实验结果一维反射系数序列图形显示为:零相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m最小相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m混合相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m最大相位子波与反射系数褶积后的地震记录图形显示:f = 25:mf = 100:m零相位振幅图形显示:f = 25:mf = 100:m零相位幅角图形显示:f = 25:mf = 100:m最小相位振幅图形显示:f = 25:mf = 100:m最小相位幅角图形显示:f = 25:mf = 100:m混合相位幅角图形显示:f = 25:mf = 100:m混合相位振幅图形显示:f = 25:mf = 100:m最大相位幅角图形显示:f = 25:mf = 100:m最大相位振幅图形显示:f = 25:mf = 100:m四、实验分析根据所学知识对实验结果进行分析;地震子波由震源激发,在地层中传播,因为在沉积地层中,每层介质的物理性质不相同,从而使得地震波的传播速度也不相同。
当地震波传播到两层介质的分界面时,会发生反射,由于每层介质的反射系数不同,所以反射波的能量也不相同,检波器接收到不同时刻的、不同能量的反射波,形成一个地震记录。
由合成地震记录中可以看出,最小相位子波相对零相位子波来说是相位滞后的,能量延迟的,但两者为同一家族的子波。
合成地震记录中横坐标为时间,纵坐标为振幅。
每一时刻的值由m个值的和组成,m为反射系数r(n)的长度,整个地震记录由m+n-1个时刻的值组成。
对于零相位的地震记录来说,当r(m)=1.0时,即j=100时,i=100时,w(i-j)=1.0,是能量最大的,即w(0)=1.0。
同理,当n=200,、300、400、450时,能量也是最大的。
对于最小相位的地震记录来说,当r(m)=1.0时,即j=100时,但i=100时,w(i-j)不是最大能量的,即最大能量不是在w(0)出现,而是延迟出现。
同理,当n=200、300、400、450时,能量也不是最大的,而是要延迟出现。
由振幅图及幅角图可知,零相位子波能量聚集在首部,开始时就具有最大能量,无积累过程,当振幅最大时,相位为零,即此时波的振幅为实数,达到最大值;最小相位子波能量聚集在序列首部,是最小能量延迟的,信号随时间增大而减小,当振幅最大时,相位不为零,是非零相位的,相对零相位子波来说,最大能量是延迟的;混合相位子波的能量聚集在序列中部,是混合能量延迟的;最大相位子波能量聚集在后部。
最大相位子波和混合相位子波的信号信号不随时间增大而减小。
五、附:源程序代码#include<stdio.h>#include"13KFFT.C"#include<math.h>#define PI 3.1415926#define FM 100void main(){double fac(double x[],double y[],double z[],int m,int n);FILE *fp,*fpr,*fpre,*fpi,*fpamp,*fpha;int i,j,x;doubleW,dt=0.002,t,a[256],pr[512],pi[512]={0.0},fr[512],fi[512],amp[512],p ha[512];double b[512]={0};double r[512]={0};r[100]=1.0;r[200]=-0.7;r[300]=0.5;r[400]=0.4;r[450]=0.6;fp=fopen("褶积结果.txt","w+");fpr=fopen("反射系数.csv","w+");fpre=fopen("实部.txt","w+");fpi=fopen("虚部.txt","w+");fpamp=fopen("振幅.csv","w+");fpha=fopen("相位.csv","w+");for(i=0;i<512;i++){fprintf(fpr,"%f\n",r[i]);}fclose(fpr);printf("please input x:\n");scanf("%d",&x);for(i=0;i<256;i++){t=i*dt;if(x==1)W=(1-2*pow(PI*FM*t,2))*exp(-pow(PI*FM*t,2));else if (x==2)W=exp(-2*FM*FM*t*t*log(2))*sin(2*PI*FM*t);else if (x==3)W=exp(-2*pow(FM*t,2)*log(2))*sin(0.512-2*PI*FM*t);else if(x==4)W=exp(-FM*FM*t*t*log(2))*cos(2*PI*FM*t+PI/4); a[i]=W;}fac(r,a,b,512,256);for(j=0;j<512;j++){fprintf(fp,"%f\n",b[j]);}for(i=0;i<512;i++){pr[i]=b[j];}for(i=0;i<512;i++){pr[i]=fr[i+127];}kfft(pr,pi,512,9,fr,fi,0,1);for(i=0;i<512;i++){fprintf(fpre,"%e\n",fr[i]);fprintf(fpi,"%e\n",fi[i]); fprintf(fpamp,"%e\n",pr[i]);fprintf(fpha,"%f\n",pi[i]);}fclose(fpre);fclose(fpi);fclose(fpamp);fclose(fpha);}double fac(double x[],double y[],double z[],int m,int n) {int i,j;for(i=0;i<=m+n-1;i++){double sum=0.0;for(j=0;j<=m;j++){if(i-j>0&&i-j<=256)sum+=x[j]*y[i-j];}z[i]=sum;}}。