初二数学特殊平行四边形压轴:几何证明题1
初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。
初二数学证明题(精选多篇)

初二数学证明题(精选多篇)第一篇:初二数学证明题初二数学证明题1、如图,ab=ac,∠bac=90°,bd⊥ae于d,ce⊥ae于e.且bd>ce,证明bd=ec+ed.解答:证明:∵∠bac=90°,ce⊥ae,bd⊥ae,∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90°.∴∠abd=∠dac.又∵ab=ac,∴△abd≌△cae(aas).∴bd=ae,ec=ad.∵ae=ad+de,∴bd=ec+ed.2、△abc是等要直角三角形。
∠acb=90°,ad是bc边上的中线,过c 做ad的垂线,交ab于点e,交ad于点f,求证∠adc=∠bde解:作ch⊥ab于h交ad于p,∵在rt△abc中ac=cb,∠acb=90°,∴∠cab=∠cba=45°.∴∠hcb=90°-∠cba=45°=∠cba.又∵中点d,∴cd=bd.又∵ch⊥ab,∴ch=ah=bh.又∵∠pah+∠aph=90°,∠pcf+∠cpf=90°,∠aph=∠cpf,∴∠pah=∠pcf.又∵∠aph=∠ceh,在△aph与△ceh中∠pah=∠ech,ah=ch,∠pha=∠ehc,∴△aph≌△ceh(asa).∴ph=eh,又∵pc=ch-ph,be=bh-he,∴cp=eb.在△pdc与△edb中pc=eb,∠pcd=∠ebd,dc=db,∴△pdc≌△edb(sas).∴∠adc=∠bde.2证明:作oe⊥ab于e,of⊥ac于f,∵∠3=∠4,∴oe=of.(问题在这里。
理由是什么埃我有点不懂)∵∠1=∠2,∴ob=oc.∴rt△obe≌rt△ocf(hl).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠abc=∠acb.∴ab=ac.∴△abc是等腰三角形过点o作od⊥ab于d过点o作oe⊥ac于e再证rt△aod≌rt△aoe(aas)得出od=oe就可以再证rt△dob≌rt△eoc(hl)得出∠abo=∠aco再因为∠obc=∠ocb得出∠abc=∠abc得出等腰△abc41.e是射线ab的一点,正方形abcd、正方形defg有公共顶点d,问当e在移动时,∠fbh的大小是一个定值吗?并验证(过f作fm⊥ah于m,△ade全等于△mef证好了)2.三角形abc,以ab、ac为边作正方形abmn、正方形acpq1)若de⊥bc,求证:e是nq的中点2)若d是bc的中点,∠bac=90°,求证:ae⊥nq3)若f是mp的中点,fg⊥bc于g,求证:2fg=bc3.已知ad是bc边上的高,be是∠abc的平分线,ef⊥bc于f,ad与be交于g求证:1)ae=ag(这个证好了)2)四边形aefg是菱形第二篇:初二数学证明题测试例1、如图,ab∥cd,且∠abe=120°,∠cde=110°,求∠bed的度数。
专题06 平行四边形解答题压轴训练(解析版)八年级数学下期(人教版)

专题06 平行四边形解答题压轴训练(时间:60分钟 总分:120) 班级 姓名 得分一、解答题1.如图1,在ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,以EC ,CF 为邻边作ECFG .(1)求证:ECFG 是菱形.(2)如图2,若90ABC ∠=︒,8AB =,12AD =,M 是EF 的中点,求DM 的长. (3)如图3,若120ABC ∠=︒,连结BD ,BG ,CG ,DG ,求BDG ∠的度数.【答案】(1)见解析;(2);(3)60°【分析】(1)由平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∥CEF =∥CFE ,根据等角对等边可得CE =CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)首先证明四边形ECFG 为正方形,再证明∥BME ∥∥DMC 可得DM =BM ,∥DMC =∥BME ,再根据∥BMD =∥BME +∥EMD =∥DMC +∥EMD =90°可得到∥BDM 是等腰直角三角形,由等腰直角三角形的性质可求解.(3)延长AB 、FG 交于H ,连接HD ,求证平行四边形AHFD 为菱形,得出∥ADH ,∥DHF 为全等的等边三角形,证明∥BHD ∥∥GFD ,即可得出答案.【详解】解:(1)∥AF 平分∥BAD ,∥∥BAF =∥DAF ,∥四边形ABCD 是平行四边形,∥AD ∥BC ,AB ∥CD ,∥∥DAF =∥CEF ,∥BAF =∥CFE ,∥∥CEF =∥CFE ,∥CE =CF ,又∥四边形ECFG 是平行四边形,∥四边形ECFG 为菱形;(2)如图,连接BM ,MC ,∥∥ABC =90°,四边形ABCD 是平行四边形,∥四边形ABCD 是矩形,又由(1)可知四边形ECFG 为菱形,∥ECF =90°,∥四边形ECFG 为正方形.∥∥BAF =∥DAF ,∥BE =AB =DC ,∥M 为EF 中点,∥∥CEM =∥ECM =45°,∥∥BEM =∥DCM =135°,在∥BME 和∥DMC 中,BE CD BEM DCM EM CM =⎧⎪∠=∠⎨⎪=⎩,∥∥BME ∥∥DMC (SAS ),∥DMC=∥BME.∥∥BMD=∥BME+∥EMD=∥DMC+∥EMD=90°,∥∥BMD是等腰直角三角形.∥AB=8,AD=12,∥BDBD=;∥DM=2(3)∥BDG=60°,延长AB、FG交于H,连接H D.∥AD∥GF,AB∥DF,∥四边形AHFD为平行四边形,∥∥ABC=120°,AF平分∥BAD,∥∥DAF=30°,∥ADC=120°,∥DF A=30°,∥∥DAF为等腰三角形,∥AD=DF,∥平行四边形AHFD为菱形,∥∥ADH,∥DHF为全等的等边三角形,∥DH=DF,∥BHD=∥GFD=60°,∥FG=CE,CE=CF,CF=BH,∥BH=GF,在∥BHD与∥GFD中,BHD GFD BH GF ⎪∠=∠⎨⎪=⎩,∥∥BHD ∥∥GFD (SAS ),∥∥BDH =∥GDF∥∥BDG =∥BDH +∥HDG =∥GDF +∥HDG =60°.【点睛】此题是四边形综合题,主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.2.如图,在四边形ABCD 中,连接AC ,BD 交于点O ,∠ADO =∠CBO ,且AO =CO ,E 为线段OC 上一点,连接DE 并延长交BC 于点F .(1)求证:四边形ABCD 为平行四边形;(2)若∠ADE =45°,AD ∠AC ,AE =3,CE =2,求三角形AOD 的面积.【答案】(1)见解析;(2)154【分析】 (1)依据∥AOD ∥∥COB (AAS ),即可得出AD =BC ,再根据∥ADO =∥CBO ,即可得到AD ∥BC ,进而判定四边形ABCD 是平行四边形;(2)依据∥ADE 是等腰直角三角形,即可得到AD 的长,由平行四边形的性质可得OA 的长,再根据三角形面积计算公式,即可得出∥AOD 的面积.【详解】(1)∥AC ,BD 交于点O ,∥∥AOD =∥COB ,在∥AOD 和∥COB 中,ADO CBO AOD COB AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥AOD ∥∥COB (AAS ),∥AD =BC ,∥∥ADO =∥CBO ,∥AD ∥BC ,∥四边形ABCD 是平行四边形;(2)∥∥ADE =45°,AD ∥AC ,∥∥AED =45°,∥AD =AE =3,又∥CE =2,∥AC =3+2=5,∥在平行四边形ABCD 中,AO =12AC =52, ∥Rt∥AOD 的面积=12×AD ×AO =12×3×52=154.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定. 3.定义:一组邻角相等的凸四边形叫做“友好四边形”.(1)写出我们所学过的特殊四边形中是“友好四边形”的图形的名称____(写一个) (2)在探究“友好四边形”性质时:∠小明画了一个“友好四边形”ABCD (如图),其中A B ∠=∠,AD BC =,此时他发现//AB DC ,请你证明此结论:∠由此小明猜想:“对于任意“友好四边形”当一组对边相等时,另一组对边就平行”,请你直接判断这个命题是真命题还是假命题;(3)已知:在“友好四边形”ABCD 中90A ∠=︒,60C ∠=°,6AB =,10BC =,请画出相应图形,并直接写出CD 的长.【答案】(1)矩形;(2)∥见解析;∥假命题;(3)画图见解析,11或2或10+【分析】(1)根据友好四边形的定义即可;(2)∥作出辅助线,判断出∥DF A ∥∥CEB ,再判断出四边形DFEC 是平行四边形即可;∥举出反例来说明;(3)分四种情况画图计算即可.【详解】解(1)矩形,矩形的四个角都是直角,根据“友好四边形”的定义,得到矩形是“友好四边形”;(2)∥如图,过点C 作CE AB ⊥,DF AB ⊥,DAB CBA ∠=∠,DAF CBE ∴∠=∠,CE AB ⊥,DF AB ⊥,90DFA CEB ∴∠=∠=︒,AD BC =,DFA CEB ∴∆≅∆,DF CE ∴=,90DFA CEB ∠=∠=︒,//DF EC ∴,∴四边形DFEC 是平行四边形,//AB CD ∴;∥假命题,反例如图,,AB AC = 则,B C ∠=∠在等腰三角形的腰上取点D ,E ,使得DE BC =,四边形DBCE 是友好四边形,没有对边平行.(3)∥90D A ∠=∠=︒,如图,作BE DC ⊥,90D A BED ∠=∠=∠=︒,∴四边形ADEB 是矩形,6DE AB ∴==.在Rt BEC △中,10BC =,60C ∠=°,5CE ∴=,11CD DE CE ∴=+=;∥如图,90A B ∠=∠=︒,作CE AD ⊥,90A B AEC ∠=∠=∠=︒,∴四边形ABCE 是矩形,10AE BC ∴==,6CE AB ==,在Rt CED 中,30DCE BCE BCD ∠=∠-∠=︒,CD ∴=,∥60B C ∠=∠=︒.如图,延长AD ,BC 交于E在Rt ABE △中,60B ∠=︒,6AB =,212BE AB ∴==,30E ∠=︒12102CE BE BC ∴=-=-=,60BCD ∠=︒,30CDE CED ∴∠=∠=︒,2CD CE ∴==,∥60D C ∠=∠=︒,如图,延长DA ,CB 交于E ,60D C ∠=∠=︒,60E ∴∠=︒,CD CE =,在Rt ABE △中,90,BAD BAE ∠=∠=︒ 60E ∠=︒,6AB =,BE ∴=10CD BC BE ∴=+=+【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,矩形的判定和性质,直角三角形的性质,全等三角形的判定和性质,解本题的关键是作出图形,也是本题的难点. 4.在四边形ABCD 中,AB BC CD DA 、、、的中点分别为P 、Q 、M 、M ;(1)如图1,试判断四边形PQMN 怎样的四边形,并证明你的结论;(2)若在AB 上取一点E ,连结DE ,CE ,恰好ADE 和BCE 都是等边三角形(如图2):∠判断此时四边形PQMN 的形状,并证明你的结论;∠当6AE =,3EB =,求此时四边形PQMN 的周长(结果保留根号).【答案】(1)平行四边形,理由见解析;(2)∥菱形,证明见解析;∥【分析】(1)连接AC 、BD .利用三角形中位线定理判定四边形PQMN 的对边平行且相等,易证该四边形是平行四边形;(2)∥设ADE ∆的边长是x ,BCE ∆的边长是y ,由于222221())2DB x y x xy y =++=++,22221())2AC x y y x xy y =++=++,可得平行四边形PQMN 的对角线相等,从而得出平行四边形PQMN 是菱形;∥如图2,过点D 作DF AB ⊥于F ,则通过解三角形求得DF =DB ∥知四边形PQMN 是菱形,可计算得周长是【详解】解:(1)如图1,连接AC 、BD .PQ ∵为ABC ∆的中位线,12PQ AC ∴=且1//2PQ AC ,同理12MN AC=且1//2MN AC.MN PQ∴=且//MN PQ,∴四边形PQMN为平行四边形;(2)∥四边形PQMN是菱形,如图2,连接AC,BD,∥∥ADE和∥BCE都是等边三角形,∥AE=DE,CE=BE,∥AED=∥BEC=60°,∥∥AEC=∥DEB,∥∥AEC∥∥DEB,∥AC=BD,∥点M,N是AD,CD的中点,∥MN是∥ADC的中位线,∥MN=12 AC,同理:PN=12 BD,∥MN=PN,由(1)知,四边形PQMN是平行四边形,∥平行四边形PQMN是菱形;∥过点D作DF AB⊥于F,则DF=又222DF FB DB+=,DB∴=∴由∥知四边形PQMN是菱形,可计算得周长是142⨯=.【点睛】本题考查了中点四边形以及菱形的判定和性质、平行四边形的判定和性质,解题时,利用了三角形中位线的性质定理.5.定义:数学活动课上:陈老师给出如下定义:有组对边相等而另一组对边不相等的凸四边形叫做对等四边形.(1)如图1,平行四边形ABCD 中,60,B BCD ∠=︒∠的平分线交AD 于E .求证:四边形ABCE 是对等四边形.(2)如图2,已知A 、B 、C 在格点(小正方形的项点)上,请在方格图中画出以格点为顶点,AB 、BC 为边的两个对等四边形ABCD .(3)如图3,在Rt PBC 中,90,9PCB BC ∠=︒=,点A 在BP 边上,且13,,12AB AD PC CD =⊥=,若PC 上存在符合条件的点M ,使四边形ABCM 为对等四边形,求出CM 的长.【答案】(1)见解析;(2)见解析;(3)13或1212+【分析】(1)由平行四边形的性质得出AD ∥BC ,∥B =∥D =60°,AB =CD ,由角平分线的定义及等腰三角形的性质得出CE =CD ,根据对等四边形的定义可得出结论;(2)根据对等四边形的定义画出图形即可;(3)分CM =AB 与AM =BC 两种情况进行讨论即可.【详解】解:(1)证明:四边形ABCD 是平行四边形,//AD BC ∴,60B D ∠=∠=︒,AB CD =,180120BCD B ∴∠=︒-∠=︒, CE 平分BCD ∠,60BCE DCE ∴∠=∠=︒,60BCE DEC ∠=∠=︒,D DEC ∴∠=∠,CE CD ∴=,又AB CD =,CE AB ∴=,BC AD =,AE BC ∴≠,∴四边形ABCE 是对等四边形;(2)如图2,四边形ABCQ 即为所求;(3)如图3,∥当CM AB =时,13CM =;∥当9AM BC ==时,过A 作AE BC ⊥于点E ,则12AE CD ==,5BE =,4AD CE ∴==,MD当点M 在线段CD 上时,12CM CD DM =-=当点M 在DP 上时,12CM CD DM =+=+.综合以上可得CM 的长为13或12-12【点睛】此题属于四边形综合题,考查了作图-应用与设计作图,平行四边形的性质,等腰三角形的判定与性质,直角三角形的性质,勾股定理,弄清题中的新定义是解本题的关键.6.(问题背景)如图1,P 是等边三角形ABC 外一点,30APB ∠=︒,则222PA PB PC +=.小明为了证明这个结论,将PAB △绕点A 逆时针旋转60︒,请根据此思路完成其证明;(迁移应用)如图2,在等腰直角三角形ABC 中,BA BC =,90ABC ∠=︒,点P 在ABC外部,且45BPC ∠=︒,若APC △的面积为5.5,求PC ;(拓展创新)如图3,在四边形ABCD 中,//AD BC ,点E 在四边形ABCD 内部,且DE EC =,90DEC ∠=︒,135AEB ∠=︒,AD =,BC ,直接写出AB 的长.【答案】[问题背景]见解析;[迁移应用;[拓展创新]【分析】[问题背景]按题意画出图形,根据旋转的性质得到AP =AP ′,PB=P ′C ,证明∥APP ′为等边三角形,从而推出∥PP ′C =90°,在∥PP ′C 中,利用勾股定理得到222PP P C PC ''+=,再利用等量代换可得结果;[迁移应用]作线段BM 垂直于BP 交PC 的延长线于点M ,连接AM ,证得∥PBC =∥ABM ,证明∥PBC ∥∥MBA (SAS ),得出∥AMP =90°,由三角形的面积可求出答案;[拓展创新]将∥AED 绕点E 顺时针旋转90°至∥FEC ,连接BF ,证得∥FCE =90°,由勾股定理求出FB =∥ABE ∥∥FBE (SAS ),由全等三角形的性质得出AB =FB .【详解】解:[问题背景]如图1,连接PP ′,由旋转可得:AP =AP ′,PB =P ′C ,∥P AP ′=∥BAC =60°,∥∥APP ′为等边三角形,∥∥APP ′=60°,PP ′=AP ′=P A ,∥∥APB =30°,∥∥AP ′C =30°∥∥PP ′C =90°,在∥PP ′C 中,222PP P C PC ''+=,∥222PA PB PC +=;[迁移应用]如图2,作线段BM 垂直于BP 交PC 的延长线于点M ,连接AM ,∥∥BPM =45°,∥PBM =90°,∥∥BPD 为等腰直角三角形,∥BP =BM ,∥∥ABM +∥MBC =∥ABC =90°,∥PBM =∥PBC +∥MBC =90°,∥∥PBC =∥ABM ,在∥PBC 和∥MBA 中,PB PM PBC ABM BA BC =⎧⎪∠=∠⎨⎪=⎩,∥∥PBC ∥∥MBA (SAS ),∥∥AMP =90°,∥S ∥P AC =12PC •AD =12PC 2=5.5, ∥PC(负值舍去).[拓展创新]如图3,将∥AED 绕点E 顺时针旋转90°至∥FEC ,连接BF ,则AD =CFAE =EF ,∥ADE =∥FCE ,∥∥EDC =∥ECD =45°,∥AD ∥BC ,∥∥ADE +∥EDC +∥ECD +∥ECB =180°,∥ED =EC ,∥CED =90°,∥∥EDC =∥ECD =45°,∥∥ADE +∥ECB =90°,∥∥FCE +∥ECB =90°,即∥FCB =90°,∥FB∥∥AEB =135°,∥AEF =90°,∥∥FEB =360°-135°-90°=135°,∥∥AEB =∥FEB ,在∥ABE 和∥FBE 中,AE EF AEP FEB BE BE =⎧⎪∠=∠⎨⎪=⎩,∥∥ABE ∥∥FBE (SAS ),∥AB =FB=【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.7.在平面直角坐标系中,矩形OABC的边OA任x轴上,OC在y轴上,B(4,3),点M 从点A开始,以每秒1个单位长度的速度沿AB→BC→CO运动,设∠AOM的面积为S,点M运动的时间为t.(1)当0<t<3时,AM=,当7<t<10时,OM=;(用t的代数式表示)(2)当∠AOM为等腰三角形时,t=;(3)当7<t<10时,求S关于t的函数关系式;(4)当S=4时,求t的值.【答案】(1)t,10-t;(2)5;(3)S=20-2t;(4)2或8.【分析】(1)利用路程,速度和时间的关系求解即可;(2)由题意可知只有等MA=MO,此时点M在线段BC上,进一步CM=BM=2解答即可;(3)当7<t< 10时,点M在线段OC上,再利用三角形面积公式求解即可;(4)分点M在线段AB上、点M在线段BC上和点M在线段OC上三种情况,分别求解即可.【详解】解:(1)当0<t<3时,点M在线段AB上,即AM=t当7<t<10时,点M在线段OC上,OM=10-t故填:t,10-t;(2)∥四边形ABCO是矩形,B(4,3)∥OA=BC=4,AB=OC=3,∥∥AOM为等腰三角形,∥只有当MA=MO,此时点M在线段BC上,CM=BM=2,∥t=3+2=5故填:5;(3)∥当7<t <10时,点M 在线段OC 上 ∥114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-; (4)∥当点M 在线段AB 上时,4=12×4t ,解得t =2; ∥当点M 在线段BC 上时,S =6,不符合题意;当点M 在线段OC 上时,4=20-2t ,解得t =8.综上所述,满足条件的的值为2或8.【点睛】本题属于四边形综合题,主要考查了矩形的性质、三角形的面积、等腰三角形的判定和性质等知识点,灵活应用所学知识并掌握分类讨论的思想成为解答本题的关键.8.如图1,已知ABC ∆,90,60ABC ACB ∠=∠=,点E 为AB 边上一点,过点E 作EF AC ⊥于点F ,连接CE ,点G 为CE 的中点,连接,GF GB .(1)线段GF 与GB 的数量关系为_____________;(2)将Rt AEF ∆绕点A 逆时针旋转60°,如图2所示,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)在平面内,将Rt AEF ∆绕点A 旋转,当点F 落在AB 边上,若8,4BC AE ==,请直接写出的BG 长.【答案】(1)FG BG =;(2)成立,理由见解析;(3)6BG =【分析】(1)根据直角三角形斜边上的中线性质即可求解;(2)分别取,AC AE 的中点,M N ,连接,,,BM FN MG GN ,根据中位线的性质及全等三角形的判定定理证明GMB FNG ∆≅∆,故可求解;(3)依题意作图,分别求出EF ,AF ,再得到BF 的长, 再证明FEG HCG ≅,求出BH 的长,进而得到FH 的长,再根据直角三角形斜边上的中线性质即可求解.【详解】解:(1)∥90ABC ∠=︒,EF AC ⊥∥∥BCE 和∥FEC 是直角三角形∥点G 为CE 的中点 ∥BG=12EC ,12FG EC = ∥FG BG =,故答案为:FG BG =;(2)成立,理由如下:如图,分别取,AC AE 的中点,M N ,连接,,,BM FN MG GN ,∥AF EF ⊥,∥090ABC AFE ∠=∠=∥ 分别,M N 是,AC AE 的中点, ∥11,22BM AC FN AE ==, ∥G 是CE 中点,M 是AE 中点, ∥1//,2GM AE GM AE =;同理1//,2GN AC GN AC =, ∥,GM FN BM GN ==∥90,60ABC ACB ∠=︒∠=︒∥30CAB ∠=︒,∥30,30FAE EAC ∠=︒∠=︒,∥90FNG FNE ENG ∠=∠+∠=︒,同理,90GMB ∠=︒即GMB FNG ∠=∠ ∥()GMB FNG SAS ∆≅∆∥FG BG =;(3)依题意作图,∥∥EAF =30°,EF ∥AF ,∥EF =122AE =,AF 同理∥CAB =30°,AB ∥BC∥AC =2BC =16,AB =∥BF =AB -AF =∥EF ∥AB ,AB ∥BC∥//EF BC∥FEG HCG ∠=∠∥点G 为CE 的中点,∥CG =EG又FGE HGC ∠=∠∥FEG HCG ≅∥CH =EF =2,FG =HG∥BH =BC -CH =6∥FH 12=∥G 点是FH 中点∥BG =162FH =.【点睛】此题主要考查三角形的几何证明,解题的关键是全等三角形的判定与性质、直角三角形斜边上的中线定理、勾股定理及含30°的直角三角形的性质.9.如图,在ABCD 中,2=AD AB ,E ,F 分别为BC ,AD 的中点,作CG AB ⊥于点G ,GF 的延长线交CD 的延长线于点H .(1)求证:四边形ABEF 是菱形.(2)当5,8AB BF ==时,∠求GH 的长.∠如图2,CG 交BF 于点P ,记FGP 的面积为1S ,BCP 的面积为2S ,则21S S -的值为________.【答案】(1)见解析;(2)∥12;∥16825 【分析】(1)根据平行四边形的性质得到AD ∥BC ,AD =BC ,再根据中点的定义得到AF =BE ,可得四边形ABCD 是平行四边形,结合AB =AF ,可得结论;(2)∥连接AE 交BF 于点O ,由菱形性质可得∥AOB =90°,从而求出菱形ABEF 的面积,可得四边形ABCD 的面积,根据CG ∥AB 可得CG ,从而求出AG ,证明∥AFG ∥∥DFH ,得到AG =DH ,在∥GCH 中利用勾股定理求出GH 即可;∥过F 作FK ∥AB 交BA 延长线于K ,求出FK ,从而得到∥BGF 和∥BGC 的面积,从而分别得出S 1和S 2,可得S 1-S 2.【详解】解:(1)∥四边形ABCD 是平行四边形,∥AD ∥BC ,AD =BC ,∥E 、F 分别为B C 、AD 中点,∥AF =12AD ,BE =12BC , ∥AF =BE ,∥AF ∥BE ,∥四边形ABEF 是平行四边形,∥AD =2AB ,AD =2AF ,∥AB=AF,∥四边形ABEF是菱形;(2)∥连接AE交BF于点O,∥四边形ABEF是菱形,∥AE∥BF,OB=OF=12BE=4,OA=OE=12AE,∥∥AOB=90°,在Rt∥AOB中,OA ∥AE=2OA=6,∥S菱形ABEF=12AE·BF=12×6×8=24,∥E、F分别是B C、AD中点,∥BE=EC,AF=FD,∥AD∥BC,∥四边形ABEF,四边形EFDC都是平行四边形,且底和高相等,∥S四边形ABEF=S四边形EFDC=24,∥S四边形ABCD=S四边形ABEF+S四边形EFDC=48,∥CG∥AB,∥S四边形ABEF=AB·CG=5CG=48,∥BGC=90°,∥CG=485,∥AD=BC=2AB=10,∥BG145 =,∥AG=AB-BG=5-145=115,∥四边形ABCD是平行四边形,∥AB=CD=5,AB∥CD,∥∥A=∥FDH,∥GCH=∥BGC=90°,∥F是AD中点,∥AF=DF,在∥AFG和∥DFH中,A FDH AF DFAFG DFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∥∥AFG ∥∥DFH (ASA ), ∥AG =DH =115, ∥CH =CD +DH =5+115=365, 在Rt ∥GCH 中,GH=12;∥过F 作FK ∥AB 交BA 延长线于K , ∥S 四边形ABEF =AB ·FK =5FK =24, ∥FK =245, ∥S ∥BGF =12BG ·FK =11424255⨯⨯=16825, S ∥BGC =12BG ·CG =11448255⨯⨯=33625, ∥S 2=S ∥BGC -S ∥BGP =33625-S ∥BGP , S 1=S ∥BGF -S ∥BGP =16825-S ∥BGP , ∥S 2-S 1=33625-16825=16825.【点睛】本题考查了平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,勾股定理,重点考查了几何图形的推理论证能力,同时也要结合已知条件作出辅助线,扩大运用范围. 10.在∠ABC 中,D 是BC 边长的一点,E 是AC 边的中点,过点A 作//BC AF 交DE 的延长线于点F ,连接AD ,CF .(1)求证:四边形ADCF 是平行四边形:(2)若2FEA ADE ∠=∠,CF =1CD =,请直接写出AE 的长为__________.【答案】(1)证明见解析;(2)32. 【分析】(1)利用平行线的性质得EFA EDC ∠=∠,据中点的性质可得AE EC =,从而可证EFA EDC ≅△△,进而得AF CD =,即可根据“一组对边平行且相等”的四边形是平行四边形,本题证毕;(2)根据已知条件先证平行四边形ADCF 是矩形,再在Rt ∥CDF中,运用勾股定理即可得3DF ==,进而可得出AE 的长.【详解】(1)证明:∥//BC AF , ∥EFA EDC ∠=∠, ∥E 是AC 边的中点, ∥AE EC =,在EFA EDC △和△中,EFA EDC FEA DEC AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∥EFA EDC ≅△△(AAS ), ∥AF CD =, ∥//BC AF ,∥四边形ADCF 是平行四边形; (2)∥2FEA ADE ∠=∠FEA ADE EAD ∠=∠+∠∥ADE EAD ∠=∠ ∥AE DE =∥四边形ADCF 是平行四边形 ∥,AE CE EF DE ==∥AE CE DE EF +=+,即AC DF =, ∥平行四边形ADCF 是矩形 在Rt ∥CDF 中, ∥3AC DF ==, ∥1322AE AC ==, 故AE 的长为32. 【点睛】本题主要考查了平行四边形的判定定理,矩形的判定定理,勾股定理的知识.熟练利用相关定理分析,得出结论是解题关键.11.在平面直角坐标系xOy 中,已知点()000,A a ,()111,A a ,()222,A a ,…,(),n n A n a ,(),0B n ,其中0a ,1a ,2a ,…,n a ,n 为正整数.顺次连接0A ,1A ,2A ,…,n A ,B的折线与x 轴、y 轴围成的封闭图形记为图形M .小明在求图形M 的面积时,过点()111,A a ,()222,A a ,…,()111,n n A n a ---作x 轴的垂线,将图形M 分成n 个四边形,计算这些四边形面积的和,可以求出图形M 的面积.请你参考小明的思路,解决下面的问题. (1)当2n =时,∠若0121,3,2a a a ===,如图1,则图形M 的面积为 ; ∠用含有0a ,1a ,2a 的式子表示图形M 的面积为 .(2)当4n =时,从1,2,3,…,10这10个正整数中任选5个不同的数作为01234,,,,a a a a a . ∠小明选择了012344,5,7,6,3a a a a a =====,请在图2中画出此时的图形M ; ∠在∠的条件下,若小聪用剩下的5个数1,2,8,9,10作为01234,,,,a a a a a 的取值,使新得到的图形M 的面积与小明的图形M 的面积相等,请直接写出这五个数的排序 (写出一组即可). 【答案】(1) ∥92; ∥0121122a a a ++ ;(2)∥画图见解析;∥ 8,1,2,10,9(答案不唯一). 【分析】(1)∥利用分割法求出面积即可;∥利用分割法求解即可;(2)∥根据题意,利用描点法画出图形即可;∥根据面积相等取点即可(答案不唯一) 【详解】 (1)∥如图1所示,过点1A ,作1AE OB ⊥于E , 图形M 的面积=四边形01OA A E 的面积+四边形21EBA A ,119(13)1(32)1222=⨯+⨯+⨯+⨯=, 故答案为:92; ∥同样可得图形M 的面积=0121122a a a ++, 故答案为:0121122a a a ++ . (2)∥如图2所示:,∥如图3所示,小明的图形M 的面积()14557766312=⨯+++++++⨯ 21.5=,新图形M 的面积1(8112210109)2=⨯+++++++ 21.5=,∥新得到的图形M 的面积与小明的图形M 的面积相等, 故答案为:8,1,2,10,9. 【点睛】本题属于四边形综合题,考查了坐标与图形的性质,多边形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 12.问题提出(1)如图1,点A ,B 在直线l 的同侧,在直线l 上作一点P ,使得AP BP +的值最小. 问题探究(2)如图2,正方形ABCD 的边长为6,点M 在DC 上,且2DM =,N 是AC 上的一动点,则DN MN +的最小值是_________. 问题解决(3)现在各大景区都在流行“真人CS ”娱乐项目,其中有一个“快速抢点”游戏,游戏规则如图3,在用绳子围成的一个边长为12m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边,,BC CD DA 上插小旗子,最后回到点E .求游戏者所跑的最少路程.【答案】(1)见解析;(2)(3) 【分析】(1)作点A 关于直线l 的对称点A ',连接A B '交直线l 与一点,该点即为所求P 点; (2)根据点B 关于AC 是对称点为点D ,连接BM 交AC 与点N ,则此时DN +MN 的值最小,则有DN +MN = BN +MN =BM ,根据勾股定理求解BM 即可;(3)作点G 关于点C 的对称点G ',则FG FG '=,作,D A CD D A DA ''''⊥=',作点H 关于点C 的对称点H ',则G H GH ''=,作A B D A ''''⊥,作点E 关于点C 的对称点E '',则H E HE '''=,作点E ''关于点A '的对称点E ',则H E H E =''''',由两点之间线段最短可知,当,,,,E F G H E '''在一条直线上时,路程最小,利用勾股定理求解即可. 【详解】解:(1)如图1,作点A 关于直线l 的对称点A ',连接A B '交直线l 与点P ,该点即为所求.(2)∥四边形ABCD 是正方形, ∥点B 关于AC 是对称点为点D ,如图,连接BM 交AC 与点N ,则此时DN +MN 的值最小,∥DN +MN =BN +MN =BM , ∥CD =BC =6,DM =2, ∥MC =4,∥BM ==;(3)如图2,延长DC 到D ',使CD CD =',作点G 关于点C 的对称点G ',则FG FG '=,作,D A CD D A DA ''''⊥=',作点H 关于点C 的对称点H ',则G H GH ''=, 作A B D A ''''⊥,作点E 关于点C 的对称点E '',则H E HE '''=, 作点E ''关于点A '的对称点E ',则H E H E =''''', ∥,H E HE A E AE '''='=,过点E '作E K AK '⊥,交AB 的延长线于点K ,则2EK AB =,容易看出,当,,,,E F G H E '''在一条直线上时,路程最小,最小路程为EE ==='.答:游戏者所跑的最少路程是. 【点睛】本题考查正方形的性质以及最短路程问题,解题的关键是正确画出图形,根据两点之间线段最短的道理求解.13.ABCD ,过点D 作ED AD ⊥交AB 的延长线于点E ,BE AB =. (1)如图1,求证:四边形BDCE 是菱形;(2)P 为线段BC 上一点,点M ,N 在直线AE 上,且PM PB =,DPN BPM ∠=∠. ∠当60A ∠=︒时,如图2,求证:CD PB BN =+.∠当45A ∠=︒时,如图3,线段CD ,PB ,BN 的数量关系如何?(请直接写出猜想的结论)【答案】(1)见解析;(2)∥见解析;∥CD + BN . 【分析】(1)利用直角三角形的性质得到BD =BE =AB ,证明四边形BDCE 是平行四边形,再证明四边形BDCE 是菱形即可;(2)∥利用ASA 证明∥DBP ≅∥NMP ,再利用线段的和与差即可证明CD =PB +BN ; ∥同理证得四边形BDCE 是正方形,证明∥MBP 是等腰直角三角形,利用ASA 证明∥DBP ≅∥NMP ,利用线段的和与差即可得到CD + BN . 【详解】(1)∥BE =AB ,且ED ∥AD , 即BD 为Rt ∥ADE 斜边的的中线, ∥BD =BE =AB =12AE ,∥四边形ABCD 是平行四边形,∥AB =CD , AB ∥CD ,∥BE =CD ,BE ∥CD ,∥四边形BDCE 是平行四边形,又∥BD =BE ,∥四边形BDCE 是菱形;(2)∥∥四边形ABCD 是平行四边形,∥AD ∥BC ,∥∥PBM =∥A =60°,∥PM =PB ,∥∥PBM 是等边三角形,∥PM=PB =BM ,∥∥DPN =∥BPM ,∥∥DPN +∥BPN =∥BPM +∥BPN ,即∥DPB =∥NPM ,∥四边形BDCE 是菱形,∥∥DBP =∥NMP =60°,在∥DBP 和∥NMP 中,DPB NPM PB PMDBP NMP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∥∥DBP ≅∥NMP (ASA ),∥MN =BD =BE ,BM +BN =BM +ME ,∥BN =ME ,∥CD =BE =BM +ME =PB +BN ;∥∥∥A =45°,且ED ∥AD ,∥∥ADE 是等腰直角三角形,∥∥DEA =45°,同(1)法可证明四边形BDCE 是正方形,同∥可得∥DPN =∥BPM ,∥∥DPN -∥BPN =∥BPM -∥BPN ,即∥DPB =∥NPM ,∥PM =PB ,∥∥MBP =∥NMP =45°,∥∥MBP 是等腰直角三角形,即∥MBP =∥NMP =45°=∥PBD ,在∥DBP 和∥NMP 中,DPB NPM PB PMDBP NMP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∥∥DBP ≅∥NMP (ASA ),∥MN =BD =BE ,BM +BN =BM +ME ,∥BN =ME ,∥∥MBP 是等腰直角三角形,∥BM=MN +BN =BD +BN =CD + BN ;即CD + BN.【点睛】本题考查了正方形的判定和性质,菱形的判定和性质,全等三角形的判定和性质,平行四边形的性质和判定,等腰直角三角形的性质,证明∥DBP ∥∥NMP 是本题的关键.14.如图,在正方形ABCD 中, 3CD =,P 是CD 边上一动点(不与D 点重合),连接AP ,点D 与点E 关于AP 所在的直线对称,连接AE , PE ,延长CB 到点F ,使得BF DP =,连接EF ,AF .(1)依题意补全图1;(2)若1DP =,求线段EF 的长;(3)当点P 在CD 边上运动时,能使为AEF 等腰三角形,直接写出此时DAP 的面积.【答案】(1)见解析;(2(3)4.5或94 【分析】(1)根据题意作出图形便可;(2)连接BP ,先证明 ADP ABF ≌,再证明FAE PAB ≌ ,求得 BP ,便可得EF ; (3)设 ()0DP x x =>,则 3CP x =- ,求出 AE 、AF 、EF ;当∥AEF 为等腰三角形时,分两种情况列出方程求出x 的值,进而求得最后结果.【详解】解:(1)根据题意,作图如下:(2)连接BP ,如图2.点D 与点E 关于AP 所在的直线对称,AE AD ∴=,PAD PAE ∠=∠,四边形ABCD 是正方形,AD AB ∴=,90ADC ABF ∠=∠=,DP BF =,()ADP ABF SAS ∴≌,AF AP ∴=,FAB PAD ∠=∠,FAB PAE ∴∠=∠,FAE PAB ∴∠=∠,()FAE PAB SAS ∴≌,EF BP ∴=,四边形ABCD 是正方形,3BC CD AB ∴===,1DP =,2CP ∴=,BP ∴=EF ∴=(3)设()0DP x x =>,则3CP x =-,EF BP ∴==3AE AD ==,AF AP ===AF AE ∴>,∴当AEF 为等腰三角形时,只能有两种情况:AE EF =或AF EF =,∥当AE EF =3=,解得3x =,ADP ∴面积为11·33 4.522DP AD =⨯⨯=; ∥当AF EF =时,解得32x =,ADP∴的面积为11393 2224 DP AD⨯=⨯⨯=,综上DAP的面积为4.5或94.【点睛】本题属于几何中的动点问题,综合考查了正方形的性质、勾股定理、全等三角形的判定与性质、等腰三角形的判定等知识,要求学生能理解相关概念与性能,能应用它们得到线段或角之间的关系,本题综合性较强,蕴含了分类讨论等思想方法.15.如图1,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF∠DE;(2)如图2,连接BG,求证:BG平分∠EGF;(3)如图3,连接BD交AF于点H,设ADG的面积为S,求证:BG2=2S.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用正方形的性质证明ΔDAE∥ΔABF,得到∥ADE=∥BAF,推出∥DAG+∥ADG=90°,即可得到结论;(2)如图2,过点B作BM∥AF,垂足为M,设BF=a,则AB=2a,AF,利用平行线的性质及勾股定理求出BM a,AM,得到GM=BM a,推出ΔBMG为等腰直角三角形,求出∥BGM=∥BGE,由此得到结论;(3)根据ΔADG的面积为S,则AG·DG=2S,过点B作BM∥AF,垂足为M,由(2)推出BG2=2BM2,证明ΔDAG∥ΔABM,得到BM=AG,AM=DG,由AG·DG=2AG2=2S,得到AG2=S,即可得到结论.【详解】(1)∥四边形ABCD是正方形,∥AD=AB=BC,∥DAE=∥ABF=90°,∥E、F分别为边AB、BC的中点,∥AE=BF,∥ΔDAE∥ΔABF,∥∥ADE=∥BAF,∥∥DAG+∥EAG=90°,∥∥DAG+∥ADG=90°,∥∥AGD=90°,∥AF∥DE;(2)如图2,过点B作BM∥AF,垂足为M,则BM//GE,∥AE=BE,∥AG=GM,设BF=a,则AB=2a,AF,∥1122ABFS AB BF AF BM =⋅=⋅,∥2a a BM⋅=⋅,∴BM a,∥AM,∥GM=BM a,∥ΔBMG为等腰直角三角形,∥∥BGM=45°,∥BGE=90°-45°=45°,∥∥BGM=∥BGE,∥BG平分∥EGF;(3)ΔADG的面积为S,则AG·DG=2S,过点B作BM∥AF,垂足为M,由(2)知:GM=AG,BM=12AM,BG2=2BM2,∥∥AGD=∥AMB=90°,∥ADG=∥BAM,AB=AD,∥ΔDAG∥ΔABM,∥BM=AG,AM=DG,∥AG=12DG,AG·DG=2AG2=2S,即AG2=S,∥BM2=S,∥BG2=2BM2=2S..【点睛】此题考查正方形的性质,勾股定理,全等三角形的判定及性质,等腰直角三角形的判定及性质,正确引出辅助线解决问题是解题的关键.。
完整word初二数学平行四边形压轴几何证明题

初二数学平行四边形:几何证明题 GH 、HE. CD DA 的中点,顺次连接EF 、 FG E1.在四边形ABCD 中,、F 、G H 分别是AB BC C 1 )请判断四边形 EFGH 的形状,并给 予证明;(G D 是菱形,并说明理由。
2)试探究当满足什么条件时,使四边形EFGH (F HB E ABC 沿顺时针方向旋转 90°得到△ A . ABC 中,/ ACB=90°,AC=BC=1Q 将厶ABC 绕点B2.如图, 在直角三角形 *. C 的长度是 ,/ CBA 的度数是(1)线段A- _____________________ CBAC是平行四边形.(2)连接CC 求证:四边形 CAA milQ. BC 于的中点, PO 的延长线交为 ABCD 中,点P 是线段AD 上一动点,OBD 如图,矩形3.OP=OQ ; (1)求证:t 运动时间为.设点PD 厘米/秒的速度向D 运动(不与重合)A2 ()若AD=8 厘米,AB=6厘米,P 从点岀发,以1是菱形.t 为何值时,四边形 PBQD 秒,请用t 表示PD 的GFC. 与点C 重合,得△ E 是BC 边上的高,将△ ABE 沿BC 方向平移,使点 AE4.已知:如图,在口 ABCD 中,?DG ⑴求证:BE.是菱形?证明你的结论与 BC 满足什么数量关系时,四边形 ABFG 当B ⑵若/ ?50?\BG ADB C F EF . AE交BC的延长线于点E// BC,为CD的中点,连结AE、BE, BE X AE,延长5.如图,在四边形ABCD 中, AD AD;FC=求证:(1DA . BC+ ADAB( 2)=EBE , CE.BC, D是的中点,连结AD,在AD的延长线上取一点E,连结6.如图,在厶ABC中,AB=AC ACE求证:△ ABE^^(1满足什么数量关系时,四边形ABEC是菱形?并说明理由.(2)当AE 与ADBAEDCF.的延长线与CD的延长线交于点的中点,ABCD中,点E是边ADBE7.如图,在平行四边形 F DFE )求证:△ ABE^^( 1.ABDF的形状,并说明理由BD2)连结、AF,判断四边形(EADBFACEDFABDEDABCBCACAB 如图,已知点在△于的边上,交//交•于, AEDFBACAD ()若的形状,并说明理由•平分/,试判断四边形E FFE , BDDEBF?上两点,且9.如图,在平行四边形中,点是对角线.1 )写岀图中每一对你AC.、BF 、CF ,并延长 DE 至点 F ,使 EF=DE.连接 BCAD10.在梯形 ABCD 中,/ BC,AB=DC 过点 D 作DEI ,垂足为点 E )求证:四边形 ABFC 是平行四边形;1 (2CEBEQE? ABFC 是矩形,(2) 若求证:四边形 D ADFAE 1 )求证:;=A(2)选择(A DAE.的外角平分线,BE丄BACAEAB=AC11如图,△ ABC中,,AD 分别是/ BAC和/ B AEDA( 1)求证:丄(DE与是否相等?并说明理由。
初二数学平行四边形压轴:几何证明题

初二数教仄止四边形:几许道明题之阳早格格创做1.正在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中面,逆次对接EF 、FG 、GH 、HE .(1)请推断四边形EFGH 的形状,并赋予道明; (2)试商量当谦脚什么条件时,使四边形EFGH 是菱形,并道明缘由.2.如图,正在曲角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕面B 沿逆时针目标转动90°得到△A1BC1.(1)线段A1C1的少度是,∠CBA1的度数是. (2)对接CC1,供证:四边形CBA1C1是仄止四边形.3. 如图,矩形ABCD 中,面P 是线段AD 上一动面,O 为BD 的中面,PO 的延少线接BC 于Q.(1)供证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从面A 出收,以1厘米/秒的速度背D 疏通(没有与D 沉合).设面P 疏通时间为t 秒,请用t 表示PD 的少;并供t 为何值时,四边形PBQD 是菱形. 4.已知:如图,正在□ABCD 中,AE 是BC 边上的下,将△ABE 沿BC 目标仄移,使面E 与面C 沉合,得△GFC.⑴供证:BE DG ;⑵若∠B 60,当AB 与BC 谦脚什么数量闭系时,四边形ABFG 是菱形?道明您的论断.5. 如图,正在四边形ABCD 中,AD ∥BC ,E 为CD 的中面,连结AE 、BE ,BE ⊥AE ,延少AE 接BC 的延少线于面F .供证:(1)FC =AD ;(2)AB =BC +AD .6.如图,正在△ABC 中,AB=AC ,D 是BC 的中面,连结AD ,正在AD 的延少线上与一面E ,连结BE ,CE.(1)供证:△ABE ≌△ACE (2)当AE 与AD 谦脚什么数量闭系时,四边形ABEC 是菱形?并道明缘由.7.如图,正在仄止四边形ABCD 中,面E 是边AD 的中面,BE 的延少线与CD 的延少线接于面F. (1)供证:△ABE ≌△DFE(2)连结BD 、AF ,推断四边形ABDF 的形状,并道明缘由. 8. 如图,已知面D 正在△ABC 的BC 边上,DE ∥AC 接AB 于E ,DF ∥AB 接B F C G D H B A 1 C 1A C A D G C B F E A D P OA B E D C A D E F C B A B C D E FAC 于F .(1)供证:AE =DF ; (2)若AD 仄分∠BAC ,试推断四边形AEDF 的形状,并道明缘由. 9. 如图,正在仄止四边形中,面E F ,是对于角线BD 上二面,且BF DE =.(1)写出图中每一对于您认为齐等的三角形; (2)采用(110.正在梯形ABCD 中,AD ∥BC,AB=DC ,过面D E ,并延少DE 至面F ,使EF=DE.对接BF 、CF 、AC. (1)供证:四边形ABFC 是仄止四边形;(2)若CE BE DE ⋅=2,供证:四边形ABFC 是矩形. 11.如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 战∠BAC 的中角仄分线,BE ⊥AE. (1)供证:DA ⊥AE(2)试推断AB 与DE 是可相等?并道明缘由. 12.如图,正在△ABC 中,AB=AC ,面D 是BC 上一动面(没有与B 、C 沉合),做DE ∥AC 接AB 于面E ,DF ∥AB 接AC 于面F.(1)当面D 正在BC 上疏通时,∠EDF 的大小(变大、变小、没有变)(2)当AB=10时,四边形EDF 的周少是几? (3)面D 正在BC 上移动的历程中,AB 、DE 与DF 总存留什么数量闭系?请道明. 13.如图,四边形ABCD 中,AB ∥CD ,AC 仄分∠BAD ,CE ∥AD 接AB 于E.(1)供证:四边形AECD 是菱形; (2)若面E 是AB 的中面,试推断△ABC 的形状,并什么缘由. 14.如图,正在仄止四边形ABCD 中,E 为BC 的中面,连结AE 并延少接DC 的延少线于面F. (1)供证:AB=CF (2)当BC 与AF 谦脚什么数量闭系时,四边形ABFC 是矩形?并道明. 15.如图,正在正圆形ABCD 中,G 是CD 上一面,延少BC 到E ,使CE=CG ,连结BG 并延少接DE 于面F.(1)供证:△BCG ≌△DCE(2)将△DEC 绕面D 逆时针转动90°得到△DMA,推断四边形MBGD 是什么特殊四边形?并道明缘由.16.将仄止四边形纸片ABCD 如图办法合叠,使面C D’E AF C DB A B FC DE AF C D E B AB C FE DA B CDE A BF C D E处,合痕为EF.(1)供证:△ABE ≌△AD’F(2)连结CF ,推断四边形AECF 是什么特殊四边形,道明缘由.17.如图,正在△ABC 中,AB=AC ,AD ⊥BC ,垂脚为面D ,AN 是ABC 中角∠CAM 的仄分线,CE ⊥AN ,垂脚为E. (1)供证:四边形ADCE 是矩形; (2)当△ABC 谦脚什么条件时,四边形ADCE 是正圆形?道明缘由. 18.四边形ABCD 、DEFG 皆是正圆形,连结AE 、CG.(1)供证:AE=CG ;(2)预测AE 与CG 的位子闭系,并道明. 19.如图,正在四边形ABFC 中,∠ACB=90°,BC 的笔曲仄分线EF 接BC 于面D ,接AB 于面E ,且CF=AE. (1)试商量四边形BECF 是什么特殊四边形,并道明缘由; (2)当∠A 的大小谦脚什么条件时,四边形BECF 是正圆形?请回问并道明您的论断.20.如图,正在□ABCD 中,AB ⊥AC ,AB=1,BC=5,对于角线AC 、BD 相接于面O ,将曲线AC 绕面O 逆时针转动,分别接BC 、AD 于面E 、F.(1)道明:当转动角为90°时,四边形ABEF 是仄止四边形;(2)试商量正在转动历程中,线段AF 与EC 有何如的数量闭系,并道明;(3)正在转动历程中,四边形BEDF 大概是菱形吗?如果没有克没有及,请道明缘由;如果能,道明缘由并供出此时AC 绕面O 逆时针转动的度数.21.如图,B 、C 、E 是共背来线上的三个面,四边形ABCD 与四边形CEFG 皆是正圆形,连结BG 、DE.(1)预测BG 与DE 之间的大小闭系,并道明您的论断;(2)正在图中是可存留通过转动不妨互相沉合的二个三角形?若存留,请指出,并道明转动历程;若没有存留,请道明缘由.22.如图,矩形ABCD 中,O 是AC 与BD 的接面,过面、CD 的延少线分别接于面E 、F. (1)供证:△BOC ≌△DOF ; (2)当EF 与AC 谦脚什么闭系时,四边形AECF 23.如图,△ABC 是等边三角形,D 、E 分别正在边BC 连结DE 并延少至面F ,使EF=AE ,连结AF 、BE 战CF.(1 A B D F D ’ AB M NE A B C D EF G B E A C F DA B C D F E O A B C D F(2)推断四边形ABDF 的形状,并道明缘由.24. 如图,△ABC 是等边三角形,面D 是线段BC 上的动面(面D 没有与B 、C 沉合), △ADE 是以AD 为边的等边三角形,过E 做BC 的仄止线,分别接AB 、AC 于面F 、G ,连结BE.(1)供证:△AEB ≌△ADC ; (2)四边形BCGE 是何如的四边形?道明缘由.A G E F。
初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。
初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
2024年数学八年级几何证明专项练习题1(含答案)

2024年数学八年级几何证明专项练习题1(含答案)试题部分一、选择题:1. 在三角形ABC中,若∠A = 90°,AB = 6cm,BC = 8cm,则AC 的长度为()。
A. 2cmB. 10cmC. 4cmD. 5cm2. 下列哪个条件不能判定两个三角形全等?()A. SASB. ASAC. AASD. AAA3. 在直角坐标系中,点A(2,3)关于原点对称的点是()。
A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式是正确的?()A. 若a∥b,则∠1 = ∠2B. 若a∥b,则∠1 + ∠2 = 180°C. 若a⊥b,则∠1 = 90°D. 若a⊥b,则∠1 + ∠2 = 180°5. 在等腰三角形ABC中,若AB = AC,∠B = 70°,则∠C的度数为()。
A. 70°B. 40°C. 55°D. 110°6. 下列哪个条件可以判定两个角相等?()A. 对顶角B. 邻补角C. 内错角D. 同位角7. 在平行四边形ABCD中,若AD = 8cm,AB = 6cm,则对角线AC 的长度()。
A. 10cmB. 14cmC. 12cmD. 15cm8. 下列哪个图形是轴对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 梯形9. 在三角形ABC中,若a = 8cm,b = 10cm,c = 12cm,则三角形ABC是()。
A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定10. 下列哪个条件不能判定两个直线平行?()A. 内错角相等B. 同位角相等C. 同旁内角互补D. 两直线垂直二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。
()2. 在等腰三角形中,底角相等。
()3. 平行线的同位角相等,内错角相等。
()4. 若两个角的和为180°,则这两个角互为补角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学平行四边形压轴:几何证明题
1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明;
(2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。
2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.
(1)线段A 1C 1的长度是 ,∠CBA 1的度数是 . (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.
3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q.
(1)求证:OP=OQ ;
(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.
4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C
重合,得△GFC. ⑴求证:BE =DG ;
⑵若∠B =60︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.
5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;
(2)AB =BC +AD .
A B
E F
C
G
D H B A 1
C 1
A C A
G
C
B
F
E
P
A D E
C
B
6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE.
(1)求证:△ABE ≌△ACE
(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.
7.如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线交于点F. (1)求证:△ABE ≌△DFE
(2)连结BD 、AF ,判断四边形ABDF 的形状,并说明理由.
8. 如图,已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F . (1)求证:AE =DF ;
(2)若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由.
9. 如图,在平行四边形中,点E F ,是对角线BD 上两点,且BF DE =. (1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对全等三角形进行证明.
10.在梯形ABCD 中,AD ∥BC,AB=DC ,过点D 作DE ⊥BC ,垂足为点E ,并延长DE 至点F ,使EF=DE.连接BF 、CF 、AC.
(1)求证:四边形ABFC 是平行四边形;
(2)若CE BE DE ⋅=2
,求证:四边形ABFC 是矩形.
A
B E
D C
A
B
C
D E
E A F
C D
B A B
C E F A B F
C
D
E
11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE. (1)求证:DA⊥AE
(2)试判断AB与DE是否相等?并说明理由。
12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.
(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)
(2)当AB=10时,四边形EDF的周长是多少?
(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明. A F
C
D
E
B
A
B C
F
E
D。