中考数学专题一 整体思想复习题及答案

合集下载

中考数学复习题方法技巧专题一数形结合思想训练(含答案)

中考数学复习题方法技巧专题一数形结合思想训练(含答案)

方法技巧专题 ( 一)数形联合思想训练【方法解读】数形联合思想是指从几何直观的角度,利用几何图形的性质研究数目关系,追求代数问题的解决方案( 以形助数 ) ,或利用数目关系研究几何图形的性质解决几何问题(以数助形)的一种数学思想。

1.我们学习了一次函数、二次函数和反比率函数, 回首学习过程 , 都是依据列表、描点、连线获得函数的图象, 而后依据函数的图象研究函数的性质, 这类研究方法主要表现的数学思想是()A.演绎B.数形联合C.抽象D.公义化2.若实数a, b, c在数轴上对应的点如图F1- 1, 则以下式子正确的选项是()图 F1-1A.ac>bcB.|a-b|=a-bC.-a<-b<-cD.-a-c>-b-c3 [2017 ·怀化 ] 一次函数2的图象经过点(2,3), 且与x 轴、y轴分别交于点, ,则△的面积是 ().y=- x+m P - A B AOBA.B.C.4D.84. [2018 ·仙桃 ]甲、乙两车从A地出发,匀速驶向 B地 . 甲车以80 km/h的速度行驶 1 h 后 , 乙车才沿同样路线行驶. 乙车先抵达 B 地并逗留 1 h后,再以原速按原路返回, 直至与甲车相遇. 在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图F1- 2 所示.以下说法 : ①乙车的速度是120 km/h; ②m=160; ③点H 的坐标是(7,80);④n=7.5.此中说法正确的有()图 F1-2A4 个 B 3 个..C2 个 D 1 个..5.已知二次函数y=( x-h )2+1( h 为常数),在自变量 x 的值知足1≤ x≤3的状况下,与其对应的函数值y 的最小值为5,则 h 的值为 ()A. 1 或-5B.- 1或 5C. 1 或-3D.1或36.[2018 ·白银 ]如图 F1- 3是二次函数y=ax2+bx+c( a, b, c是常数 , a≠0) 图象的一部分 , 与x轴的交点A在点 (2,0)和 (3,0)之间 , 对称轴是直线x=1,对于以下说法:① ab<0,②2a+b=0,③3a+c>0,④ a+b≥ m( am+b)( m 为常数),⑤当 - 1<x<3时 , y>0,此中正确的选项是()图 F1-3A.①②④B.①②⑤C.②③④D.③④⑤7.如图 F1- 4 是由四张全等的矩形纸片拼成的图形, 请利用图中空白部分面积的不一样表示方法, 写出一个对于a, b 的恒等式 :.F1- 48 [2018 ·白 ]如 F1 5, 一次函数y=-x-2 与2的象交于点( ,4), 对于x的不等式的.-y= x+m P n -解集.F1- 59.《庄子·天下篇》中写道: “一尺之棰 , 日取其半 , 万世不断.”意思是 : 一根一尺的木棍, 假如每日截取它的一半, 永也取不完 , 如 F1- 6.F1- 6由易得: ++ +⋯+ =.10.当x=m或x=n( m≠n) , 代数式x2- 2x+3 的相等 ,x=m+n, 代数式x2- 2x+3 的.11.已知数a, b 足 a2+1= , b2+1= ,2018 |a-b|=.12.已知函数y=使y=k建立的x的恰巧只有 3 个 , k的.13. (1) 察以下形与等式的关系, 并填空 :F1- 7(2) 察 F1 8, 依据 (1) 中 , 算中黑球的个数, 并用含有n 的代数式填空 :-F1 8-1+3+5+⋯+(2 n- 1) +() +(2 n- 1) +⋯+5+3+1=.14. [2018 ·北京 ]在平面直角坐系 xOy中,直 y=4x+4与 x 、 y 分交于点A, B,抛物 y=ax2+bx- 3a 点 A,将点 B向右平移5个位度 , 获得点 C.(1)求点 C的坐;(2)求抛物的称 ;(3)若抛物与段 BC恰有一个公共点,合函数象,求 a 的取范 .参照答案1.B 2.D 3.B4 B [分析]甲、乙两车最开始相距80 km,0 到 2 h是乙在追甲 , 并在 2 h时追上 , 设乙的速度为x km/h, 可得方程.2x- 2×80=80, 解得x=120, 故①正确 ;在 2 h 时甲、乙距离为 0, 在 6 h 时乙抵达B地 , 此时甲、乙距离=(6 - 2) ×(120 - 80) =160(km), 故②正确 ;H点是乙在 B 地逗留 1 h后开始原路返回,6 h 时甲、乙距离是160 km,1 h 中只有甲在走, 因此 1 h 后甲、乙距离80 km,因此点 H的坐标是(7,80),故③正确;最后一段是乙原路返回, 直到在n h 时与甲相遇 , 初始距离 80 km, 因此相遇时间=80÷(120 +80) =0. 4, 因此n=7. 4, 故④错误 .综上所述 , ①②③正确, ④错误 , 正确的有 3 个, 应选 B.5. B [ 分析 ]由二次函数的极点式y=( x-h )2+1,可知当x=h 时, y 获得最小值1. (1) 如图① , 当x=3, y 获得最小值时 ,解得h=5(h=1舍去);(2) 如图② , 当x=1, y获得最小值时 ,解得 h=-1( h=3舍去) . 应选B.6 A[分析]∵抛物线的张口向下 , ∴0 ∵抛物线的对称轴为直线1, 即x=-1, ∴b=-20, ∴0,20, ∴①.a< .x==a>ab<a+b=②正确 .∵当x=-1 时 ,3, 由对称轴为直线 1 和抛物线过x轴上的A点 ,A点在点 (2,0)和(3,0)之间 , 知抛物线与x y=a-b+c= a+c x=轴的另一个交点在点 ( - 1,0)和 (0,0) 之间 , 因此当x=- 1 时 , y=3a+c<0, ∴③错误.∴此有 a+b+c≥ m( am+b)+c,即 a+b≥ m( am+b),∴④正确 .∵抛物 x 上的 A 点, A 点在点(2,0)和 (3,0) 之 , 抛物与x的另一个交点在点( - 1,0) 和(0,0)之,由知 ,当 2 3 , 有一部分象位于x 下方 , 明此0, 依据抛物的称性可知, 当 10 , 也有一部分象位于x<x<y<-<x<下方 , 明此y<0, ∴⑤. 故A.227. ( a-b ) =( a+b) - 4ab8.- 2<x<2 [ 分析 ]∵ y=-x-2的象点P( n, - 4),∴-n- 2=- 4,解得 n=2. ∴ P点坐是(2, - 4) .察象知 :2 x+m<-x-2 的解集x<2. 解不等式 -x- 2<0可得 x>- 2.∴不等式的解集是 - 2<x<2.9. 1-10. 3 11. 112. 1 或 2 [ 分析 ]画出函数分析式的象, 要使y=k建立的x的恰巧只有 3 个 , 即函数象与y=k 条直有 3 个交点 . 函数 y=的象如.依据象知道当y=1或2, 建立的x 恰巧有3个,∴ k=1或2. 故答案1或2.13.解 :(1)1 +3+5+7=16=42.察 , 律 , 第一个形 :1 +3=22, 第二个形 :1 +3+5=32, 第三个形 :1 +3+5+7=42, ⋯,第 ( n- 1) 个形 :1 +3+5+⋯+(2 n- 1) =n2.故答案 :4 2n2.(2)察形 :中黑球可分三部分 ,1到n 行, 第(1)行,(2) 行到 (21)行,即 135⋯ (21)[2(1)1] (21) ⋯n+n+n++ + + + n-+ n+ -+ n-+531[1 35⋯(21)](21) [(21)⋯ 5 31] 2212222 1故答案:212 2 21 + + + = + + + + n-+ n+ + n-+ + + + =n + n+ +n = n + n+ .n+n + n+ .14.解 :(1) ∵直 4 4 与x、y分交于点, ,y= x+ A B∴A( - 1,0), B(0,4) .∵将点 B 向右平移5个位度,获得点 C,∴C(0 +5,4),即 C(5,4) .(2)∵抛物 y=ax2+bx- 3a 点 A,∴a-b- 3a=0. ∴ b=-2a.∴抛物的称直x=- =- =1,即称直x=1.(3) 易知抛物点 (-1,0),(3,0).①若0, 如 , 易知抛物点 (5,12), 若抛物与段BC恰有一个公共点 , 足a>a12a≥4 即可 , 可知a的取范是a≥ .②若 a<0,如,易知抛物与y 交于点(0, - 3a),要使抛物与段BC只有一个公共点, 就必- 3a>4, 此a<- .综上 , a的取值范围是a≥或 a<- 或 a=-1.。

2020-2021中考数学解题技巧专题训练:整体思想训练(含答案)

2020-2021中考数学解题技巧专题训练:整体思想训练(含答案)

于是 ,二次函数
y=-abx
2+
(a+b
)
x=-
1 2
x2+
3x=-
1
2(x-
3)
2+
9
2,它有最大值
9
,为2 .
4.D [解析 ] 整体观察图形 ,由折叠过程可知阴影部分图形的周长为 : EA1+A 1D1+BC+FC+EB+D 1F=EA+AD+BC+FC+EB+DF= (EA+EB )+AD+BC+ (FC+DF )=AB+AD+BC+CD= 2(A

??4
??2 +??2
+1
=
8
3??-1 (3??-1
=
)
1 8
.
法二 :欲求
S=
??4
??2 +??2
+1
的值
,可转化成求
1
=
??
??4 +??2 +1 ??2
=x
2+
1+
?1?2 的值
.把方程
x2-3x+ 1= 0 两边都除以
x,得
1
1
x-3+ ??=0,x+ ??= 3,
x+
1 ??
2= 9.
.
8.若
x2-3
x+
1=
0,则
??4
??2 +??2
+1
的值为
.
9.[2018
·黄冈 ]

中考数学常用数学思想专题卷(附答案)

中考数学常用数学思想专题卷(附答案)

中考数学常用数学思想专题卷(附答案)一、单选题(共4题;共8分)1.甲乙两地相距180km,一列快车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度从甲地匀速驶往乙地.两车相继到达终点乙地,再次过程中,两车恰好相距10km的次数是()A. 1B. 2C. 3D. 42.已知二次函数(m为常数),当时,的最大值是15,则的值是()A. -10和6B. -19和C. 6和D. -19和63.若一个直角三角形两边的长分别为6和8,则第三边的长为()A. 10B.C. 10或D. 10或4.平面内,到三角形三边所在直线距离相等的点共有()个.A. 3B. 4C. 5D. 6二、填空题(共8题;共16分)5.正方形ABCD的边长为3,点E为射线AD上一点连接CE,设直线CE与BD交于点F,若AD=2DE,则BF的长为________.6.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是________.7.在△ABC中,∠A = 30°,AB = m,CD是边AB上的中线,将△ACD沿CD所在直线翻折,得到△ECD,若△ECD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积为________(用m的代数式表示).8.已知:在中,为边上的高,且,若,,则的面积为________.9.在中,,,点在边上,连接,若为直角三角形,则的度数为________度.10.已知△ABC是等腰直角三角形,AB=AC,D为平面内的任意一点,且满足CD=AC,若△ADB是以AD为腰的等腰三角形,则∠CDB的度数为________.11.如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B 重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为________cm.12.如图,已知平行四边形ABCD中,AD = 6,AB = ,∠A = 45°.过点B、D分别做BE⊥AD,DF⊥BC,交AD、BC与点E、F.点Q为DF边上一点,∠DEQ = 30°,点P为EQ的中点,过点P作直线分别与AD、BC相交于点M、N.若MN = EQ,则EM的长等于________.三、综合题(共8题;共96分)13.已知二次函数y=x2+(2m﹣2)x+m2﹣2m﹣3(m是常数)的图象与x轴交于A,B两点(点A在点B的左边).(1)如果二次函数的图象经过原点.①求m的值;②若m<0,点C是一次函数y=﹣x+b(b>0)图象上的一点,且∠ACB=90°,求b的取值范围;(2)当﹣3≤x≤2时,函数的最大值为5,求m的值.14.若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线为“等边抛物线”(1)若对任意m,n,点M(m,n)和点N(﹣m+4,n)恒在“等边抛物线”C1:y=ax2+bx上,求抛物线C1的解析式;(2)若抛物线C2:y=ax2+bx+c为“等边抛物线“,求b2﹣4ac的值;(3)对于“等边抛物线“C3:y=x2+bx+c,当1<x<m时,总存在实数b,使二次函数C3的图象在一次函数y=x图象的下方,求m的最大值.15.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.16.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得点P在射线BC上,且∠APB=∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.(1)当⊙O的半径为1时①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D,E,F中,⊙O的依附点是________;②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣2x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,请求出圆心C的横坐标n的取值范围.17.在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB= AC?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.18.如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s 的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?19.如图,在Rt△ABC,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D从点C出发,沿CA往A 运动,当运动到点A时停止.若设点D的运动时间为t秒,点D运动的速度为每秒2个单位长度.(1)当t=2时,求CD、AD的长;解:t=2时,CD=2×2=4∵∠ABC=90°,AB=20,BC=15∴AC=AD=AC-CD=25-4=21(1)当t=2时,求CD、AD的长;(2)在D运动过程中,△CBD能否为直角三角形,若不能,请说明理由,若能,请求出t的值;(3)当t为何值时,△CBD是等腰三角形,请直接写出t的值.20.如图,已知抛物线y=x2﹣x﹣n(n>0)与x轴交于A,B两点(A点在B点的左边),与y轴交于点C.(1)若AB=4,求n的值;(2)如图,若△ABC为直角三角形,求n的值;(3)如图,在(2)的条件下,若点P在抛物线上,点Q在抛物线的对称轴上,是否存在以点B、C、P、Q为顶点的四边形是平行四边形?若存在,请求P点的坐标;若不存在,请说明理由.答案一、单选题1. D2. D3. C4. B二、填空题5. 6 或26. ﹣1.5或7. 或8. 48或1689. 60或10 10. 45°或135°11. 1或2 12. 1或2三、综合题13. (1)解:①∵二次函数的图象经过原点,∴m2﹣2m﹣3=0,解得:m1=﹣1,m2=3.②∵m<0,∴m=﹣1.把m=﹣1代入y=x2+(2m﹣2)x+m2﹣2m﹣3中,得:y=x2﹣4x.当y=x2﹣4x=0时,x1=0,x2=4,∴AB=4.以AB为直径作⊙P,根据直径所对的圆周角为直角,可知:当一次函数y=﹣x+b(b>0)的图象与圆相交时,可得∠ACB=90°.如图,一次函数y=﹣x+b(b>0)的图象与⊙P相切于点C,与y轴交于点E,与x轴交于点F,连接PC,易得∠PCF=90°.当x=0时,y=﹣x+b=b,∴点E(0,b);当y=﹣x+b=0时,x=b,∴点F(b,0).∴AE=AF=b,∴∠PFC=45°.又∵∠PCF=90°,∴△PCF为等腰直角三角形,∴PF=PC=2 ,∴b=AF=2+2 .∴b的取值范围为0<b≤2+2(2)解:∵y=x2+(2m﹣2)x+m2﹣2m﹣3=(x+m﹣1)2﹣4,∴抛物线的对称轴为x=1﹣m.①当1﹣m≤﹣0.5,即m≥1.5时,根据二次函数的对称性及增减性,当x=2时,函数最大值为5,∴(2+m﹣1)2﹣4=5,解得:m=2或m=﹣4(舍去);②当1﹣m>﹣0.5,即m<1.5时,根据二次函数的对称性及增减性,当x=﹣3时,函数最大值为5,∴(﹣3+m﹣1)2﹣4=5,解得:m=1或m=7(舍去).综上所述,m=2或m=1.14. (1)解:由题意得,点H和点N关于对称轴对称,∴对称轴x==2,又∵x=﹣=2,∴b=﹣4a,∴y=ax2﹣4ax,①当a>0时,顶点坐标为(2,﹣2 ),代入y=ax2﹣4ax,得:﹣2 =4a﹣8a,解得:a=,∴y=x2﹣2 x;②当a<0时,顶点坐标为(2,2 ),代入y=ax2﹣4ax,得:2 =4a﹣8a,解得:a=﹣,∴y=﹣x2+2 x;综上,y=x2﹣2 x或y=﹣x2+2 x(2)解:设等边抛物线与x轴的两个交点分别为A(x1,0),B(x2,0),令y=ax2+bx+c=0,∴x=,∴AB=|x1﹣x2|=| ﹣|=| |=| |,又∵抛物线的顶点坐标为(﹣,),∴=,∵b2﹣4ac≠0,∴| |=,∴b2﹣4ac=12(3)解:由(2)得b2﹣4ac=12,∴c=,∴C3:y=x2+bx+ ,由题意知该等边抛物线过(1,1),∴1+b+ =1,解得b=﹣6或b=2,又对称轴x=﹣=﹣>1,∴b<﹣2,∴b=﹣6,∴y=x2﹣6x+6,联立,解得x=1或x=6,∴m的最大值为615. (1)解:对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB=∴k=.(2)解:如图,∵tan∠BAO=∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)• t=﹣t2+ t.当t>时,S=OQ•P y=(2t﹣1)• t=t2﹣t.(3)解:∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=∴2t+1=∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为16. (1)①E,F②如图2,∵点T在直线y=﹣x上,∴点T在第二象限或第四象限,直线y=﹣x与x轴所夹的锐角为60°,当点T在第四象限,当OT=1时,作CT⊥x轴,易求点C(,0),当OT'=3时,作DT'⊥x轴,易求D(,0),∴满足条件的点T的横坐标t的取值范围<t<,当点T在第二象限,同理可得满足条件的点T的横坐标t的取值范围﹣<t<﹣,综上所述:满足条件的点T的横坐标t的取值范围:<t<或﹣<t<﹣,(2)解:如图3﹣1中,当点C在点M的右侧时,由题意M(1,0),N(0,2)当CN=3时,OC==,此时C(,0),当CM=1时,此时C(2,0),∴满足条件的n的值的范围为2<n<.如图3﹣2中,当点C在点M的右侧时,当⊙C与直线MN相切时,由题意M(1,0),N(0,2),∴MN=,∴sin∠MON===,∴C'M=∴C'M=1﹣,∴C′(1﹣,0),当CM=3时,C(﹣2,0),∴满足条件的m的值的范围为﹣2<n<1﹣,综上所述,满足条件的n的值的范围为:2<n<或﹣2<n<1﹣.17. (1)16(2)解:设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有﹣6+3t=11+t,解得t=故当运动时间为秒长时,点A和线段BC的中点重合(3)解:存在,理由如下:设运动时间为y秒,①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,﹣6+3×7=15;②当点A在线段BC上时,依题意有(3y-6)-(10+y)=解得y=-6+3 =19综上所述,符合条件的点A表示的数为15或1918. (1)解:设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)解:设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y-1200=5y-150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米19. (1)解:t=2时,CD=2×2=4∵∠ABC=90°,AB=20,BC=15∴AC=AD=AC-CD=25-4=21(2)解:①∠CDB=90°时,即解得BD=12所以CD=t=9÷2=4.5②∠CBD=90°时,点D和点A重合t=25÷2=12.5综上所述,t=4.5或12.5秒(3)t=6.25或7.5或9秒时,△CBD是等腰三角形.20. (1)解:当y=0时,x2﹣x﹣n=0,解得:x1=,x2=,∴点A的坐标为(,0),点B的坐标为(,0).∵AB=4,∴﹣=4,整理,得:9+8n=16,解得:n=(2)解:当x=0时,y=x2﹣x﹣n=﹣n,∴点C的坐标为(0,﹣n).∵△ABC为直角三角形,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠CBO+∠BCO=90°,∴∠ACO=∠CBO.又∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴,∴OA•OB=OC2,即﹣• =n2,整理,得:n2﹣2n=0,解得:n1=0(舍去),n2=2.(3)解:由(2)可知,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,﹣2),抛物线的对称轴为直线x=.设点P的坐标为(m,m2﹣m﹣2),分两种情况考虑,如图2所示:①若BC为边,当四边形BCP1Q1为平行四边形时,﹣m=4﹣0,解得:m=﹣,∴点P1的坐标为(﹣,);当四边形BCQ2P2为平行四边形时,m﹣=4﹣0,解得:m=,∴点P2的坐标为(,).②若BC为对角线,设BC,P3Q3的交点为M,∵点B的坐标为(4,0),点C的坐标为(0,﹣2),∴点M的坐标为(2,﹣1),∴+m=2×2,解得:m=,∴点P3的坐标为(,﹣).综上所述:存在以点B、C、P、Q为顶点的四边形是平行四边形,点P的坐标为(﹣,),(,)或(,﹣).第11 页共11 页。

中考数学专题复习数学思想试题【含解析】

中考数学专题复习数学思想试题【含解析】

. 如图 1,它的
大灯 A 射出的光线 AB,AC与地面 MN的夹角分别为 22°和 31°, AT⊥ MN,垂足为 T,大灯照亮地面的宽度
BC的长为 5 m. 6
( 1)求 BT的长(不考虑其他因素);
( 2)一般正常人从发现危险到做出刹车动作的反应时间是
0.2s ,从发现危险 到电动车完全停下所行驶的
2. (2015·莱芜) 一个多边形除一个内角外其余内角的和为
1510 °,则这个多边形对角线的条数是 (

A. 27 B . 35 C . 44 D . 54
3. 如图 4,矩形 ABCD中, AB=8,AD=6,将矩形 ABCD绕点 B 按顺时针方向旋转后得到矩形
边 A′ B 交线段 CD于 H,且 BH=DH,则 DH的值是(
例 2( 2015·葫芦岛)如图 1,在五边形 ABCDE中,∠ A+∠ B+∠ E=300°, DP,CP分
别平分∠ EDC,∠ BCD,则∠ P 的度数是(

A.60° B .65° C .55° D .50°
图1
解析: 根据五边形的内角和等于
540°,∠ A+∠ B+∠ E=300°,可得∠ EDC +∠
数学思想
数学思想是连接基础知识与解题能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱
题海的有效之路 . 中考常用的数学思想有:整体思想、转化思想、数形结合思想、分类讨论思想等.在中
考复习备考阶段,要注意领会例题中所体现的数学思想,培养用数学思想解题的意识.
数形结合思想
例( 2015 ·盘锦)图 1 是二次函数 y=ax 2+bx+c( a≠ 0)图象的一部分,对称轴是直

中考数学二轮专题复习一 化归思想问题(含答案)

中考数学二轮专题复习一 化归思想问题(含答案)

考数学专题复习一 化归思想问题一、总体概述数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等.二、典型例题【例题1】如图3-1-1,反比例函数y=-8x与一次函数y=-x+2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标;(2)求△AOB 的面积.【例题2】解方程:22(1)5(1)20x x ---+=【例题3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.【例题4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状.【例题5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。

若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与c2的关系,并证明你的结论.三、当堂达标一、选择题1.已知|x+y|+(x -2y )2=0,则()1221. . . .1112x x x x A B C D y y y y =-=-==⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩ 2.一次函数y=kx +b 的图象经过点A (0,-2)和B (-3,6)两点,那么该函数的表达式是( ) 8.2 6 .238.8 6 .23A y x B y x C y x D y x =-+=--=--=--3.设一个三角形的三边长为3,l -2m ,8,则m 的取值范围是( )A .0<m <12B. -5<m - 2 C .-2<m <5 D .-72<m <-l 4.已知11553x xy y x yx xy y +--=--,则的值为( ) A 、72 B 、-72 C 、27 D 、-275.若24(2)16x m x +-+是完全平方式,则m=( )A .6B .4C .0D .4或06.如果表示a 、b 为两个实数的点在数轴上的位置如图3-l -8所示,那么化简2||()a b a b -++的结果等于( ),A .2aB .2bC .-2aD .-2b二、填空题7.已知抛物线2y ax bx c =++的对称轴为直线x=2,且经过点(5,4)和点(1,4)则该抛物线的解析式为____________.8.用配方法把二次函数 y=x2+3x +l 写成 y=(x+m )2+n 的形式,则y=__________________-9.若分式293x x -+的值为零,则x=________ 10函数y=2x +中自变量x 的取值范围是_______. 11如果长度分别为5、3、x 的三条线段能组成一个三角形,那么x 的范围是_______.12、点(1,6)在双曲线y= k x上,则k=______. 三、解答题13.解下歹方程(组): 23664011(1)1x x x x x x -+=+-=----23⑴⑵x+1x215x y x y -=-⎧⎧⎨⎨-+=⎩⎩x+y=10⑶ ⑷2x-y=-114.已知2286250,x y x y ++++=求代数式224442y x x xy y x y--+++2x 的值。

【中考专卷】2020年中考数学特训卷:专题一-数学思想问题(含部分2019原创题)及答案

【中考专卷】2020年中考数学特训卷:专题一-数学思想问题(含部分2019原创题)及答案

专题一 数学思想问题⊙热点一:数形结合思想1.(2013年甘肃天水)函数y 1=x 和y 2=1x的图象如图Z1-8,则使y 1>y 2成立的x 取值范围是( )A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <1图Z1-8 图Z1-92.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图Z1-9),则使y 1>y 2成立的x 的取值范围是________________. 3.(2012年广东湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y (单位:万亩)随着时间x (单位:年)逐年成直线上升,y 与x 之间的函数关系如图Z1-10.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围); (2)该市2012年荔枝种植面积为多少万亩?图Z1-10⊙热点二:分类讨论思想1.(2013年贵州贵阳)如图Z1-11,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有( )A .1条B .2条C .3条D .4条图Z1-11 图Z1-122.(2013年福建龙岩)如图Z1-12,在平面直角坐标系xOy 中,A (0,2),B (0,6),动点C在直线y =x 上.若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数是( )A .2个B .3个C .4个D .6个 ⊙热点三:转化与化归思想 1.(2013年广东)如图Z1-13,3个小正方形的边长都为1,则图中阴影部分面积之和是__________(结果保留π).图Z1-132.(2013年福建福州)如图Z1-14,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是__________.图Z1-14 图Z1-153.(2013年广西贺州)如图Z1-15,A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是__________.⊙热点四:整体思想1.(2013年江苏徐州)当m +n =3时,式子m 2+2mn +n 2的值为__________.2.(2012年湖北黄冈)已知实数x 满足x +1x =3,则x 2+1x 2的值为__________.3.(2012年江西南昌)已知(m -n )2=8,(m +n )2=2,则m 2+n 2=( )A .10B .6C .5D .3数学思想问题热点一1.C 2.x <-2或x >83.解:(1)设函数的解析式为y =kx +b ,由图象可知,其经过点(2009,24)和(2011,26), 则⎩⎪⎨⎪⎧ 2009k +b =24,2011k +b =26,解得⎩⎪⎨⎪⎧k =1,b =-1985. ∴y 与x 之间的关系式为y =x -1985.(2)令x =2012,得y =2012-1985=27(万亩). ∴该市2012年荔枝种植面积为27万亩. 热点二1.C 解析:过点M 作AB ,AC 或BC 的垂线,所得三角形满足题意.故选C. 2.B 解析:如图78,AB 的垂直平分线与直线y =x 相交于点C 1,满足条件;∵A (0,2),B (0,6),∴AB =6-2=4.以点A 为圆心,以AB 的长为半径画弧,与直线y =x 的交点为C 2,C 3.∵OB =6,∴点B 到直线y =x 的距离为6×22=3 2.∵3 2>4,∴以点B 为圆心,以AB 的长为半径画弧,与直线y =x 没有交点.点C 的个数是1+2=3.故选B.图78热点三 1.3π8解析:采用割补法,则图中阴影部分的圆心角之和为135°.∴阴影部分的面积应为S =135π×12360=3π8.2.2 3 解析:如图79,延长AB ,然后作出点C 所在的直线,一定交于格点E .正六边形的边长为1,则半径是1,则CE =4.中间间隔一个顶点的两个顶点之间的距离是3,则△BCE 的边EC 上的高是3 32,△ACE 边EC 上的高是5 32,则S △ABC =S △AEC -S △BEC =12×4×⎝⎛⎭⎫5 32-3 32=2 3.图79 图803.7 解析:如图80,连接AB 1,BC 1,CA 1,∵A ,B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1.∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2.同理,S △B 1CC 1=2,S △A 1AC 1=2.∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.热点四1.9 2.7 3.C。

2020年中考数学专题拓展讲练1 数学思想方法(含答案)

2020年中考数学专题拓展讲练1 数学思想方法(含答案)

专题01 数学思想方法初中数学思想方法主要有:①整体思想;②方程思想;③类比思想;④数形结合思想;⑤分类讨论思想等.考点一、整体思想【例1】(2019·浙江)已知m 是方程2x 3x 0-=的一个根,求()()2(m 3)m 2m 2-++-的值.【解析】∵m 是方程2x 3x 10-+=的一个根,∴2m 3m 10-+=, ∴2m 3m -=-1,∴原式=22m 6m 9m 4-++-=()22m 3m 5-+=3. 考点二、方程思想【例2】(2019·河北)如图,有一块三角形余料ABC ,120BC mm =,高线80AD mm =,要把它加工成一个矩形零件,使矩形的一边在BC 上,点P ,M 分别在AB ,AC 上,若满足:3:2PM PQ =,则PM 的长为______.【解析】解:如图,设PM 交AD 于点E ,∵四边形PQNM 是矩形,AD ⊥BC ,∴PM ∥BC ,AD ⊥PM ,∴△APM ∽△ABC , ∴AE PMAD BC=, ∵:3:2PM PQ =,∴设PM =3x ,PQ =2x ,则AE =80-2x , ∴802380120x x-=,解得x =20,即PM =60mm . 故答案为:60mm . 考点三、类比思想【例3】(2019·吉林)阅读下面材料: 小明遇到下面一个问题:如图1所示,AD 是ABC ∆的角平分线,,AB m AC n ==,求BDDC的值. 小明发现,分别过B ,C 作直线AD 的垂线,垂足分别为,E F .通过推理计算,可以解决问题(如图2).请回答,BDDC=________.参考小明思考问题的方法,解决问题:如图3,四边形ABCD 中,2,6,60,AB BC ABC BD ==∠=︒平分ABC ∠,AB AC ⊥,CD BD ⊥.AC 与BD 相交于点O .(1)AOOC=______. (2)tan DCO ∠=__________.【解析】由作法可知:∠BAD =∠CAD ,∠AEB =∠AFC =90°, ∴△ABE ∽△ACF , ∴AB BEAC CF=,∵∠BDE=∠CDF,∠AEB=∠AFC=90°,∴△BDE∽△CDF,∴BD BE CD CF=,∴BD AB m CD AC n==.(1)借助上面的结论可知:2163 AO ABOC BC===;(2)∵ABO DCO∠=∠,∴3 tan tanDCO ABO∠=∠=.考点四、数形结合思想【例4】(2019·安徽)某班级同学从学校出发去太阳岛研学旅行,一部分乘坐大客车先出发,余下的同学20min后乘坐小轿车沿同一路线出行,大客车中途停车等候5min,小轿车赶上来之后,大客车以出发时速度的10 7继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________km,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80 km/h,请你帮助小轿车司机计算折返时是否超速?【解析】(1)由图形可得:学校到景点的路程为40km,小轿车的速度:4016020=-(千米/分),∵大客车中途停车等候5min,∴(30520)115 a=+-⨯=,故答案为:40,15;(2)由(1)得:15a =,得大客车原来的速度:151302=(千米/分),小轿车赶上来之后,驶过景点入口时,大客车又行驶了:101125(6035)727-⨯⨯=(千米), ∴12550401577--=(千米) 答:在小轿车司机驶过景点入口时,大客车离景点入口还有507千米.(3)设直线AF 的解析式为:=+S kt b ,小汽车驶过景点入口时为点F , ∵(20,0)A ,(60,40)F ,∴2006040k b k b +=⎧⎨+=⎩,解得:120k b =⎧⎨=-⎩,∴直线AF 的解析式为:20S t =-当46S =时,4620t =-,66t =,小轿车赶上来之后,大客车又行驶的时间:40153511027-=⨯,小轿车司机折返时的速度:36(353566)2÷+-=(千米/分)90=千米/时80>千米/时,∴小轿车折返时已经超速.1.(2019·安徽)如图中的图象(折线ABCDE )描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系.根据图中提供的信息,给出下列说法: ①汽车共行驶了120千米; ②汽车在行驶途中停留了0.5小时; ③汽车在整个行驶过程中的平均速度为1603千米/时; ④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少. 其中正确的说法有( )A .1个B .2个C .3个D .4个2.(2019·湖北)当x =1时,代数式ax 3+bx +4的值为5.则x =﹣1时,ax 3+bx +4的值为 . 3.(2019·江苏)已知a 是方程x 2﹣2013x +1=0一个根,求a 2﹣2012a +220131a 的值为_____. 4.(2019·山东)如图,在矩形ABCD 中,AB =6,BC =10,将矩形ABCD 沿BE 折叠,点A 落在A '处,若EA '的延长线恰好过点C ,则sin ∠ABE 的值为_____.5.(2019·江苏)运动会上,小捷掷出的铅球在场地上砸出一个小坑(图示是其主视图),其中AB 为8cm ,小坑的最大深度为3cm ,则该铅球的半径为__________cm .6.(2019·台州)如图,直线y =2x +6与反比例数y =xk(x >0)的图象交于点A (1,m ),与x 轴交于点B ,与y 轴交于点D .(1)求m 的值和反比例函数的表达式; (2)观察图像,直接写出不等式2x +6-kx>0的解集 (3)在反比例函数图像的第一象限上有一动点M ,当S △BOM <S △BOD 时,直接写出点M 纵坐标的的取值范围。

实数(整体思想)备战2023年中考数学考点微专题

实数(整体思想)备战2023年中考数学考点微专题

考向1.7 实数(整体思想)例 1、(2021·四川内江·中考真题)若实数x 满足210x x --=,则3222021x x -+=__. 【答案】2020解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+ 2(1)22021x x x =+-+2222021x x x =+-+ 22021x x =-+12021=-+2020=.故答案为:2020.例 2、(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( ) A .2- B .1- C .1 D .2【答案】A解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab +-+, 故选:A .例 3、(2021·广东广州·中考真题)已知3m n mnA n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若230m n +-=,求A 的值. 【答案】(1)3m n +;(2)6.解:(1)()())22333m n m n m n mn mnA m n mn nm mn +-⎛⎫=-==+ ⎪⎝⎭;(2)∵230m n +-=,∴23m n +=,∴()3=323=6A m n =+⨯.整体思想的运用形式: (1) 整体降次; (2) 整体求值。

【知识识记与拓展】1、代数式求值中整体思想体现;2、降次中整体思想体现;3、一元次次方程根与系数关系中整体思想体现;一、单选题 1.(2018·山东潍坊·中考真题)|12|=( ) A .12B 21C .12D .12-2.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .923.(2021·四川泸州·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或404.(2020·江苏无锡·中考真题)若2x y +=,3z y -=-,则x z +的值等于( ) A .5B .1C .-1D .-55.(2016·四川雅安·中考真题)已知231a a +=,则代数式2261a a +-的值为( ) A .0B .1C .2D .36.(2011·辽宁沈阳·中考真题)已知230a a +-=,那么2(4)a a +的值是( ) A .9B .12-C .18-D .15-7.(2021·浙江台州·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .8.(2021·四川自贡·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31B .31-C .41D .41-9.(2020·江苏泰州·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5B .3C .3-D .1-10.(2020·重庆·中考真题)已知a +b =4,则代数式122a b++的值为( ) A .3B .1C .0D .-111.(2020·贵州遵义·中考真题)已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5B .10C .11D .1312.(2019·江苏泰州·中考真题)若231a b -=-,则代数式2463a ab b -+的值为( ) A .-1B .1C .2D .3二、填空题 13.(2019·江苏常州·中考真题)如果20a b --=,那么代数式122a b +-的值是_____. 14.(2019·湖南湘潭·中考真题)若5a b +=,3a b -=,则22a b -=_____. 15.(2017·湖北·中考真题)已知2a ﹣3b=7,则8+6b ﹣4a=_____.16.(2015·江苏扬州·中考真题)若235a b -=,则2622015b a -+=______. 17.(2014·贵州贵阳·中考真题)若0m n +=,则221m n ++=____________.18.(2021·四川绵阳·中考真题)若x y -=34xy =-,则22x y -=_____.19.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.20.(2021·湖南岳阳·中考真题)已知1x x +1x x+=______. 21.(2020·宁夏·中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.22.(2020·湖北·中考真题)已知23x y +=,则124x y ++=______.23.(2020·广东·中考真题)已知5x y =-,2xy =,计算334x y xy +-的值为_________. 24.(2020·四川泸州·中考真题)已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.25.(2020·山东临沂·中考真题)若1a b +=,则2222a b b -+-=________.26.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________. 27.(2020·江苏宿迁·中考真题)已知3a b +=,代数式225a b +=,则ab 的值是_____________.三、解答题 28.(2020·北京·中考真题)已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.一、单选题 1.(2021·广东金平·一模)如果代数式4m 2﹣2m +5的值为7,那么代数式2m 2﹣m ﹣3的值为( ) A .﹣3B .3C .2D .﹣22.(2021·安徽·三模)已知实数a≠b≠c≠0,且满足c a =a +4,c b =b +4,则2a c +2b c-16c 的值为( ) A .2B .-2C .-1D .13.(2020·江苏泰兴·模拟预测)已知24m n a =+,24n m a =+,m n ≠,则222m mn n ++的值为( ) A .16B .12C .10D .无法确定二、填空题 4.(2018·河北·模拟预测)当代数式x 2+3x +5的值为7时,代数式3x 2+9x ﹣2的值是 ___. 5.(2021·广东·珠海市文园中学三模)已知2430x x -+=,则254x x -+=________________. 6.(2021·广东·佛山市华英学校一模)当x =3时,px 3+qx +1=2020,则当x =﹣3时,px 3+qx +1的值为_____.7.(2021·浙江·杭州市采荷中学二模)设M x y =+,N x y =-,P xy =.若99M =,98N =,则P =______.8.(2021·安徽·安庆市第四中学二模)实数a ,b 满足a 2+b 2﹣2a =0,则4a +b 2的最大值________.9.(2021·山东乳山·模拟预测)若方程2250x x +-=的两个根是1x ,2x 12()x x >,则1211x x -的值为________.10.(2021·福建·模拟预测)已知4x y =-,2xy =,计算22x y +的值为______.11.(2021·贵州黔东南·一模)若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.12.(2021·四川邛崃·二模)已知代数式23a a -的值为6,则代数式2926a a -+的值为______. 13.(2021·江苏邗江·二模)若23a b -=22934a ab b -+的值等于________.14.(2021·湖南茶陵·模拟预测)如若21x x +=,则431x x x +++的值为__________.15.(2020·广东斗门·二模)已知实数m ,n 满足20191m n m n +=⎧⎨-=-⎩,则代数式m 2﹣n 2的值为_____.三、解答题 16.(2021·浙江海曙·一模)(1)已知250x x -,求代数式2210x x - (2)化简:226993x x x x x ++---.17.(2020·陕西·西安市第三十一中学模拟预测)阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+. 尝试应用:(1)把2()a b -看成一个整体,合并2223()5()7()---+-a b a b a b 的结果是_________. (2)已知221x y -=,求2362021--x y 的值. 拓广探索:(3)已知22,25,9-=-=--=a b b c c d ,求()(2)(2)a c b d b c -+---的值.18.(2021·江苏镇江·一模)阅读材料:《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法. 例如:已知1xy =,求1111x y+++的值. 解:原式11111111xy y y xy x y y y y +=+=+==+++++. 问题解决: (1)已知1xy =. ①代数式221111x y +++的值为_______; ②求证:2021202111111x y +=++.(2)若x 满足22(2021)(2020)4043x x -+-=,求(2021)(2020)x x --的值.19.(2020·四川·正兴中学二模)已知2a b +=,2ab =,求32231122a b a b ab ++和22223a ab b a b ab +++的值.20.(2020·湖北·黄石八中一模)已知25,25,x y =+=-求22x y -的值.一、单选题1.已知221224a b a b +=--,则132a b -的值为( )A .4B .2C .2-D .4-2.已知a ﹣b=2,则代数式2a ﹣2b ﹣3的值是( ) A .1B .2C .5D .7二、填空题3.已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 4.若2a b =+,则代数式222a ab b -+的值为__. 5.若21x x +=,则433331x x x +++的值为_____.6.若实数x 满足2210x x --=,则322742017x x x -+-=_____________.7.已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|=_____.三、解答题8.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.1.B【解析】分析:根据绝对值的性质解答即可. 解:221. 故选B .【点拨】:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可. 解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==, ∴23a b +=,∴()()1311233332222a b a b ++=++=+=. 故选:C .【点拨】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可. 解:一元二次方程2220x mx m m ++-= 21,2,a b m c m m ===-2122cm x am x ==-= 220m m --= (2)(1)0m m ∴-+=2m ∴=或1m =- 当2m =时,原一元二次方程为2420x x ++=12=24bm ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++- 221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=- 2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去, 故选:C .【点拨】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键. 4.C【分析】将两整式相加即可得出答案. 解:∵2x y +=,3z y -=-, ∴()()1x y z y x z ++-=+=-, ∴x z +的值等于1-, 故选:C .【点拨】本题考查了整式的加减,熟练掌握运算法则是解本题的关键. 5.B解:试题分析:∵231a a +=,∴2261a a +-=22(3)1a a +-=2×1﹣1=1.故选B . 考点:代数式求值;条件求值;整体代入.【分析】由a 2+a -3=0,变形得到a 2=-(a -3),a 2+a =3,先把a 2=-(a -3)代入整式得到a 2(a +4)=-(a -3)(a +4),利用乘法得到原式=-(a 2+a -12),再把a 2+a =3代入计算即可. 解:∵a 2+a -3=0, ∴a 2=-(a -3),a 2+a =3, a 2(a +4)=-(a -3)(a +4) =-(a 2+a -12) =-(3-12) =9. 故选:A .【点拨】本题考查了整式的混和运算及其化简求值:先把已知条件变形,用底次代数式表示高次式,然后整体代入整式进行降次,进行整式运算求值. 7.C【分析】利用完全平方公式计算即可.解:∵()222249a b a b ab +=++=,2225a b +=, ∴4925122ab -==, 故选:C .【点拨】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键. 8.B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-.故选:B .【点拨】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键. 9.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a , 化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b . 故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键. 10.A【分析】通过将所求代数式进行变形,然后将已知代数式代入即可得解. 解:由题意,得 411132222a b a b +++=+=+= 故选:A.【点拨】此题主要考查已知代数式求代数式的值,熟练掌握,即可解题. 11.D【分析】利用根与系数的关系得到12123,2,x x x x +==-再利用完全平方公式得到222121212()2,x x x x x x +=+-然后利用整体代入的方法计算.解:根据题意得12123,2,x x x x +==-所以2222121212()232(2)13.x x x x x x +=+-=-⨯-=故选:D .【点拨】本题考查的是一元二次方程的根与系数的关系,以及完全平方公式的变形,掌握以上知识是解题的关键. 12.B【分析】先将代数式2463a ab b -+变形后,再整体代入即可得结论. 解:2463a ab b -+()2233a a b b =-+ 23a b =-+()23a b =-- 1=故选B .【点拨】此题考查代数式的求值,根据代数式的特点将原式变形,再整体代入已知条件是解题的关键. 13.5【分析】将所求式子化简后再将已知条件中2a b -=整体代入即可求值; 解:20a b --=,∴2a b -=,∴()12212145a b a b +-=+-=+=;故答案为5.【点拨】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键. 14.15【分析】先根据平方差公式分解因式,再代入求出即可.解:∵5a b +=,3a b -=,∴22a b -()()a b a b =+-53=⨯15=故答案为15【点拨】本题考查了平方差公式,能够正确分解因式是解此题的关键.15.-6解:试题分析:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为﹣6. 考点:代数式求值;整体代入.16.2005解:试题分析:2622015b a -+=()223201510+20152005a b --+=-=故答案为2005考点:代数式的求值17.1解:试题分析:把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解: ∵m+n=0,∴()22121201011m n m n ++=++=⨯+=+=.考点:1.代数式求值,2.整体思想的应用.18.0【分析】先求出22x y +,再求22x y -的平方,然后再开方即可求出22x y -.解:∴x y -=2()3x y ∴-=,2223x xy y ∴-+=, ∵34xy =-, ∴22332x y ++=,∴2232x y +=, 22222222()()4x y x y x y ∴-=+-9940416=-⨯=, 220x y ∴-=,故答案为:0.【点拨】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键.19.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点拨】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.20.0【分析】把1x x+=解:10x x+== 故答案为:0.【点拨】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点拨】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.22.7【分析】由23x y +=可得到246x y +=,然后整体代入124x y ++计算即可.解:∵23x y +=,∴()2224236x y x y +=+=⨯=,∴124167x y ++=+=,故答案为:7.【点拨】本题考查了代数式的求值问题,注意整体代入的思想是解题的关键.23.7【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.解:由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点拨】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.24.2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案. 解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯- =2,故答案为:2.【点拨】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题 25.-1【分析】将原式变形为()()22a b a b b +-+-,再将1a b +=代入求值即可.解:2222a b b -+-=()()22a b a b b +-+-将1a b +=代入,原式=22a b b -+-=2a b +-=1-2=-1故答案为:-1.【点拨】本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为()()22a b a b b +-+-.26.49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点拨】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 27.2【分析】根据完全平方公式()2222a b a ab b +=++,代入计算即可得出结果.解:由()2222a b a ab b +=++可得:2352ab =+ 解得:2ab =故答案为2.【点拨】本题考查了完全平方公式,熟练掌握完全平方公式的结构特点是解题的关键. 28.21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点拨】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.1.D【分析】由代数式4m 2﹣2m +5的值为7,可得到4m 2﹣2m =2,两边除以2得到2m 2﹣m =1,然后把2m 2﹣m =1代入2m 2﹣m ﹣3即可得到答案.解:∵4m2﹣2m+5=7,∴4m2﹣2m=2,∴2m2﹣m=1把2m2﹣m=1代入2m2﹣m﹣3得,2m2﹣m﹣3=1-3=-2.故选D.【点拨】本题考查了代数式求值:先把代数式变形,然后利用整体代入的方法求代数式的值.2.A【分析】由ca=a+4,cb=b+4,可求出c=a2+4a,c=b2+4b,进而可得a+b=-4,a2=c-4a,b2=c-4b,代入所给代数式求解即可.解:∵ca=a+4,cb=b+4,∴c=a2+4a,c=b2+4b,∴a2+4a =b2+4b,∴a2-b2=4b-4a,∴(a+b)(a-b)=-4(a-b),∵a≠b≠c≠0,∴a+b=-4,∵c=a2+4a,c=b2+4b,∴a2=c-4a,b2=c-4b,∴4c ac-+4c bc--16c=2+() 416a bc-+-=2+() 4416c-⨯--=2.故选:A【点拨】本题考查了分式的化简求值,因式分解的应用等知识,求出a+b=-4,a2=c-4a,b2=c-4b 是解答本题的关键.3.A【分析】先由已知条件得出m+n的值,再把m2+2mn+n2化成完全平方的形式,再进行计算即可.解:∵24m n a=+,24n m a=+,∴224(4)444()m n n a m a n m n m -=+-+=-=-,即()()4()m n m n m n +-=--,即(4)()0m n m n ++-=,又∵m≠n ,∴m+n+4=0,即m+n =﹣4,∴22222()(4)16m mn n m n ++=+=-=.故选:A .【点拨】本题考查了因式分解的应用.能通过对已知条件的变形得出m+n 的值是解题的关键.4.4【分析】根据题意确定出x 2+3x 的值,原式变形后代入计算即可求出值.解:由题意得:x 2+3x +5=7,即x 2+3x =2,则3x 2+9x ﹣2=3(x 2+3x )-2=6-2=4,故答案为:4.【点拨】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.8【分析】由题意,先得到243x x -=-,然后整体代入计算,即可得到答案.解:∵2430x x -+=,∴243x x -=-,∴2254(4)5(3)58x x x x -+=--+=--+=;故答案为:8.【点拨】本题考查了求代数式的值,解题的关键是掌握所学的知识,正确得到243x x -=-,运用整体代入的运算法则进行解题.6.-2018【分析】把x =3代入代数式得27p +3q =2019,再把x =﹣3代入,可得到含有27p +3q 的式子,直接解答即可.解:当x =3时, px 3+qx +1=27p +3q +1=2020,即27p +3q =2019,所以当x =﹣3时, px 3+qx +1=﹣27p ﹣3q +1=﹣(27p +3q )+1=﹣2019+1=﹣2018. 故答案为:﹣2018.【点拨】此题考查了代数式求值;代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式27p +3q 的值,然后利用“整体代入法”求代数式的值. 7.49.25【分析】先分别求出(x +y )2和(x -y )2的值,根据完全平方公式展开,再相减,即可求出xy 的值,再得出答案即可.解:∵M =x +y =99,∴两边平方,得(x +y )2=992,即x 2+y 2+2xy =992①,∵N =x -y =98,∴两边平方,得(x -y )2=982,即x 2+y 2-2xy =982②,∴①-②,得4xy =992-982=(99+98)×(99-98)=197,∴xy =1974=49.25, 即P =xy =49.25,故答案为:49.25.【点拨】本题考查了完全平方公式和平方差公式,能灵活运用完全平方公式进行计算是解此题的关键,注意:(x +y )2=x 2+y 2+2xy ,(x -y )2=x 2+y 2-2xy .8.8【分析】根据条件变形为222=-b a a ,确定出a 的取值范围,将4a +b 2转化为()239a --+即可.解:∵a 2+b 2﹣2a =0,∴()2211a b -+=,2a =a 2+b 2,222=-b a a∴()2211b a =--,∵b 2≥0,∴()2110a --≥,∴0≤a ≤2,∴4a +b 2=()()22242639a a a a a a +-=--=--+, ∵-1<0,∴当a <3时,式子的值随a 的增大而增大,∴当2a =时,4a +b 2的最大值为8.故答案为8.【点拨】本题考查代数式的最值问题,将代数式变形,利用完全平方公式配方,利用非负数的性质是解题关键.9【分析】利用一元二次方程根与系数的关系可得1212x x +=- ,1252x x ⋅=- ,然后利用完全平方公式的变形可求出12x x -= 解:∵方程2250x x +-=的两个根是1x ,2x , ∴1212x x +=- ,1252x x ⋅=- , ∵()2221212122x x x x x x +=++, ∴2221215212224x x ⎛⎫⎛⎫+=--⨯-= ⎪ ⎪⎝⎭⎝⎭ , ∴()2221212122154122424x x x x x x ⎛⎫-=+-=-⨯-= ⎪⎝⎭ ,∴12x x -=±, ∵12x x >,∴12x x -=∴122121()11252-==-=--x x x x x x. 【点拨】本题主要考查了一元二次方程根与系数的关系和 完全平方公式的变形,熟练掌握一元二次方程根与系数的关系是解题的关键.10.12【分析】根据22x y +=(x +y )2-2xy ,再根据已知条件代入计算即可得出答案.解:∵4x y =-,∴4x y +=,∴()222224412x y x y xy +=+-=-=.故答案为:12.【点拨】本题主要考查了完全平方公式的变式应用,熟练掌握完全平方公式的变式进行计算是解决本题的关键.11.98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点拨】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键.12.-3【分析】构造等式23a a -=6,同乘以-2后,整体代入计算即可.解:∵23a a -=6,∴22612a a -+=-,∴2926a a -+=9+(-12)=-3,故答案为:-3.【点拨】本题考查了条件等式型的代数式求值,准确构造条件等式,并灵活进行变形,后整体代入是解题的关键.13.2【分析】由23a b -=32a b -=32a b -解:∵23a b -=∴32a b -= ∴22934a ab b -+=23()2a b -=2, 故答案为:2【点拨】本题考查利用完全平方公式求代数式的值,熟练掌握完全平方公式,运用整体代入的思想是解题关键.14.2【分析】利用提公因式分将原式变形为22()1x x x x +++,然后利用整体代入思想代入求解.解:∵21x x +=,∴431x x x +++=22()1x x x x +++=21x x ++=1+1=2.故答案为:2【点拨】本题考查了因式分解的应用,掌握提公因式的技巧把所求多项式进行灵活变形,并利用整体代入思想求解是解题关键.15.-2019【分析】直接利用平方差公式将原式变形得出答案.解:∵实数m ,n 满足20191m n m n +=⎧⎨-=-⎩, ∴m 2﹣n 2=(m +n )(m ﹣n )=﹣2019.故答案为:﹣2019.【点拨】此题主要考查了平方差公式,根据题目要求正确将原式变形是解题关键.16.(1(2)33x - 【分析】(1)将条件变形后,两边同时乘以2,然后整体代入求值即可;(2)因式分解,约分后转化为同分母分式的减法计算即可.解:.解:(1)由已知得:25x x -=∴原式()225x x =-==(2)原式2(3)(3)(3)3+=-+--x x x x x 333+=---x x x x 33x =-. 【点拨】本题考查了条件型代数式的值,分式的减法,熟练掌握整体变形代入求值,因式分解后约分等技能是解题的关键.17.(1)25()a b -;(2)-2018;(3)6【分析】(1)把2()a b -看做一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.解:(1)25()a b -.(2)∵221x y -=,∴2362021--x y()2322021x y =--32021=-2018=-(3)∵22,25,9-=-=--=a b b c c d ,∴()(2)(2)a c b d b c -+---=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b )+(2b-c )+(c-d )=2-5+9=6.【点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.(1)①1;②证明见解析;(2)2021.【分析】(1)①把xy =1代入221111x y +++,分母提取公因式,约分,再根据分式加法法则计算即可得答案;②由xy =1可得20212021x y =1,同①的方法计算即可得结论;(2)设2021x a -=,2020x b -=,可得1a b -=,利用完全平方公式求出ab 的值即可得答案.解:(1)①∵xy =1, ∴221111x y +++ =22xy xy xy x xy y +++ =()()xy xy x y x y x y +++ =x y x y++ =1.故答案为:1②∵xy =1,∴20212021x y =1, ∴202120211111x y +++ =20212021202120212021202111x y x y x y +++=202120212021202120211(1)1x y x y y +++ =202120212021111y y y +++ =2021202111y y ++ =1.(2)设2021x a -=,2020x b -=,∴1a b -=,∵22(2021)(2020)4043x x -+-=,∴224043a b +=,∴222()2a b a b ab -=+-=4043-2ab =1,解得:ab=2021,∴(2021)(2020)x x --=2021.【点拨】本题考查利用提取公因式法和完全平方公式因式分解及分式的加法,熟练掌握完全平方公式及分式的加法法则是解题关键.19.4; 32【分析】(1)先提取公因式12ab 后,再因式分解即可求解; (2)对分子和分母分别进行因式分解后代入数据即可求解. 解:232232211=(12)122()22++++=+ab a ab a b a b ab a b b ab 再代入数据:2a b +=,2ab =∴原式12442=⨯⨯= 故答案为:4.222222233()()()++++++==+++a ab b a ab b a b ab a b ab ab a b ab a b 再代入数据:2a b +=,2ab =∴原式=22263==2242+=⨯. 故答案为:32. 【点拨】本题考查分式的加减乘除混合运算,运算前先因式分解,熟练掌握运算法则是解决此类题的关键.20.【分析】先把22x y -分解因式,然后把x ,y 的值代入化简即可.解:()()2242585x y x y x y -=+-=⨯=【点拨】本题考查了代数式的运算,运用平方差公式对原式进行因式分解是解题的关键.1.A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 解:∵221224a b a b +=-- ∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点拨】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.2.A解:试题分析:∵a ﹣b=2,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×2﹣3=1.故选A . 考点:代数式求值.3.36【分析】先把多项式因式分解,再代入求值,即可.解:∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点拨】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.4.4. 【分析】由2a b =+,可得2a b -=,所求代数式变形后,整体代入即可.解:2a b =+,2a b ∴-=,22222()24a ab b a b ∴-+=-==,故答案为4【点拨】本题考查了代数式求值,利用完全平方公式因式分解,熟记完全平方公式的结构特征是解答本题的关键.5.4【分析】把所求多项式进行变形,代入已知条件,即可得出答案.解:∵21x x +=,∴()43222233313313313()1314x x x x x x x x x x x +++=+++=++=++=+=;故答案为4.【点拨】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键. 6.﹣2020.解:∵2210x x --=,∴221x x =+,322742017=2(21)-7(21)42017x x x x x x x -+-+++-=242147+42017x x x x +--- =2482024=4(21)82024x x x x --+--=4﹣2024=﹣2020,故答案为﹣2020.7.1.解:试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b+=,两式相减可得2211a b a b -=-,()()b a a b a b ab -+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b -=02015=1.故答案为1. 考点:1.因式分解的应用;2.零指数幂.8.2m m+1,1. 【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案. 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m-m+1m+1=2mm+1,又∵m满足2m-m-1=0,即2m=m+1,将2m代入上式化简的结果,∴原式=2m m+1==1 m+1m+1.【点拨】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四部分 中考专题突破
专题一 整体思想
1.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )
A .-1
B .1
C .-5
D .5
2.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )
A .(x -1)(x -2)
B .x 2
C .(x +1)2
D .(x -2)2
3.(2012年山东济南)化简5(2x -3)+4(3-2x )结果为( )
A .2x -3
B .2x +9
C .8x -3
D .18x -3
4.(2011年浙江杭州)当x =-7时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为________.
5.(2012年江苏苏州)若a =2,a +b =3,则 a 2+ab =______.
6.已知⎩
⎪⎨⎪⎧
x +2y =4k +1,2x +y =k +2,且0<x +y <3,则k 的取值范围是 ______________. 7.若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需______元.
8.如图Z1-2,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均和x 轴垂直,以点O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分的面积是________.
图Z1-2
9.如图Z1-3, ∠1+∠2+∠3+∠4+∠5+∠6=________________.
图Z1-3
10.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2的值.
11.(2010年福建南安)已知y +2x =1,求代数式(y +1)2-(y 2-4x )的值.
12.已知1x -1y =3,求代数式2x -14xy -2y x -2xy -y
的值.
13.(2011年四川南充)关于x 的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2.
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1,且k 为整数,求k 的值.
14.阅读下列材料,解答问题.
为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y +4=0①.解得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,x =±2;当y =4时,x 2-1=4,x 2=5,x =±5.故x 1=2,x 2=-2,x 3=5,x 4=- 5.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用________法达到了降次的目的,体现了________的数学思想;
(2)用上述方法解方程:x 4-x 2-6=0.
h
第四部分 中考专题突破
专题一 整体思想
【专题演练】
1.A 2.D 3.A 4.-6 5.6
6.-35<k <65 解析:将方程组的两式相加,得3(x +y )=5k +3,所以x +y =53k +1.从而0<53
k +1<3,解得-35<k <65
. 7.5 解析:设铅笔每支x 元, 日记本每本y 元,圆珠笔每支z 元,有:

⎪⎨⎪⎧
4x +3y +2z =10, ①9x +7y +5z =25. ② ②-①,得5x +4y +3z =15, ③
③-①,得x +y +z =5.
8.π2
9.360° 解析:因为∠1+∠2=∠DAB ,∠3+∠4=∠IBA ,∠5+∠6=∠GCB ,根据三角形外角和定理,得∠DAB +∠IBA +∠GCB =360°,所以∠1+∠2+∠3+∠4+∠5+∠6=360°.
10.解:原式=(2x +y )2-(2x -y )2=[](2x +y )-(2x -y )·
[](2x +y )+(2x -y )=8xy . 11.解:原式=y 2+2y +1-y 2+4x
=2y +4x +1
=2(y +2x )+1
=2×1+1=3.
12.解:原式=2y -14-2x 1y -2-1x
=-2⎝⎛⎭⎫1x -1y -14-⎝⎛⎭⎫1x -1y -2 =-6-14-3-2
=4. 13.解:(1)∵方程有实数根,
∴Δ=22-4(k +1)≥0,解得k ≤0.
∴k 的取值范围是k ≤0.
(2)根据一元二次方程根与系数的关系,得
x 1+x 2=-2,x 1x 2=k +1,
x 1+x 2-x 1x 2=-2-(k +1),
由已知,得-2-(k +1)<-1,解得k >-2,
又由(1),可知:k ≤0,
∴-2<k ≤0.
又∵k 为整数,∴k 的值为-1或0.
14.解:(1)换元 整体思想
(2)设x2=y,
则原方程化为y2-y-6=0.
解得y1=3,y2=-2.
当y=3时,x2=3,解得x=±3;当y=-2时,x2=-2,无解.
∴x1=3,x2=- 3.。

相关文档
最新文档