概率论与数理统计课件——概率论1

合集下载

概率与统计课件(一)概率论的基本概念

概率与统计课件(一)概率论的基本概念

2
0
A B
表示事件A与事件B中至少有一个事件发生,称此事
件为事件A与事件B的和(并)事件,或记为A+B. 事件A1,A2,…An 的和记为 ,或A1 ∪ A2 ∪ … ∪ An
上一页 下一页 返回
表示事件A与事件B同时发生, 称为事件A与事件B的 积(交)事件,记为AB。积事件AB是由A与B的公共
上一页
下一页
返回
例1.27 一张英语试卷,有10道选择填空题,每题有4 个选择答案,且其中只有一个是正确答案.某同学投机 取巧,随意填空,试问他至少填对6道的概率是多大?
解 设B=“他至少填对6道”.每答一道题有两个可能的 结果:A=“答对”及 =“答错”,P(A)=1/4,故 作10道题就是10重贝努里试验,n=10,所求概率为
定义1.2: 设事件A在n次重复试验中发生了k次, n很大时, 频率 稳定在某一数值p的附近波动,而随着试验次数 n的增加,波动的幅度越来越小,则称p为事件A发生的 概率,记为 P ( A) p
上一页
下一页
返回
2、概率的公理化定义
定义1.3
上一页
下一页
返回
概率的性质:
上一页
下一页
返回
上一页
解 设A1,A2,A3表示产品来自甲、乙、丙三个车间, B表示产品为“次品”的事件,易知A1,A2,A3是样本 空间Ω的一个划分,且有 P(A1)=0.45,P(A2)=0.35,P(A3)=0.2, P(B|A1)=0.04,P(B|A2)=0.02,P(B|A3)=0.05.
上一页 下一页 返回
第三节 条件概率、全概率公式
1、条件概率的定义
上一页
下一页
返回
• 考察有两个小孩的家庭,其样本空间为{bb,bg,gb,gg} • (1)事件A=“家中至少有一个女孩“发生的概率? • (2)若已知事件B=“家中至少有一个男孩”,再求事 件A发生的概率? •

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

浙大概率论与数理统计课件概率论

浙大概率论与数理统计课件概率论
人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性,从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。
*
§5 条件概率
例:有一批产品,其合格率为90%,合格品中有95%为 优质品,从中任取一件, 记A={取到一件合格品}, B={取到一件优质品}。 则 P(A)=90% 而P(B)=85.5% 记:P(B|A)=95% P(A)=0.90 是将整批产品记作1时A的测度 P(B|A)=0.95 是将合格品记作1时B的测度 由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率 分析:
S
A
B
*
事件的运算
S
B
A
S
A
B
S
B
A
A与B的和事件,记为
A与B的积事件,记为
当AB=Φ时,称事件A与B不相容的,或互斥的。
*
“和”、“交”关系式
S
A
B
S
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
{甲、乙至少有一人来}
{甲、乙都来}
{甲、乙都不来}
{甲、乙至少有一人不来}
B
A
S
若记P(B|A)=x,则应有P(A):P(AB)=1:x 解得:
一、条件概率 定义: 由上面讨论知,P(B|A)应具有概率的所有性质。 例如:
二、乘法公式 当下面的条件概率都有意义时:
*
例:某厂生产的产品能直接出厂的概率为70%,余下 的30%的产品要调试后再定,已知调试后有80% 的产品可以出厂,20%的产品要报废。求该厂产 品的报废率。

概率论课件

概率论课件

例3 盒中有3个红球,2个白球,,每次从袋中任 取一只,观察其颜色后放回,并再放入一只与所 取之球颜色相同的球,若从合中连续取球4次,试 求第1、2次取得白球、第3、4次取得红球的概率 。
解:设Ai为第i次取球时取到白球,则
1.7 全概率公式
例:市场上有甲、乙、丙三家工厂生产的同一品牌产品, 已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三 家工厂的次品率分别为 2%、1%、3%,试求市场上该品 牌产品的次品率。
古典概型中的概率: 设事件A中所含样本点个数为M ,以N记样 本空间S中样本点总数,则有
M P ( A) N
P(A)具有如下性质: (1) 0 P(A) 1;
(2) P()=1; P( )=0
(3) AB=,则 P( A B )= P(A) +P(B)
例1:有三个子女的家庭,设每个孩子是男是女的概
1.6 条件概率和乘法定理
袋中有十只球,其中九只白球,一只红球,十
人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少?
第二个人取得红球的概率是多少?
若已知第一个人取到的是白球,则第二个人取 到红球的概率是多少? 若已知第一个人取到的是红球,则第二个人取到 红球的概率又是多少? 已知事件A发生的条件下,事件B发生的概率称为 A条件下B的条件概率,记作P(B|A)
• 随机事件
定义 试验中可能出现或可能不出现的情况叫“随 机事件”, 简称“事件”.记作A、B、C等. 在每次试验的结果中某事件一定发生,则该事件称 为必然事件,记作U。 在每次试验的结果中某事件一定不发生,则该事件 称为不可能事件,记作V。
频率:
设随机事件A在n次试验中发生了m次
m f n ( A) n

《概率论与数理统计》-课件 概率论的基本概念

《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计课件


三. 样本空间
• 样本点:随机试验E 的所有可能结果,即 所有的基本事件。记作e。
• 样本空间:全体样本点所组成的集合。记
作U。
U
.
样本点e
例: 随机试验 E 是将一枚硬币抛掷两次,
则样本空间 U 由如下四个样本点组成:
U={(H,H), (H,T), (T,H), (T,T)}
其中
第1次 第2次
一. 频率
频率的定义: 事件 A 在 n 次重复试验中出现 m 次, 事件 A 在 n 次重复试验中出现的频率
m fn(A) n
能否用频率做为概率?
频率稳定性:
• 频率随试验次数的变化而变化; • 试验次数相同, 频率也具有随机波动性; • 试验次数较小时, 频率随机波动幅度较大;
• 试验次数逐渐增大时, 频率逐渐稳定于某一个常数.
四、概率的公理化定义
对随机试验 E 的样本空间 U 中的每一事件 A,赋 予一实数 P(A),满足以下三个条件:
(1) 对于每一个事件 A ,有 0≤P(A) ≤1; (2) P(U)=1; (3) 可列可加性:设 A1,A2,…, 是一列两
两互不相容的事件, P( A1 A2 … )= P(A1) +P(A2)+…. 则称 P(A) 为事件 A 的概率。
A={第一次取到红球}, B={第二次取到红球}
例2: 一盒中混有100只新,旧乒乓球,各有红、白 两色,分 类如下表。 从盒中随机取出一球,若取得的是一只红球 ,试求该红球是新球的概率。
红白 新 40 30 旧 20 10
例3: 当掷 5 枚相同分币时,已知至少出现两个正 面的情况下,问正面数刚好是三个的条件概率?
A 1 : 至少有一人命中目标

《概率论与数理统计》经典课件 概率论


解: P( Ak )
C C k nk D ND
/ CNn ,
k
0,1,
,n
(注:当L>m或L<0时,记 CmL 0)
2021/8/30
17
❖ 例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒
的概率相同,且各盒可放的球数不限,
记A={ 恰有n个盒子各有一球 },求P(A).
解: ① ②……n
2021/8/30
2
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
S AB

A的逆事件记为A,
A
A S,
A A

A A
B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2
i 1
i 1
i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
An;
A B {甲、乙至少有一人来}
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1

同济大学《概率论与数理统计》PPT课件

随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)

高等数学 概率论与数理统计课件(一)

高等数学概率论与数理统计课件(一)高等数学概率论与数理统计课件1. 课程简介•高等数学概率论与数理统计是大学数学专业的一门重要课程。

•它是数学学科的基础,也是应用数学的重要工具。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

2. 概率论部分2.1 概率的基本概念•概率的定义和性质•随机事件的概率计算方法•条件概率与独立事件2.2 随机变量和概率分布•随机变量的定义和性质•离散型随机变量和连续型随机变量•常见概率分布:离散型和连续型2.3 随机变量的数字特征•期望、方差、标准差的定义和计算•切比雪夫不等式•大数定律和中心极限定理3. 数理统计部分3.1 统计基础•总体和样本的统计特征•参数估计和区间估计•假设检验的基本思想3.2 参数估计•点估计和区间估计的概念•常见的参数估计方法:极大似然估计、矩估计等•置信区间的计算和解释3.3 假设检验•假设检验的基本原理•假设检验的步骤和流程•常见的假设检验方法:单样本、两样本和多样本检验4. 课程学习方法•注重理论和实践相结合,理论指导实践、实践检验理论。

•多做习题,通过刷题巩固知识点。

•参考相关教材和参考书,拓宽知识广度和深度。

•加强课后讨论和交流,与同学共同解决问题。

•关注概率论与数理统计的应用领域,扩展应用实践。

5. 课程考核方式•平时成绩:课堂参与、作业完成情况等。

•期中考试:对课程前半部分的知识进行考核。

•期末考试:对整个课程的知识进行考核。

•课程项目:根据实际情况进行论文、实验等形式进行综合评估。

6. 学习资源推荐•《高等数学》教材,北京大学出版社。

•《概率论与数理统计教程》教材,清华大学出版社。

•《概率论与数理统计习题集》辅导书,高等教育出版社。

•在线学习资源:Coursera、edX、网易云课堂等平台提供的相关课程。

7. 小结•高等数学概率论与数理统计课程是数学专业学生不可或缺的重要课程。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
区别样本点与随机事件
(1) 样本点也是一个随机事件,
它是不可分割的基本的随机事件
样本点 ←→ 元素
随机事件←→ 集合
(2) 随机事件是由样本点构成的,
它可以分解成样本点(基本随机事件) 的并集
随机事件A 发生 A 中的某一个样本点发生
样本点 发生 所有包含这个 的随机事件都发生
22
例1.2: 抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
19
§2
样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e}, 称S中的元素e为基本事件或样本点. 例1.3: S={正面,反面}; 一枚硬币抛一次 记录一城市一日中发生交通事故次数 S={0,1,2,„}; 记录某地一昼夜最高温度x,最低温度y S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
20
(二) 随机事件
一般我们称S的子集A为E的随机事件,当且仅 当A所包含的一个样本点发生称事件A发生。 S={0,1,2,„}; 例1.4:观察41路车邑大站候车人数,
记 A={至少有10人候车}={10,11,12,„} S, A为随机事件,A可能发生,也可能不发生。 如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含 任何样本点。
10
二、概率论的发展
1、雅各.伯努利
2、拉普拉斯 3、科尔莫戈洛夫
4、中国的概率研究现状
11
1、雅各.伯努利
《猜度术》
《分(解)析概率论》 分析方法
13
3、科尔莫戈洛夫 (1903-1987)
1933年出版
<概率论基本概 念> 建立了 公理化体系
14
4、中国的概率研究现状
nH
251 249 256 253 251 246 244 258 262 247
fn(H)
0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
表 2
实验者
德·摩根 蒲丰
K·皮尔逊 K·皮尔逊
n
nH
fn(H)
2048 4040
12000 24000
确定性现象
自然界与社会生活中的两类现象
不确定性现象
确定性现象:结果确定 不确定性现象(随机现象):结果不确定

例1.1:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
18
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
第五章 大数定律和中心极限定理

5.1 大数定律 5.2 中心极限定理

6
概率论的概述 一、概率论的起源 二、概率论的发展 三、概率论的应用
四、学习要求
7
1.首次应用:
意大利的一位贵族问伽利略:掷三粒骰子, 出现9点与出现10点各有六种不同的组合,但 经验上发现出现10点的次数多于9点,是何缘 故?
概率论与数理统计
2013-12-29
1
概率论与数理统计
关开中 教授 五邑大学数学与计算科学学院
2
概率论与数理统计是研究随机现象 数量规律的一门学科。


概率论( Probability Theory ) 是研究与 揭示随机现象的统计规律性的一门数学学 科。 (数理) 统计学( Statistics ) 是应用概率论 的方法,研究如何收集与处理带有随机性 影响的数据的一门学科。
某人一共听了17次“概率统计”课,其中有15次迟到,记 f ( A) 15 17 88%
A={听课迟到},则 # 频率
f n ( A)
n
反映了事件A发生的频繁程度。
29
例:抛硬币出现的正面的频率
表 1
试验 序号 1 2 3 4 5 6 7 8 9 10 n =5 n =50 n =500
(三) 事件的关系及运算 事件的关系(包含、相等)
1 A B:事件A发生一定导致B发生

B A
S
A B 2 A=B B A

例1.5: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
(8) 至少有两个发生,
AB∪BC∪AC

ABC ABC ABC ABC
(9) 最多只有一个发生,
AB BC AC
or
ABC ABCABCABC
(10) 最多有两个发生,
A B C
or
ABC
or
A B C A B C A B C A B C ABC ABC ABC
1、候振廷:1978年获英国戴维逊奖 2、王梓坤:预报地震24次有17次准 确或较准确
15
四、学习要求与参考书目
一、学习要求:
1 排列组合知识 求导 2 微积分知识: 积分(二重积分)
反常积分等。
16
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
17
§1 随机试验(E)
B A
23


事件的运算
A与B的和事件,记为 A B
A B { x | x A 或 x B }:A与B至少有一发生。
S A B

A与B的积事件,记为 A B, A B, AB
A B { x | x A 且 x B }:A与B同时发生。
A B
n
S
A:A , A , A 至少有一发生
随机变量 离散型随机变量及其分布 随机变量的分布函数 连续型随机变量及其概率密度 随机变量的函数的分布
第三章
• • • • 3.1 3.2 3.3 3.4
多维随机变量及其分布
二维随机变量 边缘分布 条件分布 相互独立的随机变量
5
第四章 随机变量的数字特征
• • • • 4.1 4.2 4.3 4.4 数学期望 方差 协方差及相关系数 矩、协方差矩阵
又 B AB,由2。 知P( B AB) P( B) P( AB)
P( A B) P( A) P( B) P( AB)
#3 的推广:

P ( Ai ) P ( Ai )
i 1 i 1
n
n
1 i j n

P ( Ai A j )

1i j k n
i 1 i 1 k k
称P(A)为事件A的概率。
33
P( A) 0不能 A ;
性质:
1 P( A) 1 P( A)
P( A) 1不能 A S;
A A S P( A) P( A) 1 P() 0
2 若A B,则有 P( B A) P( B) P( A) P( B) P( A)

28
§3 频率与概率
(一)频率 n f ( A) A ; 定义:记 n n 其中 n A—A发生的次数(频数);n—总试验次 数。称f n ( A)为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
1 n; 一次,则在这n次试验中“冲击亚洲”这事件发生的频率为
8
2.“点”问题
1653年梅耳问帕斯卡:他与赌友赌掷 骰子(shaizi)每人押32个金币,约定五战 三胜,在梅耳2:1领先时,梅耳接到通知要 陪同国王接见外宾,赌局就此终止,梅耳应 分得这64个金币的多少呢?
9
3.梅耳猜想
掷一粒骰子四次至少出现一个 6的机会要比掷两粒骰子四次至少 出现一对6的机会更大些,这是否 成立?
35
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A). 解: S={1,2,„,8} A={1,2,3}
P A 3 8
36
例2:从上例的袋中不放回的摸两球, 记A={恰是一红一黄},求P(A). 解: P( A) C1C1 / C 2 15 53.6%
nH
2 3 1 5 1 2 4 2 3 3
fn(H)
0.4 0.6 0.2 1.0 0.2 0.4 0.8 0.4 0.6 0.6
nH
22 25 21 25 24 21 18 24 27 31
fn(H)
0.44 0.50 0.42 0.50 0.48 0.42 0.36 0.48 0.54 0.62
i 1 2 n i 1 n
A :A , A
i 1 i 1
2
, An同时发生
S A B

当AB=Φ 时,称事件A与B不相容的,或互斥的。
24
A B A B { x | x A 且 xB }
S A B
A A S A B S , 若 ,称A, B互逆、互斥 A的逆事件记为A, A A A B
S
“和”、“交”关系式
A
n n i i
A
1 2 n
A A
i i 1 i 1
相关文档
最新文档