第二章 第6课 函数的单调性

合集下载

函数单调性教案-ppt课件

函数单调性教案-ppt课件

定义:
y y f(x)
f (x1) f(x2)
O
x1
x2
x
探求新知
y y f(x)
注意:
f(x1) f(x2)
O x1 x2
x
在给定的区间上任
取x1,x2; x1 x2
f(x 1) f(x 2 )
函数f (x)在给定区 间上为增函数。这
个给定的区间就为
单调增区间。
在给定的区间上任
x x 取x1,x2; 1
1 证明函数f(x)=-x2在0, 上是减函数.
2、预习下节课我们要学习的内容——最大(小)值.
函数单调性
复习思考
1 函数的概念?
设A,B为非空数集,如果按某一确定的对应关系f,使对于 集合A中任意一个元素x,在集合B中都有唯一确定的元素y与之对 应,那么就称对应f:A→B为从集合A到B的映射;即f:A→B的 一个函数.记作y=f(x),其中x∈A,y∈B.
函数的三要素:定义域、值域、对应关系
2
f(x1) f(x 2 )
函数f (x)在给定区
间上为减函数。这
个给定的区间就为
单调减区间。
巩固反思
例1 如右图是定义 在闭区间 [-5,5]上的 函数y=f(x) ,根据图 象说出函数的单调区 间,以及在每一单调 区间上,它是增函数 还是减函数.
解:函数y=f(x) 的单调区间有[-5,-2) , [-2,1) , [1,3) , [3,5).
在定义域区间内,
① 图像从左到右一直上升——x的值增大,函数值y也增大; ② 图像从左到右一直下降——x的值增大,函数值y反而减小. 问题2:那么对于二次函数的变化规律又是怎样描述的呢?
y

北师大版高中数学选择性必修第二册 第二章 6.1 函数的单调性

北师大版高中数学选择性必修第二册 第二章 6.1 函数的单调性
函数v(t)=h'(t)=-9.8t+4.8的图象.a= 24 ,b是函数h(到最高点,以及从最高点到入水这两段时间的运动状态有什
么区别?
问题1:运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即h(t)
是增函数.相应地,v(t)=h'(t)的正负性是怎样的?
√3
由 x>0,解 f'(x)<0,得 0<x< 3 .
√3
√3
∴函数 f(x)=3x -2ln x 的单调递增区间为( 3 ,+∞),单调递减区间为(0, 3 ).
2
反思感悟求不含参数的函数y=f(x)的单调区间的步骤
(1)确定函数y=f(x)的定义域.
(2)求导数y'=f'(x).
(3)解不等式f'(x)>0,函数在解集内单调递增.
性.( √ )
微练习
若定义域为R的函数f(x)的导数f'(x)=2x(x-1),则f(x)在区间
递增,在区间
答案 (1,+∞)
内单调
内单调递减.
(-∞,1)
解析 由f'(x)>0得x>1,由f'(x)<0得x<1,所以f(x)在区间(1,+∞)内单调递增,在
区间(-∞,1)内单调递减.
二、函数图象的变化趋势与导数的绝对值大小的关系
反思感悟已知f(x)在区间(a,b)上的单调性,求参数范围的方法:
(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)
是相应单调区间的子集;
(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则

高考第6课函数的单调性

高考第6课函数的单调性

第6课函数的单调性【自主学习】第6课函数的单调性(本课时对应学生用书第页)自主学习回归教材1.(必修1P40练习8改编)下列说法中,正确的是.(填序号)①若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)是R上的单调增函数;②若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上不是单调减函数;③若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数在R上是单调增函数;④若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上也是单调增函数,则函数在R上是单调增函数.【答案】②③【解析】根据单调性的定义,结合函数图象分析.2.(必修1P55习题8改编)函数f (x )=ln(4+3x-x 2)的单调减区间是 .【答案】342⎡⎫⎪⎢⎣⎭, 【解析】函数f (x )的定义域是(-1,4),令u (x )=-x 2+3x+4,则u (x )=23--2x ⎛⎫⎪⎝⎭+254的单调减区间为342⎡⎫⎪⎢⎣⎭,.因为e >1,所以函数f (x )的单调减区间为342⎡⎫⎪⎢⎣⎭,.3.(必修1P44习题4改编)已知函数y=f (x )是定义在R 上的单调减函数,则满足f (2-a 2)<f (a )的实数a 的取值范围为 . 【答案】(-2,1)【解析】由于f (x )在R 上是单调减函数,所以由f (2-a 2)<f (a ),可得2-a 2>a ,解得-2<a<1.4.(必修1P44习题2改编)若函数f (x )=x 2-mx+3在[2,+∞)上是增函数,则实数m 的取值范围为 . 【答案】(-∞,4]【解析】依题意得2m≤2,解得m ≤4.1.函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2)),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫作f(x)的单调区间;若函数是增函数,则称该区间为增区间;若函数为减函数,则称该区间为减区间.2.复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,那么复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.3.求函数单调区间或证明函数单调性的方法(1)函数单调性的定义法;(2)函数的图象法;(3)导函数法.【要点导学】要点导学各个击破函数单调性的判断与证明例1 (2015·南京一中)已知函数f (x )=-xx a (x ≠a ). (1)若a=-2,求证:f (x )在(-∞,-2)上单调递增;(2)若a>0且f (x )在(1,+∞)上单调递减,求实数a 的取值范围.【思维引导】用定义证明函数单调性:设元取值,作差变形,确定符号,得出结论;利用导数证明函数单调性:求导函数,确定符号,得出结论.【解答】(1)任取x 1<x 2<-2,则f (x 1)-f (x 2)=112x x +-222x x +=12122(-)(2)(2)x x x x ++.因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2,则f (x 1)-f (x 2)=11-x x a -22-x x a =2112(-)(-)(-)a x x x a x a .因为a>0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 综上,实数a 的取值范围是(0,1].【精要点评】判断函数的单调性或求函数的单调区间的一般方法有:(1)定义法;(2)图象观察法;(3)利用已知函数的单调性;(4)利用复合函数的单调性法则;(5)导数法.利用定义法的关键是对f (x 1)-f (x 2)的整理、化简、变形和符号的判断,其中变形的策略有因式分解、配方、分子(分母)有理化等.变式 已知函数f (x )=x+1x ,求证:函数f (x )在区间(0,1]上是单调减函数. 【解答】在区间(0,1]上任取x 1,x 2,且x 1<x 2.则f (x 1)-f (x 2)=111x x ⎛⎫+ ⎪⎝⎭-221x x ⎛⎫+ ⎪⎝⎭=(x 1-x 2)+2112-x x x x =121212(-)(-1)x x x x x x , 因为x 1<x 2,所以x 1-x 2<0, 又因为0<x 1<x 2≤1, 所以x 1x 2>0,x 1x 2-1<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在区间(0,1]上是单调减函数.结合函数单调性求参数范围例2 若函数f (x )=-11ax x +在区间(-∞,-1)上是减函数,求实数a 的取值范围. 【思维引导】利用函数的单调性求参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性的定义,确定函数的单调区间,与已知单调区间比较求参.【解答】f (x )=-11ax x +=a-11a x ++,设x 1<x 2<-1,则f (x 1)-f (x 2)=11-1a a x ⎛⎫+ ⎪+⎝⎭-21-1a a x ⎛⎫+ ⎪+⎝⎭=211a x ++-111a x ++=1221(1)(-)(1)(1)a x x x x +++. 又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0, 由于x 1<x 2<-1,所以x 1-x 2<0,x 1+1<0,x 2+1<0, 所以a+1<0,即a<-1.故实数a 的取值范围是(-∞,-1).【精要点评】已知函数的单调性确定参数的值或范围,可以通过解不等式或转化为不等式恒成立问题求解.需要注意的是,若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.变式(1)如果二次函数f(x)=x2-(a-1)x+5在区间112⎛⎫⎪⎝⎭,上是增函数,那么f(2)的取值范围为.(2)已知函数f(x)=21-212-1xx a xa a x⎧+≤⎪⎨⎪>⎩,,,,若f(x)在(0,+∞)上单调递增,则实数a的取值范围为.【答案】(1)[7,+∞)(2)(1,2]【解析】(1)由于f(2)=22-(a-1)×2+5=-2a+11,所以求f(2)的取值范围就是求一次函数y=-2a+11的值域,当然就应先求其定义域.二次函数f(x)在区间112⎛⎫ ⎪⎝⎭,上是增函数,由于其图象开口向上,于是-12a≤12,解得a≤2,故f(2)≥-2×2+11=7,即f(2)的取值范围是[7,+∞).(2)由题意,得12+12a-2≤0,且a>1,解得1<a≤2,所以实数a的取值范围为(1,2].抽象函数的单调性例3已知函数f(x)对于任意的x,y∈R,总有f(x)+f(y)=f(x+y),f(1)=-23,且当x>0时,f(x)<0.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.【思维引导】(1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f(x)为单调减函数的首选方法是选用单调性的定义来证.(2)用函数的单调性即可求最值.【解答】(1)方法一:因为函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x)-f(x2)=f(x1)+f(-x2)=f(x1-x2).1因为当x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此函数f(x)在R上是减函数.方法二:设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x)=f(x1-x2).2因为当x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以函数f(x)在R上为减函数.(2)因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2,所以函数在[-3,3]上的最大值为2,最小值为-2.【精要点评】对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x1,x2,在所给区间内比较f(x1)-f(x2)与0的大小,或比较12()()f xf x与1的大小.有时根据需要,需作适当地变形,如x1=x2·12xx或x 1=x2+x1-x2等;利用函数单调性可以求函数最值.变式已知函数f(x)对任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.【解答】(1)设x1<x2,所以x2-x1>0,因为当x>0时,f(x)>1,所以f(x2-x1)>1.又f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,所以f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),所以f(x)在R上为增函数.(2)因为m,n∈R,不妨设m=n=1,所以f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=f(2)+f(1)-1=3f(1)-2=4,所以f(1)=2,所以f(a2+a-5)<2=f(1),因为f(x)在R上为增函数,所以a2+a-5<1⇒-3<a<2,即不等式的解集是(-3,2).1.(2014·南通中学)已知函数f(x)为R上的减函数,那么满足f(|x|)<f(1)的实数x 的取值范围是.【答案】(-∞,-1)∪(1,+∞)【解析】因为f(x)为R上的减函数,且f(|x|)<f(1),所以|x|>1,所以x<-1或x>1.2.(2015·海安中学)已知函数f(x)=(3-1)41log1aa x a xx x+<⎧⎨≥⎩,,,在(-∞,+∞)上是减函数,则实数a的取值范围是.【答案】11 73⎡⎫⎪⎢⎣⎭,【解析】因为函数f(x)=(3-1)41log1aa x a xx x+<⎧⎨≥⎩,,,在区间(-∞,+∞)上是减函数,那么在每一段上都是递减的,可知3a-1<0,0<a<1,且3a-1+4a≥0,所以实数a的取值范围是1173⎡⎫⎪⎢⎣⎭,.3.(2014·苏锡常镇调研)已知奇函数f(x)是R上的单调函数,若函数y=f(x2)+f(k-x)只有一个零点,则实数k的值为.【答案】1 4【解析】令y=f(x2)+f(k-x)=0,得f(x2)=-f(k-x)=f(x-k).又f(x)是R上的单调函数,故原命题等价于方程x2=x-k有唯一解,由Δ=0,得k=1 4.4.(2015·陕西卷改编)设f(x)=ln x,0<a<b,若p=f,q=f2a b+⎛⎫⎪⎝⎭,r=12[f(a)+f(b)],有下列关系式:①q=r<p;②q=r>p;③p=r<q;④p=r>q,其中正确的是.(填序号)【答案】③【解析】p=f(ab)=ln ab=12ln ab,q=f2a b+⎛⎫⎪⎝⎭=ln2a b+,r=12[f(a)+f(b)]=12 ln ab.因为2a b+>ab,且f(x)=ln x在(0,+∞)上是单调增函数,所以f 2a b+⎛⎫⎪⎝⎭>f(ab),所以q>p=r.5.(2015·盐城中学)已知函数f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围.【解答】因为f(x)在(-2,2)上是减函数,所以由f(m-1)-f(1-2m)>0,得f(m-1)>f(1-2m),所以-2-12-21-22-11-2mmm m<<⎧⎪<<⎨⎪<⎩,,,即-1313-2223mmm⎧⎪<<⎪⎪<<⎨⎪⎪<⎪⎩,,,解得-12<m<23,所以实数m的取值范围是12-23⎛⎫⎪⎝⎭,.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第11~12页.【检测与评估】第6课函数的单调性一、填空题1.(2014·郑州质检)已知定义在R上的函数f(x)是增函数,那么满足f(x)<f(2x-3)的x的取值范围是.2.若函数y=2x2-(a-1)x+3在(-∞,1]上单调递减,在(1,+∞)上单调递增,则实数a的值是.3.函数y=-(x-3)|x|的单调增区间是.4.若函数f(x)=12axx++在区间(-2,+∞)上是增函数,则实数a的取值范围是.5.若函数f(x)=x-[1,4]上单调递增,则实数a的最大值为.6.若函数f(x)=|2x+a|的单调增区间是[3,+∞),则实数a的值为.7.(2014·成都外国语学校)已知函数f(x)=1000-10xxx>⎧⎪=⎨⎪<⎩,,,,,,g(x)=x2f(x-1),那么函数g(x)的单调减区间是.8.(2015·福建卷)若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.二、解答题9.试讨论函数f (x )=2-1ax x ,x ∈(-1,1)的单调性(其中a ≠0).10.已知函数f (x )=log a (3x 2-2ax )在区间112⎡⎤⎢⎥⎣⎦,上是减函数,求实数a 的取值范围.11.已知函数f (x )=22x x ax ++,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意的x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a ,b ∈R ,有f (a +b )=f (a )·f (b ). (1)求f (0)的值;(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)求证:f (x )是R 上的增函数;(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.【检测与评估答案】第6课函数的单调性1.(3,+∞)【解析】依题意得,不等式f(x)<f(2x-3)等价于x<2x-3,解得x>3,即x的取值范围是(3,+∞).2.5【解析】依题意可得对称轴为x=-1 22a⨯=1,所以a=5.3.32⎡⎤⎢⎥⎣⎦,【解析】y=-(x-3)|x|=22-30-30.x x xx x x⎧+>⎨≤⎩,,,作出该函数的图象如图所示,观察图象知单调增区间为32⎡⎤⎢⎥⎣⎦,.(第3题)4.12∞⎛⎫+⎪⎝⎭,【解析】设x1>x2>-2,则f(x1)>f(x2),而f(x1)-f(x2)=1112axx++-2212axx++=1221122-2-(2)(2)ax x ax xx x+++=1212(-)(2-1)(2)(2)x x ax x++>0,由x1-x2>0,x1+2>0,x2+2>0,知2a-1>0,所以a> 12.5.2 【解析】令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,因为f (x )在[1,4]上单调递增,所以2a≤1,即a ≤2,所以a 的最大值为2.6.-6 【解析】容易作出函数f (x )的图象(图略),可知函数f (x )在,2a ⎛⎤-∞- ⎥⎝⎦上单调递减,在,2a ⎡⎫-+∞⎪⎢⎣⎭上单调递增,又已知函数f (x )的单调增区间是[3,+∞),所以-2a=3,解得a=-6.7.[0,1) 【解析】由条件知g (x )=22101-1x x x x x ⎧>⎪=⎨⎪<⎩,,,,,,其图象如图所示,其单调减区间是[0,1).(第7题)8.1 【解析】由f (1+x )=f (1-x ),得函数f (x )关于直线x=1对称,故a=1,则f (x )=2|x-1|,由复合函数单调性得f (x )在[1,+∞)上单调递增,故m ≥1,所以实数m 的最小值等于1.9.方法一:任取x 1,x 2∈(-1,1),且x 1<x 2,则f (x 2)-f (x 1)=222-1ax x -121-1ax x =12122221(-)(1)(-1)(-1)a x x x x x x +.因为-1<x1<x2<1,所以|x1|<1,|x2|<1,x1-x2<0,21x-1<0,22x-1<0,|x1x2|<1,即-1<x1x2<1,所以x1x2+1>0.因此,当a>0时,f(x2)-f(x1)<0,即f(x2)<f(x1),此时函数为减函数;当a<0时,f(x2)-f(x1)>0,即f(x1)<f(x2),此时函数为增函数.方法二:f'(x)=-222(1)(-1)a xx+,x∈(-1,1),所以当a>0时,f'(x)<0,此时函数为减函数;当a<0时,f'(x)>0,此时函数为增函数.10.当0<a<1时,若f(x)=log a(3x2-2ax)在区间112⎡⎤⎢⎥⎣⎦,上是减函数,则2132113-2022aa⎧≤⎪⎪⎨⎛⎫⎪⨯⋅>⎪⎪⎝⎭⎩,,解得0<a<3 4.当a>1时,若f(x)=log a(3x2-2ax)在区间112⎡⎤⎢⎥⎣⎦,上是减函数,则21331-20aa⎧≥⎪⎨⎪⨯>⎩,,无解.综上,实数a的取值范围是34⎛⎫ ⎪⎝⎭,.11.(1)当a=12时,f(x)=x+12x+2.因为f(x)在区间[1,+∞)上是增函数,所以f(x)在区间[1,+∞)上的最小值为f(1)=7 2.(2)方法一:在区间[1,+∞)上,f(x)=22x x ax++>0恒成立⇔x2+2x+a>0恒成立.设函数y=x2+2x+a,因为y=(x+1)2+a-1在[1,+∞)上单调递增,所以当x=1时,y min=3+a,当且仅当y min=3+a>0时,函数f(x)>0恒成立,故a>-3.方法二:f(x)=x+ax+2,x∈[1,+∞),当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)单调递增,所以当x=1时,f(x)min=3+a.当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,所以a>-3. 综上,实数a的取值范围为(-3,+∞).12.(1)令a=b=0,则f(0)=f(0)·f(0),又f(0)≠0,解得f(0)=1.(2)当x<0时,-x>0,所以f(0)=f(x)·f(-x)=1,因为x>0时,f(x)>1>0,所以f(-x)=1()f x>0.又f(0)=1>0,所以对任意的x∈R时,恒有f(x)>0.(3)设x1<x2,则x2-x1>0,所以f(x2-x1)>1,所以f(x2)=f(x2-x1+x1)=f(x2-x1)·f(x1)>f(x1),即f(x)在R上是增函数.(4)由f(x)·f(2x-x2)>1,可得f(x+2x-x2)>1,即f(3x-x2)>f(0).由(3)知f(x)在R上是增函数,所以3x-x2>0,所以0<x<3. 即x的取值范围是(0,3).。

函数单调性课件(公开课)

函数单调性课件(公开课)

定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用

函数的单调性(公开课课件)

函数的单调性(公开课课件)

04 函数单调性的应用举例
利用函数单调性求最值问题
极值问题
通过判断函数在某一点的单调性 ,可以确定该点是否为极值点, 从而求得函数的最值。
最值问题
利用函数在整个定义域上的单调 性,可以确定函数在定义域上的 最大值和最小值。
利用函数单调性解不等式问题
单调性比较法
通过比较两个函数的单调性,可以确定它们的大小关系,从而解决一些不等式问题。
02
建议学生多参与数学建模和数学竞赛等活动,提高数学应用发展
03
学生可以通过阅读数学期刊、参加学术会议等方式,了解数学
学科的最新发展动态和前沿研究领域。
THANKS FOR WATCHING
感谢您的观看
单调性分析法
利用函数的单调性,可以分析不等式的解集和边界情况。
利用函数单调性解决实际问题
优化问题
在经济学、金融学等领域中,经常需要解决一些优化问题,如最优化生产、最优化投资等。利用函数 单调性可以找到最优解或近似最优解。
决策问题
在企业管理、市场营销等领域中,经常需要做出一些决策,如选择最佳的营销策略、确定最优的产品 价格等。利用函数单调性可以分析不同决策方案的效果,从而做出更好的决策。
03 函数单调性的判定方法
导数法判定函数单调性
总结词
通过求导数判断函数的单调性
详细描述
求函数的导数,然后分析导数的符号,如果导数大于0,则函数在该区间内单调递增;如 果导数小于0,则函数在该区间内单调递减。
举例
对于函数$f(x) = x^3$,其导数$f'(x) = 3x^2$,在$x > 0$时,$f'(x) > 0$,因此函数 $f(x)$在$x > 0$时单调递增。

函数的单调性ppt课件

应用实例
THANKS
感谢观看
定义法
通过求函数的导数来判断函数的单调性。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
导数法
03
单调性在解决函数的零点问题中也有着重要的应用。通过判断函数的单调性,可以确定函数的零点所在的区间,进而求出函数的零点。
01
单调性在解决不等式问题中有着广泛的应用。通过判断函数的单调性,可以确定不等式的解集或解的范围。
成本效益分析
利用单调性,可以分析企业生产成本与收益之间的关系,制定合理的经营策略。
风险评估
在金融学中,单调性可用于评估投资风险,例如股票价格的变化趋势。
03
02
01
单调性与其他数学概念的关系
04
CATALOGUE
单调性与导数之间存在密切的联系,导数的符号决定了函数的增减性。
单调性是指函数在某个区间内的变化趋势,而导数则是函数在某一点的切线斜率。如果函数在某个区间内单调递增,则其导数在该区间内大于等于零;如果函数在某个区间内单调递减,则其导数在该区间内小于等于零。因此,通过求函数的导数,可以判断函数的单调性。
安静
一度1
01
2
02
on on
03
asiest s掏燕 credit, members on,
切实实地 金字,
on thebbbb斯特 to , therefore, ,2 core on鉴于后者 on, core yes on
,
, on the, core, credit. on buried.,,xe.
函数的单调性可以通过函数的导数来判断。如果函数的导数大于0,则函数在该区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。

《函数的单调性》函数 PPT教学课件

的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,
所以在证明时,不能用特殊值来代替它们);
2.作差变形:作差Δy=f(x2)-f(x1),并将差向有利于判断差值的符号
的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完
全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正
则 f(x2)-f(x1)= 2+1 − 1+1 =
2
1
3(2 -1 )
.
(2 +1)(1 +1)
(22 -1)(1 +1)-(21 -1)(2+1)
(2 +1)(1 +1)
因为 x1<x2,所以 x2-x1>0.
又因为 x1,x2∈[1,+∞),所以 x2+1>0,x1+1>0,
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
方法点睛1.讨论一个含参数的函数的单调性与证明一个函数的
单调性的方法类似,都是利用定义,通过运算,判断f(x1)-f(x2)的正负,
从而得出结论,若所含参数符号不确定,必须分类讨论.
2.本题的规范解答中每一个环节都不能省略,既有开头和结尾形
式上的要求,也有对f(x1)-f(x2)的正负判定进行实质性说明.
-Δ·(1 +2 )
=
=
,
21 ·22
21 ·22
∵12 ·22 >0,x1+x2<0,-Δx<0,∴Δy>0.
∴函数
1
f(x)=2 在(-∞,0)内是增函数.
课堂篇
探究学习

函数的单调性(公开课课件)

详细描述
单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。

名师导学高考数学一轮总复习第二章函数第6讲函数的单调性课件文新人教A版


第五页,共35页。
5.对任意 a,b∈R,记 max{a,b}=ba,,aa<≥bb. ,函数 fx= 3
max{|x+1|,|x-2|}(x∈R)的最小值是 2 .
【解析】作出函数 y=x+1和 y =x-2的图象,如图,由图可知 f(x)
=x2+-1x,,xx≥<1212,所以 f(x)的最小值
为 f12=32.
第六页,共35页。
【知识要点】
1.单调函数的有关概念
(1)增函数:如果对于定义域 D 的某个区间内任意两个自
变量的值 x1、x2,当 x1<x2 时,都有 f(x1)<f(x2) ,那么就说
f(x)在这个区间上是增函数.
(2)减函数:如果对于定义域 D 的某个区间内任意两个自
变量的值 x1、x2,当 x1<x2 时,都有 f(x1)>f(x2) ,那么就说
立.

a≥
x2+2x x+1

(x+1)2-1 x+1

(x

1)

1 x+1



x∈(-1,1)都成立.
令 y=(x+1)-x+1 1,则 y′=1+(x+11)2>0.
∴y=(x+1)-x+1 1在(-1,1)上单调递增.
∴y<(1+1)-1+1 1=32.
∴a≥32.
第十九页,共35页。
(3)若函数 f(x)在 R 上单调递减, 则 f′(x)≤0 对任意 x∈R 都成立, 即[-x2+(a-2)x+a]ex≤0 对任意 x∈R 都成立, ∵ex>0,∴x2-(a-2)x-a≥0 对任意 x∈R 都成立.
2.判断函数单调性的常用方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(-2,1) . 足 f(2-a2)<f(a)的实数 a 的取值范围为________
【解析】因为f(x)在R上是单调减函数,所以由f(2-a2)<f(a),可得2-a2>a, 解得-2<a<1.
4. (必修 1P44 习题 2 改编)若函数 f(x)=x2-mx+3 在[2,+∞)上是增函数,则实
导函数法 (3)______________ .
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
研题型 ·技法通关
第10页
栏目导航
1 1 x1 x2 e
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
课堂导学 目标1 函数单调性的判断与证明 1 求证:f(x)=e + x在(0,+∞)上是增函数. e
f(x1)>f(x2) x1<x2 时,都有____________( f(x1)<f(x2) 或都有______________) 两个自变量x1,x2,当________ ,那
么就说f(x)在这个区间上是增函数(或减函数). (2) 如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间 上具有(严格的)单调性,这个区间叫作f(x)的_____________ 单调区间 ;若函数是增函数,则称
单调性 ,并且具有这样的规律:_____________________________________ 增增(或减减)则增,增减(或减增)则减 . 具有________
3. 求函数单调区间或证明函数单调性的方法
函数单调性的定义法 (1)________________________ ; 函数的图象法 ; (2)_____________
增区间 ;若函数为减函数,则称该区间为__________ 减区间 . 该区间为__________
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
2.
复合函数的单调性
对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a, b)上和y=f(u)在区间(m,n)上同时具有单调性,那么复合函数y=f(g(x))在区间(a,b)上
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
第二章
函数与基本初等函数Ⅰ
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
第 6课
函数的单调性
第2页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
栏 目 导 航
第3页
链教材 ·夯基固本 研题型 ·技法通关
(-∞,4] . 数 m 的取值范围为___________
m 【解析】依题意得 2 ≤2,解得m≤4.
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章

函数与基本初等函数Ⅰ
知识梳理 1. 函数单调性的定义
给定区间上 的函数f(x),如果对于属于这个区间的______ (1) 一般地,对于_______________ 任意
2
32 +3x+4,则u(x)=-x-2 +
3 3 25 的单调减区间为2,4.因为e>1,所以函数f(x)的单调减区间为2,4. 4
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
3. (必修 1P44 习题 4 改编)已知函数 y=f(x)是定义在 R 上的单调减函数,那么满
x
1 1 1 1 x x 【解答】任取 0<x1<x2,则 f(x1)-f(x2)=ex1-e x2+ex1-ex2=(e x2-e x1) e . x1 x2 x2 x1 e 因为 x2>x1>0,所以 e >e , >e0=1,
1 2
所以
e x2-e x1>0,
1 e
x1 x2
1
<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在(0,+∞)上是增函数.
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
【精要点评】证明函数单调性的基本步骤:(1) 设变量;(2) 作差(作商),变形; (3) 定号;(4) 下结论.其中(2)(3)是解题的关键.在遇到其他综合问题时,也可以使 用图象法、复合函数单调性规律等方法来解题.
第12页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
1 已知函数f(x)=x+ x,求证:函数f(x)在区间(0,1]上是单调减函数. 【解答】在区间(0,1]上任取x1,x2,且x1<x2,
x2-x1 x1-x2x1x2-1 1 1 则f(x1)-f(x2)=x1+x -x2+x =(x1-x2)+ x x = . x x 1 2 1 2 1 2
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
链教材 ·夯基固本
第4页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
激活思维 1.
②③ .(填序号) (必修1P40练习8改编)下列说法中,正确的是______
①若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)是R上的单调增函数; ②若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上不是单调减函数; ③若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上 也是单调增函数,则函数f(x)在R上是单调增函数; ④若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上 也是单调增函数,则函数f(x)在R上是单调增函数.
【解析】根据单调性的定义,结合函数图象分析.
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第二章
函数与基本初等函数Ⅰ
2.
3 ,4 2 2 (必修1P55习题8改编)函数f(x)=ln(4+3x-x )的单调减区间是___________ .
【解析】函数f(x)的定义域是(-1,4),令u(x)=-x
相关文档
最新文档