关于大学高等数学重点绝密通用复习归纳绝对有用

合集下载

(完整版)大一高数知识点,重难点整理,推荐文档

(完整版)大一高数知识点,重难点整理,推荐文档

n
( ) lim
为常数),
qn = 0 q 1 。
n→∞
若数列{an}没有极限,则称数列{an}发散。 数列极限不存在的两种情况: (1)数列有界,但当 n→∞时,数列通项不与任何常数无限接近,如:
1n1 ;
(2)数列无界,如数列{n²}。 二、当 x→0 时,函数 f(x)的极限
如果当 x 的绝对值无限增大(记作 x→∞)时,函数 f(x)无限地接近一个确定的常
(2) (u • v)′ = u′ v + u ,特别的,(k·u)’=k·u’,其中 k 为常数。
(3)若
v
0
,则
u v
u
vu v2
v
,特别的,
k v
k v v2
,,其中
k
是常
数。
推论 若函数 u1 u1x, u2 u2 x,..., um um x都可导,则
(1) u1 u2 um u1 u2 um ;
x
lim
f
x
A n
lim
f
x
A 。
建议收藏下载本文,以便随时学习! 三、当 X→Xo 时,函数 f(x)的极限 1、当 X→Xo 时,函数 f(x)的极限定义
如果当 x 无限接近 Xo(记作 X→Xo)时,函数 f(x)无限接近于一个确定的常数 A,则
称 A 为函数 f(x)当 X→Xo 时的极限,记作 lim f x A ,或当 X→Xo 时,f(x) →A。
续。 如果函数 f(x)在某个区间上连续,就称 f(x)是这个区间上的连续函数。
二、连续函数的运算与初等函数的连续性 1.连续函数的运算 如果两个函数பைடு நூலகம்某一点连续,那么它们的和、差、积、商(分母不为零)在这一点

大学高等数学复习要点总结

大学高等数学复习要点总结

大学高等数学复习要点总结第一章1)洛必达法则求极限,最常用,要熟练;2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功;4)1的∞次方的极限是重点,多练几个题;5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;7)记住趋向不同,结果就大不一样的极限;8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意ln某的定义域>0;9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。

例题:无穷大无穷小有界变量无界变量;10)注意夹逼定理的条件很强,不要漏掉要点;11)“见根号差,用有理化”!!这是思维定势,很管用;第二章1)导数的概念非常重要!!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;2)导数公式倒背如流的要求不算过分吧呵呵;3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;4)由于有些函数求导会出现某在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中一些因子在特定点不可导,但乘积在该点也可能可导;5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);6)函数性态部分是基本功,一定要耐心的按照函数作某某某的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);第三章1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;2)一个经验:如果在一个函数或者积分等中的函数,当它是同一个某的函数时,比如f(某)g(某)的形式,可以对其中的任何一个进行放大缩小或者变形,而另一个可以不动,这样的处理往往是需要的,很有用,当你作不下去时,想想我说的这个。

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

高数期末必考知识点总结大一

高数期末必考知识点总结大一

高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。

期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。

本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。

一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。

2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。

3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。

二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。

3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。

4. 微分的定义与性质:微分的几何意义、微分中值定理等。

三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。

2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。

3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。

4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。

四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。

2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。

3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。

4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。

五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。

2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。

3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。

综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。

在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。

大一高数最有用处知识点

大一高数最有用处知识点

大一高数最有用处知识点在大一的高等数学学习中,有许多知识点对我们今后的学习和职业发展都具有极大的帮助和应用价值。

以下是我认为大一高数最有用处的知识点:1. 复数复数是一个虚数和一个实数的组合,可以用来描述电路中的交流电信号、光学中的波动现象等。

在工程学和理论物理学中,频繁使用到复数,因此理解和熟练应用复数运算是非常重要的。

2. 极限和连续极限是高等数学的核心概念之一,可以用来描述数列和函数的趋势和性质。

掌握极限的概念和计算方法,对于今后深入研究更高级的数学、物理和工程学科都是必不可少的。

3. 函数与导数函数是数学中非常基础和重要的概念,它在现代科学和工程学中有着广泛的应用。

理解函数的性质和图像,掌握导数的定义和计算方法,能够帮助我们研究曲线的斜率、速度和变化率,对于物理、经济学、计算机科学等学科都具有重要作用。

4. 级数级数是数列求和的推广,它在数学分析、物理学和统计学中都有广泛的应用。

通过学习级数,我们可以理解和掌握无穷和无限接近的概念,深入研究函数的性质和展开式,还可以应用于计算机科学中的算法分析和数据处理。

5. 二元函数与偏导数二元函数是描述两个变量之间关系的数学函数,它在物理学、经济学和工程学中广泛应用。

了解二元函数的特性和图像,熟悉偏导数的概念和计算方法,可以帮助我们分析和优化多变量问题,在模拟和优化算法中应用二元函数和偏导数是非常常见的。

6. 不定积分与定积分不定积分和定积分是微积分中的重要概念,它们在物理学、工程学和统计学中都有广泛的应用。

通过学习不定积分和定积分的定义和计算方法,我们可以计算曲线下的面积、求解物理问题中的质心、求解概率分布函数等。

以上是我认为大一高数最有用处的知识点,并且这些知识点在今后的学习和职业发展中都具有重要意义。

通过深入理解和熟练应用这些知识点,我们能够更好地解决实际问题,提升自己的数学思维和分析能力,为未来的学习和工作打下坚实的基础。

希望同学们能够重视大一高数的学习,努力掌握这些有用的知识点。

大一高数知识点归纳总结

大一高数知识点归纳总结

大一高数知识点归纳总结高等数学作为大学的一门基础学科,对于理工科学生而言是非常重要的一门课程。

在大一学习高数的过程中,有许多重要的知识点需要我们掌握和归纳总结。

下文将对大一高数的主要知识点进行归纳总结,并以便于理解的方式进行阐述。

1. 函数与极限函数概念:函数是一种特殊的关系,将一个或多个自变量的值与一个因变量的值相对应。

函数的性质:包括定义域、值域、奇偶性、单调性等。

极限的概念:当自变量趋近于某一值时,对应的函数值的变化情况。

极限运算法则:包括和差法则、积法则、商法则等。

常用的极限:如常数函数、幂函数、指数函数、对数函数等的极限计算。

2. 导数与微分导数的概念:描述函数变化快慢的一种数学工具。

导数的运算法则:包括四则运算法则、常数倍法则、复合函数的求导法则等。

高阶导数与高阶导数的计算。

微分的概念:函数在一点处的微小变化与自变量的微小变化之间的近似关系。

微分的应用:如切线与法线的问题、极值问题等。

3. 积分与不定积分积分的概念:是导数的逆运算,表示函数在一定区间上的累加效果。

不定积分与定积分:不定积分表示函数的一个原函数,定积分表示函数在一定区间上的累加结果。

基本积分公式:如幂函数积分、指数函数与对数函数积分、三角函数积分等。

定积分的计算方法:如换元法、分部积分法、定积分的几何意义等。

4. 一元函数的应用平面解析几何:直线、圆、椭圆、抛物线、双曲线等的表示方法及其性质等。

一元函数的极值与最值问题:包括区间最值问题、最值存在性的判定等。

一元函数的图像与性质:如函数的单调性、凹凸性及拐点等。

曲线的弧长与曲率:计算曲线的长度和测量曲线弯曲程度的参数。

应用问题:如物体的运动问题、比率问题、最优化问题等。

总结:大一高数的知识点非常庞大,但通过以上的归纳总结,我们可以将这些知识点有机地组织起来,帮助我们更好地理解和掌握高等数学的核心内容。

当然,在学习高数的过程中,除了理论的学习,还需要进行大量的练习和实际应用,以提升自己的数学功底。

大学高等数学最全复习内容汇总


例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型

0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数

高数重点知识点总结大一

高数重点知识点总结大一高等数学作为大一学生的必修课程之一,是一门基础性极强的学科。

它涉及到各种数学概念、公式和计算方法,对于理工科学生来说尤为重要。

在这篇文章中,我将为大家总结一些高数的重点知识点,帮助大家更好地理解和掌握这门学科。

一、极限和连续1. 极限的定义及其性质:极限是数列或者函数在某一点趋于的值,记作lim。

极限的性质包括极限唯一性、局部有界性、四则运算性质等。

2. 极限的计算方法:- 代入法:将变量代入函数中进行计算。

- 夹逼法:通过夹逼函数,求出极限值。

- 特殊函数的极限:如指数函数、对数函数等的极限计算方法。

3. 连续函数:连续函数是指在某个区间上无间断的函数。

连续函数的性质包括介值定理、零点存在定理等。

二、导数与微分1. 导数的定义及其性质:导数是函数在某一点的斜率,表示函数变化的快慢。

导数的性质包括线性性、求导法则、高阶导数等。

2. 常见函数的导数:- 幂函数的导数:幂函数的导数与指数函数的关系。

- 指数函数的导数:指数函数的导数与自然对数的关系。

- 对数函数的导数:对数函数的导数与指数函数的关系。

- 三角函数的导数:常见三角函数的导数公式。

3. 微分的定义及其应用:微分是导数与自变量的乘积,表示函数在某一点的变化量。

微分的应用包括近似计算、辨别函数的变化趋势等。

三、不定积分与定积分1. 不定积分的定义及其基本公式:不定积分是函数的反导数,表示函数的原函数。

基本公式包括常数积分、幂函数积分、三角函数积分等。

2. 定积分的定义及其性质:定积分是函数在某个区间上的面积,表示变量的累积。

定积分的性质包括可加性、区间可加性、中值定理等。

3. 常见函数的定积分计算:- 幂函数的定积分:基本定积分公式的应用。

- 三角函数的定积分:常见三角函数定积分的计算方法。

- 指数函数的定积分:指数函数定积分的计算公式。

四、常微分方程1. 一阶常微分方程的解法:- 可分离变量方程的解法:将方程进行分离,变量分离后进行积分。

高等数学大一知识点总结归纳

高等数学大一知识点总结归纳在大一学习高等数学,我们接触到了许多重要的数学知识点,这些知识点对我们后续学习更加深入的数学课程打下了坚实的基础。

下面,我将对这些知识点进行总结和归纳,以便更好地复习和回顾。

一、极限与连续1. 极限的概念及性质:定义了数列极限和函数极限,介绍了极限的性质,如极限的唯一性、四则运算法则等。

2. 无穷大与无穷小:学习了无穷大与无穷小的定义和性质,以及它们在极限运算中的应用。

3. 函数的连续性:研究了函数的连续性概念及其性质,如连续函数的四则运算、复合函数的连续性等。

二、导数与微分1. 导数的定义与计算:学习了导数的定义,以及求导的基本法则,如常数倍法则、和差法则、乘积法则和商法则等。

2. 微分中值定理:掌握了拉格朗日中值定理和柯西中值定理的应用,可以用于证明函数的性质和解决问题。

3. 高阶导数与导数的应用:深入学习了高阶导数的定义与计算方法,以及导数在几何和物理问题中的应用。

三、积分与定积分1. 不定积分:学习了不定积分的概念和基本积分法则,如幂函数、指数函数、三角函数和常见初等函数的积分公式。

2. 定积分的概念与性质:掌握了定积分的定义和性质,如可加性、线性性、区间可加性等,并学习了计算定积分的方法,如牛顿—莱布尼茨公式、换元积分法等。

3. 定积分的应用:了解了定积分在几何学、物理学和经济学等领域中的应用,如计算曲线下的面积、求函数的平均值和求解定积分方程等。

四、微分方程1. 常微分方程的基本概念:介绍了常微分方程的定义、阶数和解的概念,以及常微分方程的分类。

2. 一阶线性微分方程:学习了一阶线性微分方程的解法,如变量可分离、齐次方程和一阶线性齐次方程等。

3. 高阶线性微分方程:深入研究了高阶线性微分方程的解法,如常系数齐次方程、常系数非齐次方程和变系数线性微分方程等。

五、级数与幂级数1. 级数的概念和性质:掌握了级数的定义和性质,如等比数列求和、级数的收敛性和发散性等。

关于大学高等数学重点绝密通用复习资料归纳绝对有用

高等数学(通用复习)师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意第一章 函数与极限函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)第一节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第二节 函数的极限 ○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第三节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第四节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x xx x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim 23--→x x x【求解示例】3x →=== 第五节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→xx x(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim (一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】第六节 无穷小量的阶(无穷小的比较)○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +-2.U U cos 1~212- (乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】第七节 函数的连续性○函数连续的定义(★)○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 00∴e a =第八节 闭区间上连续函数的性质○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=bax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=|2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦'○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】()()t t dx dy ϕγ''=.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】 1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,x e e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫- ⎪⎝⎭【求解示例】()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】○运用罗比达法则进行极限运算的基本思路(★★) ⑴通分获得分式(通常伴有等价无穷小的替换) ⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==f x ),1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+【证明示例】 1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】 1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点 【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩13y x x =+-(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞; ⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()(12,12,318f f f -=-==-∴()()()()max min 12,318f x f f x f ====-第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求) 第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续)⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量) ○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★) 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用) 【题型示例】求221dx a x+⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a a a x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >): asin x a t =(22t ππ-<<),于是arcsin x t a=,则原式可化为cos a t ; bsec x a t =(02t π<<),于是arccos at x=,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤:⑴遵照分部积分法函数排序次序对被积函数排序;⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】【题型示例】求sin x e xdx ⋅⎰【求解示例】 ∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分○有理函数(★)设:()()()()101101m m m n n n P x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式 ○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()k x a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅ 一般地:n mx n m x m ⎛⎫+=+⎪⎝⎭,则参数n a m=- 则参数,b c p q a a ==⑵则设有理函数()()P x Q x 的分拆和式为: 其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解 【题型示例】求21x dx x +⎰(构造法)【求解示例】第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b b a a f x dx f u du =⎰⎰⑵()0a a f x dx =⎰⑶()()b b a a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b a f x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b b a a f x dx g x dx ≤⎰⎰;(推论二)()()bba a f x dx f x dx ≤⎰⎰ ○积分中值定理(不作要求)第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则○变限积分的导数公式(★★★)(上上导―下下导) 【题型示例】求21cos 20lim t x x e dt x -→⎰【求解示例】第三节 定积分的换元法及分部积分法○定积分的换元法(★★★)⑴(第一换元法) 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法) 设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()b a f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰ 【题型示例】求40dx ⎰ 【求解示例】⑶(分部积分法)○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02a a a f x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0a a f x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求) 如:不定积分公式21arctan 1dx x C x =++⎰的证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于大学高等数学重点绝密通用复习归纳绝对有用 This manuscript was revised on November 28, 2020高等数学(通用复习)师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意第一章 函数与极限函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)第一节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第二节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第三节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦ (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第四节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim 9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim 23--→x x x【求解示例】6x →=== 第五节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★)第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→x x x(特别地,000sin()lim1x x x x x x →-=-) ○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f ) 【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x 【求解示例】第六节 无穷小量的阶(无穷小的比较)○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】第七节 函数的连续性○函数连续的定义(★)○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数 【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第八节 闭区间上连续函数的性质○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=±2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++,()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅ ∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】()()t t dx dy ϕγ''=.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,x e e x >⋅ 第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭ 【求解示例】()()()()0000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】○运用罗比达法则进行极限运算的基本思路(★★) ⑴通分获得分式(通常伴有等价无穷小的替换) ⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<= 3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点 【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞; ⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=,解得:121,1x x =-= 3.(三行表)4.又∵()12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====-第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数 ⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续)⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)第二节 换元积分法○第一类换元法(凑微分)(★★★)(()dx x f dy ⋅'=的逆向应用) 【题型示例】求221dx a x+⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a a a x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求⎰ 【求解示例】○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan x t a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<), 于是arcsin x t a=,则原式可化为cos a t ; bsec x a t =(02t π<<), 于是arccos a t x=,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221tx tdx tdttdt dt t C Ct=-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】第三节分部积分法○分部积分法(★★)⑴设函数()u f x=,()v g x=具有连续导数,则其分部积分公式可表示为:udv uv vdu=-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指”○运用分部积分法计算不定积分的基本步骤:⑴遵照分部积分法函数排序次序对被积函数排序;⑵就近凑微分:(v dx dv'⋅=)⑶使用分部积分公式:udv uv vdu=-⎰⎰⑷展开尾项vdu v u dx'=⋅⎰⎰,判断a.若v u dx'⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b.若v u dx'⋅⎰依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xe x dx⋅⎰【求解示例】【题型示例】求sinxe xdx⋅⎰【求解示例】∴()1sin sin cos2x xe xdx e x x C⋅=-+⎰第四节有理函数的不定积分○有理函数(★)设:()()()()101101m mmn nnP x p x a x a x aQ x q x b x b x b--=++⋯+==++⋯+对于有理函数()()P xQ x,当()P x的次数小于()Q x的次数时,有理函数()()P xQ x是真分式;当()P x的次数大于()Q x的次数时,有理函数()()P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P xQ x的分母()Q x分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a-;而另一个多项式可以表示为二次质因式()2lx px q++,(240p q-<);即:()()()12Q x Q x Q x =⋅ 一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =- 则参数,b c p q a a== ⑵则设有理函数()()P x Q x 的分拆和式为: 其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解 【题型示例】求21x dx x +⎰(构造法) 【求解示例】第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b ba a f x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)⑸(积分区间的可加性) ⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0ba f x dx >⎰; (推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bba a f x dx g x dx ≤⎰⎰; (推论二)()()b ba a f x dx f x dx ≤⎰⎰ ○积分中值定理(不作要求)第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则 ○变限积分的导数公式(★★★)(上上导―下下导)【题型示例】求21cos 20lim t x x e dt x -→⎰【求解示例】第三节 定积分的换元法及分部积分法○定积分的换元法(★★★)⑴(第一换元法) 【题型示例】求20121dx x +⎰ 【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法) 设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()b a f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】⑶(分部积分法)○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02a a a f x dx f x dx -=⎰⎰ ⑵若()()f x f x -=-,则()0aa f x dx -=⎰ 第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求) 如:不定积分公式21arctan 1dx x C x =++⎰的证明。

相关文档
最新文档