第四章多重共线性案例分析

合集下载

第四章 多重共线性

第四章 多重共线性
5
二、产生多重共线性的背景
多重共线性产生的经济背景主要有几种情形: 1.经济变量之间具有相同的变化趋势。 2.模型中包含滞后变量。 3.利用截面数据建立模型也可能出现多重共线性。 4.样本数据的原因。
6
第二节 多重共线性的后果
一、完全多重共线性产生的后果
1.参数的估计值不确定 2.参数估计值的方差无限大
Cov( ˆ2 ,
ˆ3 )

(1

r223 )
r23 2
x22i

x32i
随着共线性增加,r23趋于1,方差将增大。同样 协方差的绝对值也增大,它们增大的速度决定于
方差扩大(膨胀)因子(variance inflation factor, VIF)
VIF

1
1 r223
这时
Var(ˆ2 )
4.多重共线性严重时,甚至可能使估计的回归系数 符号相反,得出完全错误的结论。(如引例)
18
第三节 多重共线性的检验
本节基本内容: 简单相关系数检验法 方差扩大因子法 直观判断法 病态指数检验法 逐步回归法
19
一、简单相关系数检验法 简单相关系数检验法是利用解释变量之间的线性 相关程度去判断是否存在严重多重共线性的一种 简便方法。适用于只有两个变量的情形。

2

x32i 0

同理
ˆ3
这说明完全多重共线性时,参数估计量的方差将 变成无穷大。
9
关于方差的推导
Var(ˆ2 )

x32i (x22i ) (x32i )
(x2i x3i )2

2
1 X21 X 1 X22
1 X2n

计量经济学【多重共线性】

计量经济学【多重共线性】

四、多重共线性的解决方法
(三)逐步回归法( Frisch综合分析法) ◆ 从所有解释变量中间先选择影响最为显著的变量 建立模型,然后再将模型之外的变量逐个引入模型; 每引入一个变量,就对模型中的所有变量进行一次显 著性检验,并从中剔除不显著的变量;逐步引入—— 剔除——引入,直到模型之外所有变量均不显著时为 止。这种消除多重共线性的方法称为逐步回归法,也 称 Frisch 综合分析法。
◆ 根据前页表中的数据,回归结果如下所示:
◆ 回归结果表明,在 5%显著性水平下,收入(GNP) 和价格(CPI) 的系数各自均不是统计显著的。模型 通过 F 检验。我们可以断定上述方程存在严重的多 重共线性。为解决这个问题,我们可以用实际进口 额 (IM/CPI) 对实际收入 (GNP/CPI) 进行回归,得到 如下结果:
根据理论分析,可支配收入应该是服装需求最主要的
影响因素,相关系数检验也表明,可支配收入与服装
需求的相关性最强。所以,以
作为最基
本的模型。
(2) 加入服装价格指数 ,对服装需求 关于 建立二元回归模型:
可以看出,加入 后, 值稍微有所减少,参数估 计值的符号也正确,并没有影响 系数的显著性, 所以在模型中保留 。
如果两个解释变量完全相关,如 回归模型退化为一元线性回归模型
,该二元线性
这时,只能确定综合参数 定 各自的估计值。
的估计值,却无法确
二、多重共线性造成的影响
◆ 注意:除非是完全共线性,多重共线性并不意味 着任何基本假设的违背;因此,即使出现较高程度 的多重共线性,OLS 估计量仍具有线性性等良好的 统计性质。问题在于,即使 OLS 法仍是最好的估计 方法,它却不是“完美的”,尤其是在统计推断上
五、案例分析

多重共线性案例分析实验报告

多重共线性案例分析实验报告

《多重共线性案例分析》实验报告表2由此可见,该模型,可决系数很高,F 检验值173.3525,明显显著。

但是当时,不仅、系数的t 检验不显著,而且系数的符号与预期的相反,这表明很可能存在严重的多重共线性。

9954.02=R 9897.02=R 05.0=α776.2)610()(025.02=-=-t k n t α2X 6X 6X②.计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵表3由关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性相。

4.消除多重共线性①采用逐步回归的办法,去检验和解决多重共线性问题。

分别作Y 对X2、X3、X4、X5、X6的一元回归 如下图所示变量 X2 X3 X4 X5 X6 参数估计值0.08429.0523 11.6673 34.3324 2014.146 t 统计量8.665913.1598 5.1967 6.4675 8.74870.90370.95580.77150.83940.9054表4 按的大小排序为:X3、X6、X2、X5、X4。

以X3为基础,顺次加入其他变量逐步回归。

首先加入X6回归结果为:t=(2.9086) (0.46214)2R 2R 631784.285850632.7639.4109ˆX X Y t ++-=957152.02=R1995 1375.7 62900 464.0 61.5 115.70 5.97 1996 1638.4 63900 534.1 70.5 118.58 6.49 1997 2112.7 64400 599.8 145.7 122.64 6.60 1998 2391.2 69450 607.0 197.0 127.85 6.64 1999 2831.9 71900 614.8 249.5 135.17 6.74 2000 3175.5 74400 678.6 226.6 140.27 6.87 2001 3522.4 78400 708.3 212.7 169.80 7.01 2002 3878.4 87800 739.7 209.1 176.52 7.19 2003 3442.3 87000 684.9 200.0 180.98 7.30表1:1994年—2003年中国游旅收入及相关数据表2:OLS 回归表3:关系数矩阵变量 X2 X3 X4 X5 X6 参数估计值0.08429.0523 11.6673 34.3324 2014.146 t 统计量8.665913.1598 5.1967 6.4675 8.74870.90370.95580.77150.83940.9054表4:Y 对X2、X3、X4、X5、X6的一元回归六、实验结果及分析1. 在参数估计模型和关系数矩阵中, ,可决系数很高,F 检验值173.3525,明显显著。

第四章第三节多重共线性 计量经济学 教学课件(共34张PPT)

第四章第三节多重共线性  计量经济学 教学课件(共34张PPT)
第十页,共34页。
5.利用不包含某一解释变量Xj的样本决定系数进行检验
对原模型 Y=f〔X1,X2,…,Xk〕估计,计算R2
逐次减少(jiǎnshǎo)一个解释变量,进行估计计算样本决定系

Y=f〔X2,X3,…,Xk〕 R12
Y=f〔X1,X3,…,Xk〕 R22
……
… … ……
Y=f〔X1,X2,…,X k-1〕 Rk2
8.385373
0.0000
X2
0.4213800.1269253.3199190.0061
X3
-0.166260
0.059229 -2.807065
0.0158
X4
ቤተ መጻሕፍቲ ባይዱ
-0.097770
0.067647
-1.445299
0.1740
X5
-0.028425
0.202357 -0.140471
0.8906
Dependent Variable: Y
Method: Least Squares
Sample: 1983 2000
Included observations: 18
Variable Coefficient
Std. Error t-Statistic Prob.
X1
6.212562
0.740881
第六页,共34页。
三、多重共线性的影响
1.增大最小二乘估(计 yǐ的 ng方差xiǎng)
ˆ (X T X )1 X TY
var(ˆ
)
(
X
T
X
)1 ii
2
若模型当中存在完全共线性,则最小二乘估计失效.
若存在高度的共线性则会使估计值的方差变得很大,

【西南财大课件计量经济学】第四章 多重共线性

【西南财大课件计量经济学】第四章 多重共线性

3与X
的相
2
关系数为1。

X
3对Y的作用可由X
完全代替。
2
10
注: 线性变量之间存在完全共线性,正规方程组中的系数矩 阵X不再是列满秩的,秩小于k,(即Rank ( X ) k),矩阵X X是奇 异的,其逆矩阵不存在(或:向量矩阵X中,至少有一个列向量可 以由其余的列向量线性表出, X X 0)
21
(二)不完全多重共线性产生的后果
1、可以估计参数,但参数估计不稳定
在不完全多重共线性条件下, | XX | 0,X X非奇异,可由正规方 程求解参数估计值,但样本数据稍有变化或样本容量稍有增、减(删
除一个不显著的解释变量),(X X)1变化大,参数估计值变化敏感 (甚至出现回归系数值难以置信或符号与经济意义相违背的情况)。
【西南财大课件计量经济学】 第四章 多重共线性
1
教学要求(目的):本章讨论违背古典假定(多重共线性)时, 线性回归模型的建立。通过本章的学习要求:
掌握多重共线性的概念; 模型中出现多重共线性的不良后果; 掌握诊断多重共线性的若干方法; 掌握修正多重共线性的若干方法; 根据本章知识,能够独立解决模型中的多重共线性问题。
14
3、模型中大量地采用滞后变量也易产生多重共线性
(同一变量的逐次值在经济性质上无区别,一般都存在相互关系)
例如,在研究消费函数Y的时候,如果记可支配收入为X ,若在模型中引入 本期可支配收入,还考虑了以往各期的可支配收入,那么同一变量的前后期之值极 有可能是高度线性相关的,故可能产生多重共线性。
(同方差)
(4)Cov(ui, uj)=0 (随机项无自相关)
(5)Cov(X, ui)=0 (随机项与解释变量X不相关)

计量经济学(第四章多重共线性)

计量经济学(第四章多重共线性)

06
总结与展望
研究结论总结
多重共线性现象普遍存在于经济数据中,对计量 经济学模型的估计和解释产生了重要影响。
通过使用多种诊断方法,如相关系数矩阵、方差膨 胀因子(VIF)和条件指数(CI),可以有效地识别 多重共线性问题。
在存在多重共线性的情况下,普通最小二乘法 (OLS)估计量虽然仍然是无偏的,但其方差可能 变得很大,导致估计结果不稳定。
主成分分析法的优点
可以消除多重共线性的影响,同 时降低自变量的维度,简化模型。
岭回归法
岭回归法的基本思想
通过在损失函数中加入L2正则化项(即所有自变量的平方和),使得回归系数的估计更加稳定, 从而消除多重共线性的影响。
岭回归法的步骤
首先确定正则化参数λ的值,然后求解包含L2正则化项的损失函数最小化问题,得到岭回归系数的估 计值。
逐步回归法的优点
可以自动选择重要的自变量,同时消除多重共线性的影响。
主成分分析法
主成分分析法的基本思想
通过正交变换将原始自变量转换 为互不相关的主成分,然后选择 少数几个主成分进行回归分析。
主成分分析法的步骤
首先对原始自变量进行标准化处理, 然后计算相关系数矩阵并进行特征值 分解,得到主成分及其对应的特征向 量。最后,选择少数几个主成分作为 新的自变量进行回归分析。
岭回归法的优点
可以有效地处理多重共线性问题,同时避免过拟合现象的发生。此外,岭回归法还可以提供对所 有自变量的系数进行压缩估计的功能,使得模型更加简洁易懂。
05
实证研究与结果分

数据来源及预处理
数据来源
本研究采用的数据集来自于公开的统 计数据库,涵盖了多个经济指标和影 响因素的观测值。
数据预处理

第四章多重共线性实例

第四章多重共线性实例

表 4.3.3 中国粮食生产与相关投入资料
农业化肥施 粮食播种面 受灾面积 农业机械总
用量 X 1
(万公斤)
积X 2
(千公顷)
X3
(公顷)
动力X 4
(万千瓦)
1659.8
114047 16209.3
18022
1739.8
112884 15264.0
19497
1775.8
108845 22705.3
20913
Yˆ 28259.19 2.240X5
(-1.04) (2.66) R2=0.3064 F=7.07 DW=0.36
• 可见,应选第1个式子为初始的回归模型。
4、逐步回归
将其他解释变量分别导入上述初始回归模型,寻 找最佳回归方程。
C
X1 X2 X3
X4
X5
R2
DW
Y=f(X1)
30868 4.23
0.8852 1.56
t值
25.58 11.49
Y=f(X1,X2)
-43871 4.65 0.67
0.9558 2.01
t值
-3.02 18.47 5.16
Y=f(X1,X2,X3)
-11978 5.26 0.41 -0.19
0.9752 1.53
t值
0.85
19.6 3.35 -3.57
Y=f(X1,X2,X3,X4) -13056 6.17 0.42 -0.17 -0.09
1930.6
110933 23656.0
22950
1999.3
111268 20392.7
24836
2141.5
110123 23944.7

多重共线性逐步回归--案例分析

多重共线性逐步回归--案例分析

多重共线性的估计和消除一,研究对象影响中国旅游市场发展的主要因素。

二、模型设定及其估计经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。

为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设施的代表。

为此设定了如下对数形式的计量经济模型:23456123456t t t t t t t Y X X X X X u ββββββ=++++++其中 :t Y ——第t 年全国旅游收入2X ——国内旅游人数 (万人)3X ——城镇居民人均旅游支出 (元)4X ——农村居民人均旅游支出 (元) 5X ——公路里程(万公里) 6X ——铁路里程(万公里)为估计模型参数,收集旅游事业发展最快的1994—2003年的统计数据,如表4.2所示:利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.3:表4.3由此可见,该模型9954.02=R ,9897.02=R 可决系数很高,F 检验值173.3525,明显显著。

但是当05.0=α时776.2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。

计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵(如表4.4):表4.4由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

三、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。

分别作Y 对X2、X3、X4、X5、X6的一元回归,结果如表4.5所示:表4.5 变量 X2 X3 X4 X5 X6 参数估计值 0.0842 9.0523 11.6673 34.3324 2014.146 t 统计量8.6659 13.1598 5.1967 6.4675 8.7487 2R0.90370.95580.77150.83940.9054按2R 的大小排序为:X3、X6、X2、X5、X4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 案例分析
一、研究的目的要求
近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。

中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。

改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。

为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。

二、模型设定及其估计
经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。

为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设
施的代表。

为此设定了如下对数形式的计量经济模型: 23456123456t t t t t t t Y X X X X X u ββββββ=++++++
其中 :t Y ——第t 年全国旅游收入
2X ——国内旅游人数 (万人)
3X ——城镇居民人均旅游支出 (元) 4X ——农村居民人均旅游支出 (元)
5X ——公路里程(万公里) 6X ——铁路里程(万公里)
为估计模型参数,收集旅游事业发展最快的1994—2003年的统计数据,如表4.2所示:
利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.3:
表4.3
由此可见,该模型9954.02=R ,9897.02
=R 可决系数很高,F 检验值173.3525,明
显显著。

但是当05.0=α时776
.2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检
验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。

计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵(如表4.4):
表4.4
由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

三、消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。

分别作Y 对X2、X3、X4、X5、X6的一元回归,结果如表4.5所示:
表4.5
变量 X2 X3 X4 X5 X6 参数估计值
0.084
9.0523
11.667
34.33
2014.14
按2
R 的大小排序为:X3、X6、X2、X5、X4。

以X3为基础,顺次加入其他变量逐步回归。

首先加入X6回归结果为:
631784.285850632.7639.4109ˆX X Y t ++-=
t=(2.9086) (0.46214) 957152.02
=R
当取05.0=α时,365
.2)310()(025.02
=-=-t k n t
α,X6参数的t 检验不显著,予以剔除,
加入X2回归得
23029761.0194241.6393.3326ˆX X Y t ++-=
t=(4.2839) (2.1512) 973418.02
=R
X2参数的t 检验不显著,予以剔除,加入X5回归得
5390789.10736535.6972.3059ˆX X Y t ++-=
t=(6.6446) (2.6584) 978028.02
=R
X3、X5参数的t 检验显著,保留X5,再加入X4回归得
453221965.362909.13215884.4161.2441ˆX X X Y t +++-=
t=(3.944983) (4.692961) (3.06767)
991445.02=R 987186.02=R F=231.7935 DW=1.952587
当取05.0=α时,447
.2)410()(025.02=-=-t k n t α,X3、X4、X5系数的t 检验都显著,
这是最后消除多重共线性的结果。

这说明,在其他因素不变的情况下,当城镇居民人均旅游支出
3X 和农村居民人均旅游支出
4X 分别增长1元时,国内旅游收入t Y 将分别增长4.21亿元和3.22亿元。

在其他因素不变
的情况下,作为旅游设施的代表,公路里程5X 每增加1万公里时, 国内旅游收入t Y 将增长
13.63亿元。

相关文档
最新文档