立体几何中的垂直问题(三类垂直)

合集下载

高三数学立体几何复习:空间中的垂直关系 知识精讲 人教实验版(B)

高三数学立体几何复习:空间中的垂直关系 知识精讲 人教实验版(B)

高三数学立体几何复习:空间中的垂直关系知识精讲人教实验版(B)【本讲教育信息】一. 教学内容:立体几何复习:空间中的垂直关系二. 教学目的掌握空间中的垂直关系及其应用三. 知识分析【知识梳理】【空间中的垂直关系】1、空间任意直线互相垂直的一般定义如果两条直线相交于一点或经过平移后相交于一点,并且交角为90°,则称这两条直线互相垂直.2、直线与平面垂直(1)空间直线与平面垂直的定义:如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点(O)⊥,直线AB叫做的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作ABα平面的垂线,平面α叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离.(2)直线与平面垂直的判定定理:定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.(3)直线与平面垂直的性质定理:定理:如果两条直线垂直于同一个平面,那么这两条直线平行.另外,一条直线垂直于一个平面,那么它就和平面内的所有直线都垂直.3、平面与平面的垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作αβ⊥.(2)平面与平面垂直的判定定理:定理:如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.(3)平面与平面垂直的性质定理定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.★★几点说明★★1、直线和平面垂直、平面和平面垂直是直线与平面、平面与平面相交的特殊情况,对这种特殊位置关系的认识,既可以从直线和平面、平面和平面的交角为90°的角度讨论,又可以从已有的线线垂直、线面垂直关系出发进行推理和论证,还可以利用向量把几何推理和论证过程转化为代数运算过程.2、无论是线面垂直还是面面垂直,都源自于线与线的垂直,这种转化为“低维”垂直的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”。

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

《立体几何中的垂直关系》 复习课的教学设计与反思

《立体几何中的垂直关系》 复习课的教学设计与反思
⇒l⊥α
问题2:线线垂直、线面垂直、面面垂直之间有什么联系?又是通过什么进行联系的?
设计意图:准确地把直线、平面垂直的定义、定理用文字语言、图形语言和符号语言表达出来,通过对它们的分析找到相互之间的联系,构建出垂直关系的知识网络。
师生活动:
1. 让学生把四个定理用文字语言、图形语言、符号语言表示出来,通过学生板书或投影进行批改;
证明:(1)CD⊥AE;(2)PD⊥平面ABE.
证明 (1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,
∴PA⊥CD.∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,
2、教学手段:利用多媒体和导学案,导学案把大容量的信息提前呈现给学生,让学生提前思考,培养学生自学能力;多媒体演示使空间图形更加直观;利用黑板适当的板书弥补导学案在即时信息,反馈和信息的储存方面的不足。
3、学法指导:根据高三学生已具备了一定分析问题、解决问题的能力和积极参与意识,自主探索意识,由本节课的内容特点及学生已有的知识、能力、情感等因素定为问题探究式学法。
2. 提问:线线垂直、线面垂直、面面垂直之间有什么联系?引导学生分析相互之间的关系,让学生体验构建知识网络的过程。
(二)典例解析
例1.证明线面垂直判定定理即:如果一条直线和一个平面内的
两条相交直线都垂直,那么该直线与此平面垂直.
已知:直线 , ,求证:l⊥ .
证明:设c是平面α内任意一条直线,则只需证l⊥c,
《立体几何中的垂直关系》
复习课的教学设计与反思

立体几何中的垂直关系

立体几何中的垂直关系

§1立体几何中的垂直关系一知识梳理1.直线与平面垂直(1)定义一般地,如果直线l 与平面α内的任何一条直线都垂直,那么称直线l 与平面α垂直,记作l ⊥α.直线l 称为平面α的垂线,平面α称为直线l 的垂面,它们唯一的公共点称为垂足.注意:过一点有且只有一条直线与一个平面垂直,过一点有且只有一个平面与一条直线垂直.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直于同一个平面的两条直线平行.2.直线与平面所成的角一条直线l 与一个平面α相交,但是不与这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A 叫做斜足.过斜线上斜足以外的一点P 向平面α引垂线P O ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线与这个平面所成的角.APlαO 3.半平面一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.4.二面角(1)定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)表示如图1,棱为AB ,面分别为α,β的二面角记作二面角α−AB −β.有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P ,Q ,将这个二面角记作二面角P −AB−Q .图1ABOl βα图2(3)平面角如图2,在二面角α−l −β的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.二面角的平面角θ的取值范围是0◦⩽θ⩽180◦.平面角是直角的二面角叫做直二面角.5.平面与平面垂直(1)定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判断定理如果一个平面经过另外一个平面的一条垂线,那么两个平面互相垂直.(3)性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.二例题精讲考点一线面垂直与面面垂直的判定定理例1.下列命题中,正确的序号是.若直线l 与平面α内的无数条直线垂直,则l ⊥α; 若直线l 与平面α内的一条直线垂直,则l ⊥α; 若直线l 不垂直于平面α,则α内没有与l 垂直的直线; 若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; 过一点和已知平面垂直的直线有且只有一条.例2.如果直线l ,m 与平面α,β,γ满足:β∩γ=l ,l α,m ⊆α和m ⊥γ,那么必有()A.α⊥γ且l ⊥mB.α⊥γ且mβC.mβ且l ⊥mD.αβ且α⊥γ例3.若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC例4.如图,在正方体ABCD −A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1D 1DB ;(2)求证:BD 1⊥平面ACB 1.AA 1D 1DB 1C 1BC例5.如图,在三棱锥P −ABC 中,P A ⊥平面ABC ,∠ABC =90◦.求证:BC ⊥平面P AC .PBCA 例6.如图,在三棱锥P −ABC 中,P A =PB ,△ABC 是等边三角形,O 是AB 中点.求证:AB ⊥平面P OC .PBCA O例7.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2,BC =2√2,E ,F 分别是AD ,P C 的中点.证明:P C ⊥平面BEF.例8.如图所示,在四棱锥S −ABCD 中,底面四边形ABCD 是平行四边形,SC ⊥平面ABCD ,E 为SA 的中点.求证:平面EBD ⊥平面ABCD.B1C1中,侧棱垂直于底面,∠ACB=90◦,AC=例9.如图,三棱柱ABC−A1AA1,D是棱AA1的中点.求证:平面BDC1⊥平面BDC.2方法总结使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.证明线线垂直常见的方法(1)线面垂直的定义.(2)几何体本身的垂直关系.(3)等腰三角形的三线合一.(4)勾股定理逆定理.证明线面垂直的方法(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.由面面垂直的判定定理知,要证两个平面互相垂直,关键是证明其中一个平面经过另一个平面的垂线.练1.如果一条直线垂直于一个平面内的: 三角形的两边; 梯形的两边; 圆的两条直径; 正五边形的两边.能保证该直线与平面垂直的是.练2.如图,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,求证:BC⊥平面P AC.练3.如图,Rt△ABC所在平面外有一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.练4.如图,在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点.求证:平面EF C⊥平面BCD.考点二线面垂直与面面垂直的性质定理例1.给出下列说法:垂直于同一条直线的两个平面互相平行;垂直于同一个平面的两条直线互相平行;一条直线在平面内,另一条直线与这个平面垂直,则这两条直线垂直.其中正确说法的个数是()A.0B.1C.2D.3例2.已知直线l⊥平面α,直线m⊆平面β.有下列四个说法:αβ⇒l⊥m;α⊥β⇒l m;l m⇒α⊥β;l⊥m⇒αβ.其中正确的说法是()A. B. C. D.B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:EF例3.如图所示,在正方体ABCD−ABD1.例4.如图,在三棱锥P−ABC中,P A⊥平面ABC,平面P AB⊥平面P BC.求证:BC⊥AB.例5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.例6.如图,在四棱锥P−ABCD中,底面ABCD是∠DAB=60◦且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥P B;(2)若E为边BC的中点,能否在棱P C上找到一点F,使得平面DEF⊥平面ABCD,并证明你的结论方法总结证明线线平行时,可以利用线面垂直的性质定理.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.立体几何中的垂直关系有三类:线线垂直、线面垂直、面面垂直.处理垂直问题时,要注意三者之间的内在联系.转化思想是立体几何中解决垂直问题的重要思想.垂直关系的转化如下:练1.若平面α⊥平面β,且平面α内的一条直线α垂直于平面a内的一条直线b,则()A.直线α必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直练2.如图,α∩β=l,P A⊥α,P B⊥β垂足分别为A,B,a⊆α,a⊥AB.求证:a l.练3.如图,四棱锥的底面是矩形,侧面V AB⊥底面ABCD,且V B⊥平面V AD.求证:平面V BC⊥平面V AC.考点三线面角与二面角例1.在长方体ABCD−A1B1C1D1中,AB=AD=1,AA1=2,直线AC1与平面ABB1A1所成角的正切值等于.例2.如图,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90◦,∠BCCD=90◦,且AB=AD,则AC与平面BCD所成角的等于.例3.如图,在正方体ABCD−A1B1C1D1中,求二面角B−A1C1−B1的正切值.例4.已知D,E分别是正三棱柱ABC−A1B1C1的侧棱AA1和BB1上的点,且A1D=2B1E=B1C1.求过D,E,C1的平面与棱柱的下底面A1B1C1所成的二面角的大小.方法总结求线与面的夹角时,关键是找出或作出它们的夹角,再在三角形中进行计算.求二面角的大小关键是要找出或作出平面角.再把平面角放在三角形中,利用解三角形得到平面角的大小或三角函数值,其步骤为作角,证明,计算.练1.已知正四棱锥的高为3,底面对角线的长为2√6,求侧面与底面所成的二面角.练2.在直三棱柱ABC −A 1B 1C 1中,AB =1,AC =2,AA 1=3,∠BAC =60◦,则直线B 1C 与平面AA 1B 1B 所成角的正切值为.三课后作业1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在2.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是()A.m ⊥n ,m α,nβB.m ⊥n ,α∩β=m ,n ⊆αC.mn ,n ⊥β,m ⊆αD.mn ,m ⊥α,n ⊥β3.已知平面α⊥平面β,α∩β=l ,点P ∈l 给出下面四个结论:过P 与l 垂直的直线在α内; 过P 与β垂直的直线在α内; 过P 与l 垂直的直线必与α垂直; 过P 与β垂直的平面必与l 垂直.其中正确的命题是()A.B.C.D.4.设m,n是两条不同的直线,α,β是两个不同的平面()A.若m⊥n,nα,则m⊥αB.若mβ,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.在三棱锥P−ABC中,已知P C⊥BC,pc⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是()A.平面EF G平面P BCB.平面EF G平面ABCC.∠BP C是直线EF与直线P C所成的角D.∠F EG是平面P AB与平面ABC所成二面角的平面角6.如图所示,在三棱锥P−AB C中,P A⊥平面ABC,∠BAC=90◦,则二面角B−P A−C的大小为.7.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有.8.正四面体的侧面与底面所成的二面角的余弦值是.9.如图,在三棱锥P−ABC中,侧面P AC⊥底面ABC,且∠P AC=90◦,P A=1,AB=1,则P B=.10.已知平面α⊥平面β,在α,β的交线上取线段AB=4cm,AC,BD分别在平面α和β内,它们都垂直于AB,并且AC=3cm,BD=12cm,则CD的长为.11.如图,四边形ABCD是边长为a的菱形,P C⊥平面ABCD,E是P A的中点,求证:平面BDE⊥平面ABCD.12.如图,在四棱锥P−ABCD中,P A⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60◦且P A=AB=BC,E是P C的中点.求证:(1)CD⊥AE;(2)P D⊥平面ABE.。

考点24 空间几何中的垂直(解析版)

考点24 空间几何中的垂直(解析版)

考点24 空间几何中的垂直知识理解一.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直(2)直线与平面垂直的判定定理及性质定理:二.平面与平面垂直的判定定理与性质定理三.证明线线垂直的思路平行四边形:正方形、菱形、矩形图形三角形:等腰(等边)三角形--取中点正余弦定理边关系或边长勾股逆定理线面垂直的定义面面垂直的性质⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎪⎩ 考向一 线面垂直【例1】3.(2021·江西吉安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,22AD DC BC ===,PAD △为正三角形,Q 为AD 的中点,求证:AD ⊥平面PBQ【答案】证明见解析【解析】∵PAD △为正三角形,Q 为AD 的中点,∴PQ AD ⊥.∵//AD BC ,2AD DC BC ==,Q 为AD 的中点.∴四边形BCDQ 为平行四边形,∴//BQ CD . 又90ADC ∠=︒,∴90AQB ∠=︒,即BQ AD ⊥.又PQBQ Q =,∴AD ⊥平面PBQ.考向分析【举一反三】1.(2021·河南信阳市节选)如图所示,四棱锥S ABCD -中,//AB CD ,AD DC ⊥,2224CD AD AB SD ====,SD ⊥平面ABCD ,求证:BC ⊥平面SBD【答案】证明见解析【解析】证明://,,2AB CD AD DC AB AD ⊥==,BD BC ∴==又4CD =,222CD BD BC ∴=+,故BC BD ⊥, 又SD ⊥平面,ABCD BC ⊂平面ABCD ,BC SD ∴⊥, 又SD BD D =,BC ∴⊥平面SBD .2.(2021·江西赣州市节选)如图,已知三棱柱111ABC A B C -的所有棱长均为2,13B BA π∠=,证明:1B C ⊥平面1ABC【答案】证明见解析【解析】证明:如图取AB 中点D ,连接1,B D CD .因为四边形11BCC B 为菱形,所以11B C BC ⊥ 又因为三棱柱的所有棱长均为2,13B BA π∠=,所以ABC 和1ABB △是等边三角形,所以1,B D AB CD AB ⊥⊥因为1,B D CD ⊂平面11,B CD B D CD D ⋂=,所以AB ⊥平面1B CD 所以1B C AB ⊥,而1BC AB B ,所以1B C ⊥平面1ABC3.(2020·山东德州市节选)如图,四棱锥P ABCD -中,四边形ABCD 是边长为2的正方形,PAD ∆为等边三角形,,E F 分别为PC 和BD 的中点,且EF CD ⊥,证明:CD ⊥平面PAD【答案】证明见解析【解析】如图所示,连接AC ,由ABCD 是边长为2的正方形, 因为F 是BD 的中点,可得AC 的中点,在PAC △中,因为,E F 分别是,PC AC 的中点,可得//EF PA , 又因为EF CD ⊥,所以PA CD ⊥,又由AD CD ⊥,且ADAP A =,所以CD ⊥平面PAD .考向二 面面垂直【例2】(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,3AD =,5AB =,3cos 5BAD ∠=,1BD DD =,E 是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥. 在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,BD ⊂平面ABCD ,所以1.DD BD ⊥又因为1ADDD D =,1,AD DD ⊂平面1ADD ,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD . 【举一反三】1.(2021·河南焦作市节选)如图所示,在四棱锥РABCD -中,底面ABCD 是菱形,PA ⊥平面,ABCD 点Q 为线段PC 的中点,求证:平面BDQ ⊥平面PAC【答案】证明见解析【解析】因为四边形ABCD 是菱形,所以,AC BD ⊥ 因为PA ⊥平面,ABCD BD ⊂平面,ABCD 所以,BD PA ⊥ 又因为,PA AC A ⋂=所以BD ⊥平面,PAC 因为BD ⊂平面,BDQ 所以平面BDQ ⊥平面PAC .2.(2021·山东青岛市·高三期末节选)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BE =将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE ,若BC BE =,证明:平面ABD ⊥平面ACE【答案】证明见解析【解析】证明:连接BD ,因BC BE =所以BD CE ⊥ 因为平面ABC ⊥平面BCDE ,平面ABC 平面BCDE BC =,AC BC ⊥所以AC ⊥平面BCDE因为BD ⊂平面BCDE ,所以AC BD ⊥ 因为ACCE C =,所以BD ⊥平面ACE因为BD ⊂平面ABD ,所以平面ABD ⊥平面ACE3.(2021·安徽马鞍山市节选)如图,BE ,CD 为圆柱的母线,ABC 是底面圆的内接正三角形,M 为BC 的中点,证明:平面AEM ⊥平面BCDE【答案】证明见详解【解析】根据题意可得,AM BC ⊥. 又BE 为圆柱的母线,BE ∴⊥平面ABC .BE AM ∴⊥,BC BE B =,AM ∴⊥平面BCDE .又AM ⊂平面AEM ,∴平面AEM ⊥平面BCDE .考向三 线线垂直【例3】(2021·江西宜春市·高安中学节选)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=,已知2,PB PD PA ===,E 为PA 的中点,求证PC BD ⊥【答案】证明见解析【解析】,AC BD 交点为O ,连接PO ,ABCD 是边长为2的菱形,,AC BD O ∴⊥是,AC BD 的中点,,PD O B BD P P =∴⊥,又PO ⊂平面POC ,AC ⊂平面POC ,POAC O =,BD ∴⊥平面POC ,PC ⊂平面POC ,.C BD P ∴⊥【举一反三】1.(2021·江苏南通市·高三期末节选)如图,在四棱锥A BCDE -中,//BC DE ,22BC DE ==,BC CD ⊥,F 为AB 的中点,BC EF ⊥,求证:AC BC ⊥【答案】证明见解析【解析】取AC 中点M ,连接FM ,DM ,,F M 分别为AB ,AC 中点,12FMBC ∴, 1,2DEBC FM DE ∴, ∴四边形DEFM 是平行四边形,//DM EF ∴,,EF BC DM BC ⊥∴⊥,,,CD DM CD DM ⊥⊂平面ACD ,CD DM D ⋂=,BC ∴⊥平面CDM ,AC ⊂平面CDM ,BC AC ∴⊥;2.(2020·山东德州市节选)如图,已知四棱锥P ABCD -中,底面ABCD 为菱形,60,ABC PA ∠=︒⊥平面,,ABCD E F 分别为,BC PA 的中点.(1)求证:AE PD ⊥; (2)求证://EF 平面PCD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连AC ,60ABC ∠=,底面ABCD 为菱形,ABC ∴是等边三角形, BE EC =,AE BC ∴⊥,又//BC AD ,AE AD ∴⊥,又PA ⊥面,ABCD AE ⊂面ABCD ,PA AE ∴⊥, PA AD A ⋂=,AE ∴⊥面,PAD PD ⊂面PAD ,AE PD ∴⊥.()2取PD 的中点M ,连,FM MC ,PF FA =,所以11//,22FM AD FM AD =, 又11//,22EC AD EC AD =, //,FM EC FM EC ∴=, ∴四边形FECM 是平行四边形,//EF MC ∴,又EF ⊄面,PCD MC ⊂面PCD ,//EF ∴面PCD .3.(2021·山东枣庄市节选)如图,四棱锥P ABCD -的侧面PAD △是正三角形,底面ABCD 是直角梯形,90BAD ADC ∠=∠=,22AD AB CD ===,M 为BC 的中点,求证:PM AD ⊥【答案】(1)证明见解析;(2)7. 【解析】证明:取AD 中点N ,连PN ,NM , 因为PAD △是正三角形,所以PNAD .又M 是BC 中点,所以//NM AB .因为90BAD ∠=,即AB AD ⊥.所以NM AD ⊥,因为NM PN N ⋂=,NM 、PN ⊂平而PMN , 所以AD ⊥平面PMN ,PM ⊂平面PMN ,所以AD PM ⊥.1.(2021·山东泰安市·高三期末节选)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60BAD ∠=︒,PB PD =,F 为PC 上一点,过AF 作与BD 平行的平面AEFG ,分别交PD ,PB 于点E ,G ,证明:EG ⊥平面PAC【答案】证明见解析【解析】证明:连接BD ,交AC 于点O ,连接PO . ∵//BD 平面AEFG ,平面PBD平面AEFG EG =,BD ⊂平面PBD ,∴//EG BD .∵底面ABCD 是菱形,∴AC BD ⊥,且O 为AC ,BD 中点,强化练习又PB PD =,∴PO BD ⊥,又AC PO O =,,AC PO ⊂平面PAC ,∴BD ⊥平面PAC ,∴EG ⊥平面PAC .2.(2021·浙江金华市·高三期末节选)在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA PB AB ====,)证明:PC ⊥平面ABC【答案】证明见解析;【解析】证明:取AB 中点D ,连接PD ,DC∵PA PB =,AC BC =,则AB PD ⊥,AB DC ⊥, 而PD DC D ⋂=,∴AB ⊥平面PDC , 因为PC ⊂平面PDC ,故AB PC ⊥.在ABC 中,AB ==,故222AB AC BC =+,∴BC AC ⊥.又∵平面PAC ⊥平面ABC ,且交线为AC ,BC ⊂平面ABC , ∴BC ⊥平面PAC ,因为PC ⊂平面PAC ,故BC PC ⊥. 因为AB BC B ⋂=,∴PC ⊥平面ABC .3.(2021·河南焦作市节选)如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点,求证:DE ⊥平面PAH【答案】证明见解析【解析】因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .4.(2021·浙江温州市节选)如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为形,PB =60PBC ∠=,点F 为线段AP 的中点,证明:PC ⊥平面ABC【答案】证明见解析【解析】在PBC 中,PB =BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=,PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;5.(2021·陕西咸阳市·高三一模节选)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点,求证:PA ⊥平面MBC【答案】证明见解析【解析】平面PAC ⊥平面ABC ,平面PAC 平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,∴BC ⊥平面PAC , ∵PA ⊂平面PAC , ∴BC PA ⊥,∵AC PC =,M 是PA 的中点, ∴CM PA ⊥, ∵CMBC C =,,CM BC ⊂平面MBC ,∴PA ⊥平面MBC .6.(2021·浙江金华市节选)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD AB ==,平面PCD ⊥平面ABCD ,若E 为PC 的中点,求证:DE ⊥平面PBC【答案】证明见解析【解析】因为平面PCD ⊥平面ABCD ,且平面PCD平面ABCD CD =,底面ABCD 为矩形,所以BC CD ⊥,又CD ⊂平面PDC ,所以BC ⊥平面PDC ,又DE ⊂平面PDC ,所以BC DE ⊥;因为PD AB DC ==,所以PDC △为等腰三角形,E 为PC 的中点,所以DE CP ⊥,因为CPBC C =,,BC CP ⊂面PBC ,所以DE ⊥面PBC7.(2021·西安市铁一中学节选)如图,在底面为菱形的四棱锥P ABCD -中,60,1,ABC PA AC PB PD ︒∠=====,点E 在PD 上,且2PEED=,求证:PA ⊥平面ABCD【答案】证明见详解【解析】因为底面ABCD 是菱形,60ABC ︒∠=, 所以1AB AC AD ===,在PAB △中,1,PA PB ==由222PA AB PB +=,可得PA AB ⊥.同理,PA AD ⊥,又AB AD A ⋂=所以PA ⊥平面ABCD .8.(2021·河南高三期末节选)如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点,求证:平面DBE ⊥平面1ADD【答案】证明见解析【解析】由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1ADDD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD .9.(2021·江苏南通市节选)如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,AB AD ==(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD . 【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =, ∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BEGM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD , ∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,AB AD ==∴AO BD ⊥∴1AO ==,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC =又2CA =,∴222OA OC CA +=,∴AO OC ⊥ 由AO OC ⊥,AO BD ⊥,OC BD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD , 又AO ⊂平面ABD , ∴平面ABD ⊥平面BCD .10.(2021·山西吕梁市·高三一模节选)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SCD为等边三角形, 4AB BC ==,2CD =,SB =BC SD ⊥【答案】证明见解析【解析】由已知4BC =,2SC =,SB =222SB BC SC =+,所以90BCS ∠=︒,所以BC CS ⊥,又,BC CD CDCS C ⊥=,所以BC ⊥平面SCD ,又SD ⊂平面SCD ,所以BC SD ⊥.11.(2021·云南高三期末)如图所示,在正方体ABCD A B C D ''''-中,点M 为线段B D ''的中点.(1)求证:DD AC '⊥; (2)求证://BM平面ACD '.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)在正方体ABCD A B C D ''''-中, ∵DD AD '⊥,DD CD '⊥,且CDAD D =,∴DD '⊥平面ACD ,AC ⊂平面ACD . ∴DD AC '⊥(2)如图所示,连接BD ,交AC 于N ,连接D N '.由题设得:BN MD '=,//BN MD ', ∴四边形BMD N '为平行四边形. ∴//BM ND '.又∵ND '⊂平面ACD ',BM ⊄平面ACD ', ∴//BM平面ACD '.12.(2021·江西景德镇市节选)如图,已知四棱锥S ABCD -,其中//AD BC ,AB AD ⊥,45BCD ∠=,22BC AD ==,侧面SBC ⊥底面ABCD ,E 是SB 上一点,且ECD 是等边三角形,求证:CE ⊥平面SAB【答案】证明见解析 【解析】//AD BC ,AB AD ⊥,AB BC ∴⊥,侧面SBC ⊥底面ABCD ,侧面SBC底面ABCD BC =,AB平面ABCD ,AB ∴⊥平面SBC ,CE ⊂平面SBC ,CE AB ∴⊥,如下图所示,取BC 的中点F ,连接DF 、EF ,2BC AD =,且F 为BC 的中点,则AD BF =,//BC AD ,则//AD BF ,所以,四边形ABFD 为平行四边形,则//DF AB , DF ⊥∴平面SBC ,EF 、BC ⊂平面SBC ,DF EF ∴⊥,DF BC ⊥,ECD 为等边三角形,则EF CF BF ===,所以,FBE BEF ∠=∠,FCE CEF ∠=∠,由2FBE BEF FCE CEF BEC π∠+∠+∠+∠=∠=,2BEC π∴∠=,即CE SB ⊥,SB AB B =,因此,CE ⊥平面SAB ;13.(2021·江西景德镇市·景德镇一中)如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC == 30ACB ∠=,13AA =,11BC A C ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ; (2)求证:1A C ⊥平面1C EB .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)如下图所示,连接1AB 、1B C ,设11B CBC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形, 因为11B CBC F =,在点F 为1B C 的中点,又因为点E 为AC 的中点,1//EF AB ∴,1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC ,BE ∴⊥平面11A ACC ,1A C ⊂平面11A ACC ,1A C BE ∴⊥, 11BC AC ⊥,1BE BC B =,1A C ∴⊥平面1C EB .14.(2021·陕西咸阳市)在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ;(2)证明:BE CD ⊥.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴.EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD ,BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.15.(2021·全国)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:PB DM ⊥.【答案】证明见解析.【解析】因为PAB △为等边三角形,M 为PB 的中点,所以AM PB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,DA AB ⊥,DA ⊂平面ABCD , 所以DA ⊥平面PAB ,因为PB ⊂平面PAB ,所以DA PB ⊥,因为DA AM A ⋂=,所以PB ⊥平面ADM ,因为DM ⊂平面ADM ,所以PB DM ⊥.16.(2020·全国)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)若P 点是线段AM 的中点,求证://MC 平面PBD .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)因为矩形ABCD 所在平面与半圆弦CD 所在平面垂直,面ABCD 面CDM CD =,AD DC ⊥,AD ⊂面ABCD ,所以AD ⊥半圆弦CD 所在平面,且CM ⊂半圆弦CD 所在平面,所以CM AD ⊥;又M 是CD 上异于C ,D 的点,所以CM DM ⊥;又DM AD D =,所以CM ⊥平面AMD ;又CM ⊂平面CMB ,所以平面AMD ⊥平面BMC ;(2)由P 是AM 的中点,连接BD 交AC 于点O ,连接OP ,如图所示:由中位线定理得//MC OP ;又MC ⊂/平面BDP ,OP ⊂平面BDP ,所以//MC 平面PBD .17.(2021·全国高三专题练习)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.证明:平面AMD ⊥平面BMC .【答案】证明见解析【解析】由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .18.(2020·全国高三专题练习)已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PAB △为等边三角形,底面ABCD 为直角梯形,90DAB ∠=︒且2AB CD =,点M 为PB 的中点,求证:DM PB .【答案】证明见解析.【解析】证明:∵PAB ∆为等边三角形,M 为PB 的中点,∴AM PB ⊥, 又∵平面PAB ⊥平面ABCD ,且平面PAB 平面ABCD AB =, DA AB ⊥,DA ⊂平面ABCD ,∴DA ⊥平面PAB ,又PB ⊂平面PAB ,∴DA PB ⊥,∵DA AM A ⋂=,∴PB ⊥平面ADM ,又DM ⊂平面ADM ,∴PB DM ⊥.19.(2020·江苏苏州市·高三三模)如图,在三棱柱111A B C ABC -中,AB AC =,D 为BC 中点,平面ABC ⊥平面11BCC B ,11BC B D ⊥.(1)求证:1//A C 平面1AB D ;(2)求证:11AB BC ⊥.【答案】(1)证明见解析(2)证明见解析【解析】证明:(1)连结1A B 交1AB 于点O ,连结OD .因为111A B C ABC -是三棱柱,所以11ABB A 是平行四边形,所以O 为1A B 中点. 有因为D 为BC 中点,所以1OD AC . 又1AC ⊄平面1AB D ,OD ⊂平面1AB D ,所以1A C 平面1AB D . (2)因为AB AC =,D 为BC 中点,所以AD BC ⊥.又因为平面ABC ⊥平面11BCC B ,平面ABC 平面11BCC B BC =,AD ⊂平面ABC , 所以AD ⊥平面11BCC B . 因为1BC ⊂平面11BCC B ,所以1AD BC ⊥. 又因为11BC B D ⊥,1AD B D D ⋂=,AD ⊂平面1AB D ,1B D ⊂平面1AB D , 所以1BC ⊥平面1AB D . 因为1AB ⊂平面1AB D ,所以11AB BC ⊥.。

2017年__高二年级立体几何垂直证明题常见模型和方法

2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

67.立体几何讲义2:垂直问题 课件-广东省惠来县第一中学2021届高三数学一轮复习

67.立体几何讲义2:垂直问题 课件-广东省惠来县第一中学2021届高三数学一轮复习
思考:在问题10的等 腰梯形ABCD中,我们 找到了怎样的直角。
第四方面:基于代数运算下的垂直关系 ★基于代数运算下的垂直关系,经常涉及勾股 定理和余弦定理的运用。
第四方面:基于代数运算下的垂直关系
题目问题111:1:如图,在直三棱柱
ABC
A1B1C1
中,ACB
90
,AC
BC
1 2
AA1
1
,D

第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
题目3:(选自2013年全国高考文科Ⅰ卷) 如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1, ∠BAA1=60°, 证明:AB⊥A1C。
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
7.全等三角形(相似三角形) 8.余弦定理
题目探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
五、问题探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系 1.有着共底边的两个等腰三角形构成的立体图形,两个顶点的连线一定垂直于底边; 2.筝形是指有一条对角线所在直线为对称轴的四边形,也可以说是两组邻边相等的四边形,它的形状就像一个风 筝,基于筝形可以设计许多垂直问题。
题目1:
D
C
E
B A
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
题目2:
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系

立体几何中的垂直问题

立体几何中的垂直问题

直线、平面垂直的判定与性质学习目标1、熟练掌握线线、线面、面面垂直的转化关系,会选择正确的方法证明或判断垂直;2、会把面面垂直转化为线面垂直,能够熟练运用平几的知识解决垂直证明问题。

知识回顾:思考:清楚线线、线面、面面垂直三者之间的转化关系?判断线线、线面、面面垂直有哪些方法?三种垂直位置关系证明中谁最重要?(仿照平行问题学生自己梳理)[例题与变式]考点1:线线、线面垂直的判定例1.在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1为矩形,AB=2,AA 1=22,D 是AA 1的中点,BD 与AB 1交于点O ,且CO ⊥平面ABB 1A 1. ⑴证明:CD ⊥AB 1;⑵若OC=OA ,求直线CD 与平面ABC 所成角的正弦值.(选题意图:(1)第一问检查学生平几的知识证明相交直线垂直,以及通过线面垂直转化为异面直线垂直是否掌握;(2)第二问为后面复习用几何法求线面角用,本节课不用)1.⑴证明:∵ABB 1A 1是矩形,D 为AA 1中点,AB=2,AA 1=2,AD=,∴在直角三角形ABB 1中,tan ∠AB 1B==,在直角三角形ABD 中,tan ∠ABD==,所以∠AB 1B=∠ABD ,又∠BAB 1+∠AB 1B=90°,∠BAB 1+∠ABD=90°,……3分 所以在直角三角形ABO 中,故∠BOA=90°,即BD ⊥AB 1,又因为CO ⊥侧面ABB 1A 1,AB1⊂侧面ABB 1A 1,所以CO ⊥AB 1……………4分 又因为CO ,BD 为相交于点O ,所以AB 1⊥面BCD ………………5分 因为CD ⊂面BCD ,所以CD ⊥AB 1………………6分⑵解:分别以OD ,OB 1,OC 所在的直线为x ,y ,z 轴,以O 为原点,建立空间直角坐标系,则A (0,﹣,0),B (﹣2,0,0),C (0,0,),线面垂直常用证明思路?线线垂直线面垂直线面角、二面角、距离AD11D (,0,0),又因为=2,所以 所以=(﹣2,,0),=(0,,)=(,0,﹣)………………8分设平面ABC 的法向量为=(x ,y ,z ),由⎪⎩⎪⎨⎧=⋅=⋅00AC n AB n 得可得=(1,,﹣)是平面ABC 的一个法向量……………………10分∴515,cos =>=<CD n ……………………11分 所以直线CD 与平面ABC 所成角的正弦值为…………………………12分变式1:(2015·高考全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.【解】 (1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°, 可得AG =GC = 3.C 1A 1AB 由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系Gxyz .由(1)可得A (0,-3,0),E (1,0,2), F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.考点2:面面垂直性质的应用例2、如图,在三棱柱 中,AB 不垂直于AA 1 ,.平面 平面 , .证明: ;若 是正三角形, ,求二面角 的大小.(这一小问此课时不用,在后面立几中的向量法中用到)(选题意图:学生对面面垂直性质的应用较弱)证明: Ⅰ 过点 作 的垂线,垂足为O ,由平面 平面 ,平面 平面 ,得 平面 ,又 平面 ,得 .由,,得.又,得平面 C.又平面,得.Ⅱ以C为坐标原点,的方向为x轴正方向,为单位长,建立空间直角坐标系.由已知可得0,,2,,1,所以0,,2,,设y,是平面的法向量,则,即可取.设y,是平面ABC的法向量,则,即,可取.则,.又因为二面角为锐二面角,所以二面角的大小为.变式2:(2018年广州二模18)考点:3.空间几何中的“翻折”问题 例3. (2017·福州市综合质量检测)如图1,在等腰梯形PDCB 中,PB ∥DC ,PB =3,DC =1,∠DPB =45°,DA ⊥PB 于点A ,将△P AD 沿AD 折起,构成如图2所示的四棱锥P -ABCD ,点M 在棱PB 上,且PM =12MB .(1)求证:PD ∥平面MAC ;(2)若平面P AD ⊥平面ABCD ,求点A 到平面PBC 的距离.(选题意图:明确几何体的结构特征是建立直角坐标系的前提,平面几何知识在垂直证明中的运用是学生的薄弱点)【解】 (1)证明:在四棱锥P -ABCD 中,连接BD 交AC 于点N ,连接MN ,依题意知AB ∥CD ,所以△ABN ∽△CDN ,所以BN ND =BACD=2,因为PM =12MB ,所以BN ND =BMMP=2,所以在△BPD 中,MN ∥PD ,又PD ⊄平面MAC ,MN 平面MAC ,所以PD ∥平面MAC .(2)法一:因为平面P AD ⊥平面ABCD ,且两平面相交于AD ,P A ⊥AD ,P A 平面PAD , 所以P A ⊥平面ABCD ,所以V P ­ABC =13S △ABC ·P A =13×(12×2×1)×1=13.因为AB =2,AC =AD 2+CD 2=2,所以PB =P A 2+AB 2=5, PC =P A 2+AC 2=3,BC =AD 2+(AB -CD )2=2, 所以PB 2=PC 2+BC 2, 故∠PCB =90°,记点A 到平面PBC 的距离为h ,所以V A ­PBC =13S △PBC ·h =13×(12×3×2)h =66h .因为V P ­ABC =V A ­PBC ,所以13=66h ,解得h =63.故点A 到平面PBC 的距离为63.法二:因为平面P AD ⊥平面ABCD ,且两平面相交于AD ,P A ⊥AD ,P A 平面P AD , 所以P A ⊥平面ABCD ,因为BC 平面ABCD ,所以P A ⊥BC , 因为AB =2,AC =AD 2+CD 2=2, BC =AD 2+(AB -CD )2=2, 所以∠ACB =90°,即BC ⊥AC , 又P A ∩AC =A ,P A ,AC 平面P AC , 所以BC ⊥平面P AC ,过点A 作AE ⊥PC 于点E , 则BC ⊥AE ,因为PC ∩BC =C ,PC ,BC 平面PBC , 所以AE ⊥平面PBC ,所以点A 到平面PBC 的距离为AE =P A ·AC PC =1×23=63.方法小结:求解平面图形“翻折”问题的方法(1)分清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥等几何体,从而把问题转化到我们熟悉的几何体中解决. 变式3:(2016高考新课标2理数)如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,(Ⅰ)证明:平面; (略)(Ⅱ)求二面角的正弦值.ABCD AC BD O 5,6AB AC ==,E F ,AD CD 54AE CF ==EF BD H DEF ∆EF D EF '∆OD '=D H '⊥ABCD B D A C '--【解析】⑴证明:∵54AE CF ==,∴AE CF AD CD=,∴EF AC ∥.∵四边形ABCD 为菱形,∴AC BD ⊥, ∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()0,3,4=AB ,()3,3,1-=AD ,()0,6,0=AC ,设面'ABD 法向量()z y x n ,,1=,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()5,4,31-=n .同理可得面'AD C 的法向量()1,0,32=n ,∴1212cos n n n n θ⋅==u r u u r u r u u r ,∴sin θ立体几何大题训练卷1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【解析】 ⑴∵ABEF 为正方形 ∴AF EF ⊥ ∵90AFD ∠=︒ ∴AF DF ⊥ ∵=DFEF F∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒ ∵AB EF ∥ AB ⊄平面EFDCEF ⊂平面EFDC∴AB ∥平面ABCDAB ⊂平面ABCD∵面ABCD面EFDC CD =∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,,()02202a C A a a ⎛⎫⎪ ⎪⎝⎭,,, ()020EB a =,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,()200AB a =-,, 设面BEC 法向量为()m x y z =,,. 00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩11101x y z ==-, ()301m =-,,设面ABC 法向量为()222n x y z =,, =00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即222220220a x ay ax ⎧-+=⎪⎨⎪=⎩ 22204x y z ==, ()034n =,设二面角E BC A --的大小为θ. cos 3m n m nθ⋅===+⋅ ∴二面角E BC A --的余弦值为2.如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD=2AD=8,.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P-ABCD 的体积. 解:(Ⅰ)证明:在△ABD 中, 由于AD=4,BD=8,,所以AD 2+BD 2=AB 2.故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,BD 平面ABCD , 所以BD ⊥平面PAD , 又BD 平面MBD , 故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO ⊥AD 交AD 于O , 由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P-ABCD 的高,又△PAD 是边长为4的等边三角形.因此.在底面四边形ABCD 中,AB ∥DC ,AB=2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为, 此即为梯形ABCD 的高,所以四边形ABCD 的面积为.故.3.(2018全国卷3.19.)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.19.(12分)ABCD CD M CD C D AM D ⊥BMC M ABC MAB MCD解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又 BC CM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,设是平面MAB 的法向量,则即 可取.是平面MCD 的法向量,因此, , 所以面MAB 与面MCD 所成二面角的正弦值是. ⊂CD ⊂DA CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,DA =n 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档