数据结构图的实验报告
数据结构实验三实验报告

数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。
具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。
二、实验原理树是一种非线性的数据结构,由结点和边组成。
树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。
树的基本操作包括插入、删除和查找。
在本次实验中,我们采用二叉树作为实现树的数据结构。
二叉树是一种特殊的树,每个结点最多只有两个子结点。
根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。
三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。
然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。
2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。
我们可以通过递归的方式实现插入操作。
具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。
如果当前结点为空,则将新的结点作为当前结点。
3. 实现删除操作删除操作是将指定的结点从树中移除的过程。
我们同样可以通过递归的方式实现删除操作。
具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。
如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。
- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。
- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。
4. 实现查找操作查找操作是在树中寻找指定值的过程。
同样可以通过递归的方式实现查找操作。
具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。
数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。
2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。
3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。
3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。
3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。
3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。
我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。
3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。
我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。
4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。
5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。
6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。
7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。
数据结构图实验报告

数据结构图实验报告数据结构图实验报告1. 引言数据结构是计算机科学中的重要概念之一,它研究数据的组织、存储和管理方式。
图作为一种重要的数据结构,广泛应用于各个领域,如网络拓扑、社交网络分析等。
本实验旨在通过实际操作,深入理解数据结构图的基本概念和操作。
2. 实验目的本实验的主要目的是掌握图的基本概念和相关操作,包括图的创建、遍历、搜索和最短路径算法等。
3. 实验环境本实验使用C++语言进行编程,采用图的邻接矩阵表示法进行实现。
4. 实验内容4.1 图的创建在实验中,我们首先需要创建一个图。
通过读取输入文件中的数据,我们可以获得图的顶点数和边数,并根据这些信息创建一个空的图。
4.2 图的遍历图的遍历是指从图的某个顶点出发,按照一定的规则依次访问图中的其他顶点。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
我们可以通过实验来比较这两种遍历算法的效率和应用场景。
4.3 图的搜索图的搜索是指从图的某个顶点出发,找到与之相关的特定顶点或边。
常用的图的搜索算法有深度优先搜索和广度优先搜索。
在实验中,我们可以通过输入特定的顶点或边,来观察图的搜索算法的执行过程和结果。
4.4 图的最短路径算法图的最短路径算法是指在图中找到两个顶点之间的最短路径。
常用的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
通过实验,我们可以比较这两种算法的执行效率和应用场景。
5. 实验结果与分析通过实验,我们可以得到以下结论:- 图的邻接矩阵表示法在创建和操作图的过程中具有较高的效率。
- 深度优先搜索算法适用于查找图中的连通分量和回路等问题。
- 广度优先搜索算法适用于查找图中的最短路径和最小生成树等问题。
- 迪杰斯特拉算法适用于求解单源最短路径问题,而弗洛伊德算法适用于求解多源最短路径问题。
6. 实验总结通过本次实验,我们深入学习了数据结构图的基本概念和相关操作。
图作为一种重要的数据结构,具有广泛的应用价值。
在今后的学习和工作中,我们可以运用所学的知识,解决实际问题,提高工作效率。
数据结构实验报告—图

《算法与数据结构》课程实验报告一、实验目的1.实现图的存储结构;2.通过图的相关算法实现,掌握其算法思想。
二、实验内容及要求1.无向带权图的存储结构(邻接矩阵、邻接表等自选)2.实现图的相关算法(1)计算指定顶点的度(2)图的深度优先遍历和广度优先遍历算法(3)分别使用Kruskal和Prim算法求解该图的最小生成树三、系统分析(1)数据方面:定义图的模板基类,在模板类定义中的数据类型参数表<class T,class E>中,T是定点数据的类型,E是边上所附数据的类型。
这个模板基类是按照带权无向图来定义的。
在该实验中定点的数据的类型为char型,边上所附数据的类型为int型。
且图的创建为无向图。
(2)功能方面:1.能够实现图的创建以及图的输出。
2.能够返回顶点在图中位置以及图中位置对应顶点的值。
3.返回当前图中的边数与顶点数。
4.返回输入边的权值。
5.能够插入一个顶点或插入顶点与之相关联的边。
6.删除边或删除顶点与之相关联的边。
7.计算顶点的度。
8.实现深度优先搜索、广度优先搜索遍历。
9.Kruskal算法、Prim算法生成最小生成树。
四、系统设计(1)设计的主要思路根据实验要求,首先确定图的存储结构,在根据存储结构编写模板类,并将需要实现的功能代码完善,再写出实现各个功能的菜单并进行调试。
由于在编写由图生成最小生成树中采用了最小堆以及并查集的算法,故需要将这两个个类的代码完成并进行调试。
最后将此次实验所涉及的类全部整理完全后,通过之前编写的菜单对功能进行依次调试,完成此次实验。
(2)数据结构的设计图是非线性结构,它的每一个顶点可以与多个其他顶点相关联,各顶点之间的关系是任意的。
可以用很多方法来存储图结构。
在此采用邻接矩阵来存储图结构。
首先将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示各顶点之间的邻接关系,称为邻接矩阵。
下面针对带权无向图的邻接矩阵作出说明。
其中有一个类型为顺序表的顶点表向量VerticesList,用以存储顶点的信息,还有一个作为邻接矩阵使用的二维数组Edge,用以存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关。
数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据结构--图的实验报告

图的实验报告班级:电子091 学号:0908140620 姓名:何洁编号:19(一)实验要求创建一个图。
能够实现图的输入,插入顶点和边,利用队列进行深度和广度遍历。
(二)需求分析功能:1,输入图的信息;2,插入一个顶点;3插入一个边;4,删除一个顶点;5,删除一个边;6,深度优先遍历;7,广度优先遍历;8退出。
(三)概要设计本程序采用的是模板类,抽象数据类型有:T,E。
类:template <class T,class E>class Graphmtx {friend istream & operator>>(istream& in,Graphmtx<T, E>& G);friend ostream & operator<<(ostream& out, Graphmtx<T, E>& G);//输出public:Graphmtx(int sz=30, E max=0); //构造函数~Graphmtx () //析构函数{ delete []VerticesList; delete []Edge; }T getValue (int i) {//取顶点i 的值, i 不合理返回0return i >= 0 && i <= numVertices ?V erticesList[i] : NULL;}E getWeight (int v1, int v2) { //取边(v1,v2)上权值return v1 != -1 && v2 != -1 ? Edge[v1][v2] : 0;}int NumberOfEdges(){return numEdges;} //返回当前边数int NumberOfVertices(){return numVertices;} //返回当前顶点int getFirstNeighbor (int v);//取顶点v 的第一个邻接顶点int getNextNeighbor (int v, int w);//取v 的邻接顶点w 的下一邻接顶点bool insertVertex (const T& vertex);//插入顶点vertexbool insertEdge (int v1, int v2, E cost);//插入边(v1, v2),权值为costbool removeVertex (int v);//删去顶点v 和所有与它相关联的边bool removeEdge (int v1, int v2);//在图中删去边(v1,v2)int getVertexPos (T vertex) {//给出顶点vertex在图中的位置for (int i = 0; i < numVertices; i++)if (VerticesList[i] == vertex) return i;return -1;}//int numVertexPos(T vertex);private:int maxVertices;int numEdges;int numVertices;T *VerticesList; //顶点表E **Edge; //邻接矩阵const E maxWeight;};(四)详细设计函数通过调用图类中的函数实现一些功能。
数据结构实验———图实验报告

数据结构实验报告目的要求1.掌握图的存储思想及其存储实现。
2.掌握图的深度、广度优先遍历算法思想及其程序实现。
3.掌握图的常见应用算法的思想及其程序实现。
实验容1.键盘输入数据,建立一个有向图的邻接表。
2.输出该邻接表。
3.在有向图的邻接表的基础上计算各顶点的度,并输出。
4.以有向图的邻接表为基础实现输出它的拓扑排序序列。
5.采用邻接表存储实现无向图的深度优先递归遍历。
6.采用邻接表存储实现无向图的广度优先遍历。
7.在主函数中设计一个简单的菜单,分别调试上述算法。
源程序:主程序的头文件:队列#include <stdio.h>#include <stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2typedef int QElemT ype;typedef struct QNode{ //队的操作QElemT ype data;struct QNode *next;}QNode,*QueuePtr;typedef struct {QueuePtr front;QueuePtr rear;}LinkQueue;void InitQueue(LinkQueue &Q){ //初始化队列Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode));if(!Q.front) exit(OVERFLOW); //存储分配失败Q.front ->next =NULL;}int EnQueue(LinkQueue &Q,QElemT ype e) //插入元素e为Q的新的队尾元素{QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p) exit(OVERFLOW);p->data=e;p->next=NULL;Q.rear->next=p;Q.rear =p;return OK;}int DeQueue(LinkQueue &Q,QElemT ype &e) //删除Q的队头元素,用e返回其值{ if(Q.front ==Q.rear ) return ERROR;QueuePtr p;p=Q.front ->next;e=p->data;Q.front->next=p->next ;if(Q.rear==p) Q.rear =Q.front ;free(p);return OK;}主程序:#include <stdio.h>#include<stdlib.h>#include"duilie.h"#define TRUE 1#define FALSE 0#define Status int#define MAX_VERTEX_NUM 8 /*顶点最大个数*/#define VertexType char /*顶点元素类型*/enum BOOlean {False,True};BOOlean visited[MAX_VERTEX_NUM]; //全局变量——访问标志数组typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;int weight; /*边的权*/}ArcNode; /*表结点*/typedef struct VNode{ int degree,indegree;/*顶点的度,入度*/VertexType data;ArcNode *firstarc;}VNode/*头结点*/,AdjList[MAX_VERTEX_NUM];typedef struct{ AdjList vertices;int vexnum,arcnum;/*顶点的实际数,边的实际数*/}ALGraph;//建立图的邻接表void creat_link(ALGraph *G){ int i,j;ArcNode *s;printf("请依次输入顶点数、边数:");scanf("%d%d",&G->vexnum,&G->arcnum);for (i=0;i<G->vexnum;i++){ G->vertices[i].data='A'+i;G->vertices[i].firstarc=NULL;}for (i=0;i<G->vexnum;){ printf("请输入顶点的数组坐标(若退出,请输入-1):");scanf("%d",&i);if(i==-1) break;printf("请输入顶点所指向下一个顶点的数组坐标:");scanf("%d",&j);s=(ArcNode *)malloc(sizeof(ArcNode));s->adjvex=j;s->nextarc=G->vertices[i].firstarc;G->vertices[i].firstarc=s;}}// 输出邻接表void visit(ALGraph G){ int i;ArcNode *p;printf("%4s%6s%18s\n","NO","data","adjvexs of arcs");for (i=0;i<G.vexnum;i++){printf("%4d%5c ",i,G.vertices[i].data);for(p=G.vertices[i].firstarc;p;p=p->nextarc)printf("%3d",p->adjvex);printf("\n");}}// 计算各顶点的度及入度void cacu(ALGraph *G){ArcNode *p;int i;for (i=0;i<G->vexnum;i++){G->vertices[i].degree=0;G->vertices[i].indegree=0;}//度与初度初始化为零for (i=0;i<G->vexnum;i++)for(p=G->vertices[i].firstarc;p;p=p->nextarc){G->vertices[i].degree++;G->vertices[p->adjvex].degree++;G->vertices[p->adjvex].indegree++;}}void print_degree(ALGraph G){int i;printf("\n Nom data degree indegree\n");for (i=0;i<G.vexnum;i++)printf("\n%4d%5c%7d%8d",i,G.vertices[i].data,G.vertices[i].degree,G.vertices[i].indegree);printf("\n");}// 拓扑排序Status T opologiSort(ALGraph G){int i,count,top=0,stack[50];ArcNode *p;cacu(&G);print_degree(G);printf("\nT opologiSort is \n");for(i=0;i<G.vexnum;i++)if(!G.vertices[i].indegree) stack[top++]=i;count=0;while(top!=0){i=stack[--top];if (count==0) printf("%c",G.vertices[i].data);else printf("-->%c",G.vertices[i].data);count++;for(p=G.vertices[i].firstarc;p;p=p->nextarc)if (!--G.vertices[p->adjvex].indegree)stack[top++]=p->adjvex;}if (count<G.vexnum)return(FALSE); else return(TRUE);}//在图G中寻找第v个顶点的第一个邻接顶点int FirstAdjVex(ALGraph G,int v){if(!G.vertices[v].firstarc) return 0;else return(G.vertices[v].firstarc->adjvex);}//在图G中寻找第v个顶点的相对于u的下一个邻接顶点int NextAdjVex(ALGraph G,int v,int u){ArcNode *p;p=G.vertices[v].firstarc;while(p->adjvex!=u) p=p->nextarc; //在顶点v的弧链中找到顶点u if(p->nextarc==NULL) return 0; //若已是最后一个顶点,返回0 else return(p->nextarc->adjvex); //返回下一个邻接顶点的序号}//采用邻接表存储实现无向图的深度优先递归遍历void DFS(ALGraph G,int i){ int w;visited[i]=True; //访问第i个顶点printf("%d->",i);for(w=FirstAdjVex(G,i);w;w=NextAdjVex(G,i,w))if(!visited[w]) DFS(G,w); //对尚未访问的邻接顶点w调用DFS}void DFSTraverse(ALGraph G){ int i;printf("DFSTraverse:");for(i=0;i<G.vexnum;i++) visited[i]=False; //访问标志数组初始化for(i=0;i<G.vexnum;i++)if(!visited[i]) DFS(G,i); //对尚未访问的顶点调用DFS}//按广度优先非递归的遍历图G,使用辅助队列Q和访问标志数组visitedvoid BFSTraverse(ALGraph G){int i,u,w;LinkQueue Q;printf("BFSTreverse:");for(i=0;i<G.vexnum;i++) visited[i]=False; //访问标志数组初始化InitQueue(Q); //初始化队列for(i=0;i<G.vexnum;i++)if(!visited[i]){visited[i]=True; //访问顶点iprintf("%d->",i);EnQueue(Q,i); //将序号i入队列while(!(Q.front ==Q.rear)) //若队列不空,继续{DeQueue(Q,u); //将队头元素出队列并置为ufor(w=FirstAdjVex(G,u);w;w=NextAdjVex(G,u,w))if(!visited[w]) //对u的尚未访问的邻接顶点w进行访问并入队列{ visited[w]=True;printf("%d->",w);EnQueue(Q,w);}}}}void main(){ALGraph G;int select;printf(" 图的有关操作实验\n ");do{printf("\n1 创建一个有向图的邻接表 2 输出该邻接表\n");printf("3.输出该有向图的度和入度 4.输出该有向图拓扑排序序列\n");printf("5.创建一个无向图的邻接表 6.深度优先递归遍历该无向图\n");printf("7.广度优先遍历该无向图0.退出\n");printf("请输入选择:");scanf("%d",&select);switch(select){case 1:printf("\n创建一个有向图的邻接表:\n");creat_link(&G);break;case 2:printf("\n输出该邻接表:\n");visit(G);break;case 3:printf("\n输出该有向图的度和入度:\n");cacu(&G);print_degree(G);break;case 4:printf("\n输出该有向图拓扑排序序列:\n");if(!T opologiSort(G))printf("T oposort is not success!");break;case 5:printf("\n创建一个无向图的邻接表: \n");creat_link(&G);break;case 6:printf("\n深度优先递归遍历该无向图: \n");DFSTraverse(G);break;case 7:printf("\n广度优先遍历该无向图:\n");BFSTraverse(G);break;case 0:break;default:printf("输入选项错误!重新输入!\n");}}while(select);}运行结果截图:1.主菜单界面:2.创建一个有向图的领接表3.输出该邻接表4. 在有向图的邻接表的基础上计算各顶点的度,并输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构图的实验报告
数据结构图的实验报告
引言:
数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的
本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法
1. 确定数据结构
在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入
为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作
基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程
1. 数据输入
我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边
连接这两个用户。
2. 数据操作
在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优
先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通
过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接
相连的其他用户数量。
3. 结果分析
通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它
能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,
使得分析更加直观和易于理解。
四、实验结果
通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我
们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的
关系进行遍历和排序。
实验结果表明,数据结构图在管理和分析用户关系方面
具有较好的性能和效果。
五、实验总结
本次实验通过构建一个社交网络关系图,探索了数据结构图的基本原理和应用
方法。
我们了解到数据结构图在解决实际问题中的重要性和有效性,并通过实
验验证了其性能和效果。
希望通过这次实验,能够对数据结构图有更深入的理解,并能够将其应用于实际的程序开发和系统优化中。
结语:
数据结构图是计算机科学中一项重要的研究内容,它为我们解决实际问题提供了有力的工具和方法。
通过本次实验,我们深入探讨了数据结构图的基本原理和实际应用,并通过构建一个社交网络关系图,验证了其在用户关系管理和分析中的有效性。
希望通过这次实验,能够对数据结构图有更深入的理解,并能够将其应用于实际的程序开发和系统优化中。