数据结构实验报告图实验
数据结构实验———图实验报告

数据结构实验报告目的要求1.掌握图的存储思想及其存储实现..2.掌握图的深度、广度优先遍历算法思想及其程序实现..3.掌握图的常见应用算法的思想及其程序实现..实验内容1.键盘输入数据;建立一个有向图的邻接表..2.输出该邻接表..3.在有向图的邻接表的基础上计算各顶点的度;并输出..4.以有向图的邻接表为基础实现输出它的拓扑排序序列..5.采用邻接表存储实现无向图的深度优先递归遍历..6.采用邻接表存储实现无向图的广度优先遍历..7.在主函数中设计一个简单的菜单;分别调试上述算法..源程序:主程序的头文件:队列#include <stdio.h>#include <stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2typedef int QElemType;typedef struct QNode{ //队的操作QElemType data;struct QNode *next;}QNode;*QueuePtr;typedef struct {QueuePtr front;QueuePtr rear;}LinkQueue;void InitQueueLinkQueue &Q{ //初始化队列Q.front =Q.rear =QueuePtrmallocsizeofQNode;ifQ.front exitOVERFLOW; //存储分配失败Q.front ->next =NULL;}int EnQueueLinkQueue &Q;QElemType e //插入元素e为Q的新的队尾元素{QueuePtr p;p=QueuePtrmallocsizeofQNode;ifp exitOVERFLOW;p->data=e;p->next=NULL;Q.rear->next=p;Q.rear =p;return OK;}int DeQueueLinkQueue &Q;QElemType &e //删除Q的队头元素;用e返回其值{ ifQ.front ==Q.rear return ERROR;QueuePtr p;p=Q.front ->next;e=p->data;Q.front->next=p->next ;ifQ.rear==p Q.rear =Q.front ;freep;return OK;}主程序:#include <stdio.h>#include<stdlib.h>#include"duilie.h"#define TRUE 1#define FALSE 0#define Status int#define MAX_VERTEX_NUM 8 /*顶点最大个数*/#define VertexType char /*顶点元素类型*/enum BOOlean {False;True};BOOlean visitedMAX_VERTEX_NUM; //全局变量——访问标志数组typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;int weight; /*边的权*/}ArcNode; /*表结点*/typedef struct VNode{ int degree;indegree;/*顶点的度;入度*/V ertexType data;ArcNode *firstarc;}VNode/*头结点*/;AdjListMAX_VERTEX_NUM;typedef struct{ AdjList vertices;int vexnum;arcnum;/*顶点的实际数;边的实际数*/}ALGraph;//建立图的邻接表void creat_linkALGraph *G{ int i;j;ArcNode *s;printf"请依次输入顶点数、边数:";scanf"%d%d";&G->vexnum;&G->arcnum;for i=0;i<G->vexnum;i++{ G->verticesi.data='A'+i;G->verticesi.firstarc=NULL;}for i=0;i<G->vexnum;{ printf"请输入顶点的数组坐标若退出;请输入-1:";scanf"%d";&i;ifi==-1 break;printf"请输入顶点所指向下一个顶点的数组坐标:";scanf"%d";&j;s=ArcNode *mallocsizeofArcNode;s->adjvex=j;s->nextarc=G->verticesi.firstarc;G->verticesi.firstarc=s;}}// 输出邻接表void visitALGraph G{ int i;ArcNode *p;printf"%4s%6s%18s\n";"NO";"data";"adjvexs of arcs";for i=0;i<G.vexnum;i++{printf"%4d%5c ";i;G.verticesi.data;forp=G.verticesi.firstarc;p;p=p->nextarcprintf"%3d";p->adjvex;printf"\n";}}// 计算各顶点的度及入度void cacuALGraph *G{ArcNode *p;int i;for i=0;i<G->vexnum;i++{G->verticesi.degree=0;G->verticesi.indegree=0;}//度与初度初始化为零for i=0;i<G->vexnum;i++forp=G->verticesi.firstarc;p;p=p->nextarc{G->verticesi.degree++;G->verticesp->adjvex.degree++;G->verticesp->adjvex.indegree++;}}void print_degreeALGraph G{int i;printf"\n Nom data degree indegree\n";for i=0;i<G.vexnum;i++printf"\n%4d%5c%7d%8d";i;G.verticesi.data;G.verticesi.degree;G.verticesi.indegree;printf"\n";}// 拓扑排序Status TopologiSortALGraph G{int i;count;top=0;stack50;ArcNode *p;cacu&G;print_degreeG;printf"\nTopologiSort is \n";fori=0;i<G.vexnum;i++ifG.verticesi.indegree stacktop++=i;count=0;whiletop=0{i=stack--top;if count==0 printf"%c";G.verticesi.data;else printf"-->%c";G.verticesi.data;count++;forp=G.verticesi.firstarc;p;p=p->nextarcif --G.verticesp->adjvex.indegreestacktop++=p->adjvex;}if count<G.vexnumreturnFALSE; else returnTRUE;}//在图G中寻找第v个顶点的第一个邻接顶点int FirstAdjVexALGraph G;int v{ifG.verticesv.firstarc return 0;else returnG.verticesv.firstarc->adjvex;}//在图G中寻找第v个顶点的相对于u的下一个邻接顶点int NextAdjVexALGraph G;int v;int u{ArcNode *p;p=G.verticesv.firstarc;whilep->adjvex=u p=p->nextarc; //在顶点v的弧链中找到顶点u ifp->nextarc==NULL return 0; //若已是最后一个顶点;返回0else returnp->nextarc->adjvex; //返回下一个邻接顶点的序号}//采用邻接表存储实现无向图的深度优先递归遍历void DFSALGraph G;int i{ int w;visitedi=True; //访问第i个顶点printf"%d->";i;forw=FirstAdjVexG;i;w;w=NextAdjVexG;i;wifvisitedw DFSG;w; //对尚未访问的邻接顶点w调用DFS}void DFSTraverseALGraph G{ int i;printf"DFSTraverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化fori=0;i<G.vexnum;i++ifvisitedi DFSG;i; //对尚未访问的顶点调用DFS}//按广度优先非递归的遍历图G;使用辅助队列Q和访问标志数组visited void BFSTraverseALGraph G{int i;u;w;LinkQueue Q;printf"BFSTreverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化InitQueueQ; //初始化队列fori=0;i<G.vexnum;i++ifvisitedi{visitedi=True; //访问顶点iprintf"%d->";i;EnQueueQ;i; //将序号i入队列whileQ.front ==Q.rear //若队列不空;继续{DeQueueQ;u; //将队头元素出队列并置为uforw=FirstAdjVexG;u;w;w=NextAdjV exG;u;wifvisitedw //对u的尚未访问的邻接顶点w进行访问并入队列{ visitedw=True;printf"%d->";w;EnQueueQ;w;}}}}void main{ALGraph G;int select;printf" 图的有关操作实验\n ";do{printf"\n1 创建一个有向图的邻接表 2 输出该邻接表\n";printf"3.输出该有向图的度和入度 4.输出该有向图拓扑排序序列\n";printf"5.创建一个无向图的邻接表 6.深度优先递归遍历该无向图\n";printf"7.广度优先遍历该无向图0.退出\n";printf"请输入选择:";scanf"%d";&select;switchselect{case 1:printf"\n创建一个有向图的邻接表:\n";creat_link&G;break;case 2:printf"\n输出该邻接表:\n";visitG;break;case 3:printf"\n输出该有向图的度和入度:\n";cacu&G;print_degreeG;break;case 4:printf"\n输出该有向图拓扑排序序列:\n";ifTopologiSortGprintf"Toposort is not success";break;case 5:printf"\n创建一个无向图的邻接表: \n";creat_link&G;break;case 6:printf"\n深度优先递归遍历该无向图: \n";DFSTraverseG;break;case 7:printf"\n广度优先遍历该无向图:\n";BFSTraverseG;break;case 0:break;default:printf"输入选项错误重新输入\n";}}whileselect;}运行结果截图:1.主菜单界面:2.创建一个有向图的领接表3.输出该邻接表4. 在有向图的邻接表的基础上计算各顶点的度;并输出..5. 输出它的拓扑排序序列6. 输出所建无向图的邻接表7. 深度优先递归遍历该无向图8. 广度优先遍历该无向图说明:本实验用的有向图是课本182页图7.28;无向图为课本168页图a实验总结这次的图的操作实验;与树的操作类似;但又比树复杂;包含更多的存储结构和遍历方法的操作;而且图的遍历需要沿着弧进行;以便输出弧上的信息..本实验中图的遍历采用邻接表的存储结构;在输入图的信息时;首先要画出图的邻接表信息..图有两种遍历的形式;一种为深度优先搜索;另一种为广度优先搜索..由于能力有限;没能实现图的深度非递归优先搜索;而是实现了图的深度递归优先搜索..本实验基本完成了图的操作;也学到了很多关于图的知识和算法..。
数据结构图的实验报告

数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。
2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。
3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。
3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。
3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。
3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。
我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。
3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。
我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。
4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。
5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。
6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。
7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。
《数据结构》实验1实验报告

南京工程学院实验报告<班级>_<学号>_<实验X>.RAR文件形式交付指导老师。
一、实验目的1.熟悉上机环境,进一步掌握语言的结构特点。
2.掌握线性表的顺序存储结构的定义及实现。
3.掌握线性表的链式存储结构——单链表的定义及实现。
4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。
5.掌握线性表在链式存储结构——单链表中的各种基本操作。
二、实验内容1.顺序线性表的建立、插入及删除。
2.链式线性表的建立、插入及删除。
三、实验步骤1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。
2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。
3.建立一个带头结点的单链表,结点的值域为整型数据。
要求将用户输入的数据按尾插入法来建立相应单链表。
四、程序主要语句及作用程序1的主要代码(附简要注释)public struct sequenlist{public const int MAXSIZE=1024; /*最大值为1024*/public elemtype[] vec;public int len; /* 顺序表的长度 */public sequenlist( int n){vec=new elemtype[MAXSIZE ];len = n;}};class Program{static void Main(string[] args){sequenlist list1 = new sequenlist(5);for (int i = 0; i < 5; i++){list1.vec[i] = i;}for (int i = 0; i < 5; i++){Console.Write("{0}---", list1.vec[i]) ;}Console.WriteLine("\n");Console.WriteLine("表长:{0}\n",list1.len );Console.ReadKey();}}程序2的主要代码(附简要注释)public void insertlist(int i, int x){if (len >= MAXSIZE)throw new Exception("上溢"); /*长度大于最大值则抛出异常*/if (i < 1 || i > len + 1)throw new Exception("位置");/插入位置小于1或大于len+1则抛出插入位置错误的异常for (int j = len; j >= i; j--)vec[j] = vec[j - 1]; //注意第j个元素存在数组下标为j-1处vec[i - 1] = x;len++;}};class Program{static void Main(string[] args){sequenlist list2 = new sequenlist(7);list2.vec[0] = 21;list2.vec[1] = 23;list2.vec[2] = 14;list2.vec[3] = 5;list2.vec[4] = 56;list2.vec[5] = 17;list2.vec[6] = 31;Console.Write("请输入第i个位置插入元素:");int loc =Convert.ToInt32( Console.ReadLine());Console.Write("请输入第{0}个位置插入的元素:", loc);int ele = Convert.ToInt32(Console.ReadLine());Console.WriteLine("插入前的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");list2.insertlist(loc, ele);Console.WriteLine("插入后的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");Console.ReadKey();}}程序3的主要代码(附简要注释)class Node{private int num;public int Num{set { num = value; }/输入值get { return num; }/获得值}private Node next;public Node Next{set { next = value; }get { return next; }}}class Pp{static void Main(string[] args){Node head;Node tempNode, tempNode1;int i;head = new Node();Console.WriteLine("输入六项数据:\n");Console.Write("输入第1项数据:");head.Num = Convert.ToInt32(Console.ReadLine());head.Next = null;tempNode = head;for (i = 1; i < 6; i++){tempNode1 = new Node();Console.Write("输入第{0}项数据:",i+1);tempNode1.Num = Convert.ToInt32(Console.ReadLine());/插入项转换为整形数值 tempNode1.Next = null;tempNode.Next = tempNode1;tempNode = tempNode.Next;}Console.WriteLine("线性表:");tempNode = head;for (i = 0; i < 6; i++){Console.Write("{0}", tempNode.Num);if (i < 5){Console.Write("--");}tempNode = tempNode.Next;}Console.ReadKey();}}五、程序运行结果截图程序1程序2程序3六、收获,体会及问题(写得越详细、越个性化、越真实越好,否则我不知道你做这个实验的心路历程,也就无法充分地判断你是否是独立完成的这个实验、你是否在做这个实验时进行了认真仔细地思考、通过这个实验你是否在实践能力上得到了提高)这次试验刚开始做时完全不知道从哪下手,才刚上了几节课,对于线性表、链式表都不是理解的很透彻,不知道用哪个软件编写程序。
数据结构图实验报告

数据结构图实验报告数据结构图实验报告1. 引言数据结构是计算机科学中的重要概念之一,它研究数据的组织、存储和管理方式。
图作为一种重要的数据结构,广泛应用于各个领域,如网络拓扑、社交网络分析等。
本实验旨在通过实际操作,深入理解数据结构图的基本概念和操作。
2. 实验目的本实验的主要目的是掌握图的基本概念和相关操作,包括图的创建、遍历、搜索和最短路径算法等。
3. 实验环境本实验使用C++语言进行编程,采用图的邻接矩阵表示法进行实现。
4. 实验内容4.1 图的创建在实验中,我们首先需要创建一个图。
通过读取输入文件中的数据,我们可以获得图的顶点数和边数,并根据这些信息创建一个空的图。
4.2 图的遍历图的遍历是指从图的某个顶点出发,按照一定的规则依次访问图中的其他顶点。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
我们可以通过实验来比较这两种遍历算法的效率和应用场景。
4.3 图的搜索图的搜索是指从图的某个顶点出发,找到与之相关的特定顶点或边。
常用的图的搜索算法有深度优先搜索和广度优先搜索。
在实验中,我们可以通过输入特定的顶点或边,来观察图的搜索算法的执行过程和结果。
4.4 图的最短路径算法图的最短路径算法是指在图中找到两个顶点之间的最短路径。
常用的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
通过实验,我们可以比较这两种算法的执行效率和应用场景。
5. 实验结果与分析通过实验,我们可以得到以下结论:- 图的邻接矩阵表示法在创建和操作图的过程中具有较高的效率。
- 深度优先搜索算法适用于查找图中的连通分量和回路等问题。
- 广度优先搜索算法适用于查找图中的最短路径和最小生成树等问题。
- 迪杰斯特拉算法适用于求解单源最短路径问题,而弗洛伊德算法适用于求解多源最短路径问题。
6. 实验总结通过本次实验,我们深入学习了数据结构图的基本概念和相关操作。
图作为一种重要的数据结构,具有广泛的应用价值。
在今后的学习和工作中,我们可以运用所学的知识,解决实际问题,提高工作效率。
数据结构实验报告—图

《算法与数据结构》课程实验报告一、实验目的1.实现图的存储结构;2.通过图的相关算法实现,掌握其算法思想。
二、实验内容及要求1.无向带权图的存储结构(邻接矩阵、邻接表等自选)2.实现图的相关算法(1)计算指定顶点的度(2)图的深度优先遍历和广度优先遍历算法(3)分别使用Kruskal和Prim算法求解该图的最小生成树三、系统分析(1)数据方面:定义图的模板基类,在模板类定义中的数据类型参数表<class T,class E>中,T是定点数据的类型,E是边上所附数据的类型。
这个模板基类是按照带权无向图来定义的。
在该实验中定点的数据的类型为char型,边上所附数据的类型为int型。
且图的创建为无向图。
(2)功能方面:1.能够实现图的创建以及图的输出。
2.能够返回顶点在图中位置以及图中位置对应顶点的值。
3.返回当前图中的边数与顶点数。
4.返回输入边的权值。
5.能够插入一个顶点或插入顶点与之相关联的边。
6.删除边或删除顶点与之相关联的边。
7.计算顶点的度。
8.实现深度优先搜索、广度优先搜索遍历。
9.Kruskal算法、Prim算法生成最小生成树。
四、系统设计(1)设计的主要思路根据实验要求,首先确定图的存储结构,在根据存储结构编写模板类,并将需要实现的功能代码完善,再写出实现各个功能的菜单并进行调试。
由于在编写由图生成最小生成树中采用了最小堆以及并查集的算法,故需要将这两个个类的代码完成并进行调试。
最后将此次实验所涉及的类全部整理完全后,通过之前编写的菜单对功能进行依次调试,完成此次实验。
(2)数据结构的设计图是非线性结构,它的每一个顶点可以与多个其他顶点相关联,各顶点之间的关系是任意的。
可以用很多方法来存储图结构。
在此采用邻接矩阵来存储图结构。
首先将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示各顶点之间的邻接关系,称为邻接矩阵。
下面针对带权无向图的邻接矩阵作出说明。
其中有一个类型为顺序表的顶点表向量VerticesList,用以存储顶点的信息,还有一个作为邻接矩阵使用的二维数组Edge,用以存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关。
数据结构--图的实验报告

图的实验报告班级:电子091 学号:0908140620 姓名:何洁编号:19(一)实验要求创建一个图。
能够实现图的输入,插入顶点和边,利用队列进行深度和广度遍历。
(二)需求分析功能:1,输入图的信息;2,插入一个顶点;3插入一个边;4,删除一个顶点;5,删除一个边;6,深度优先遍历;7,广度优先遍历;8退出。
(三)概要设计本程序采用的是模板类,抽象数据类型有:T,E。
类:template <class T,class E>class Graphmtx {friend istream & operator>>(istream& in,Graphmtx<T, E>& G);friend ostream & operator<<(ostream& out, Graphmtx<T, E>& G);//输出public:Graphmtx(int sz=30, E max=0); //构造函数~Graphmtx () //析构函数{ delete []VerticesList; delete []Edge; }T getValue (int i) {//取顶点i 的值, i 不合理返回0return i >= 0 && i <= numVertices ?V erticesList[i] : NULL;}E getWeight (int v1, int v2) { //取边(v1,v2)上权值return v1 != -1 && v2 != -1 ? Edge[v1][v2] : 0;}int NumberOfEdges(){return numEdges;} //返回当前边数int NumberOfVertices(){return numVertices;} //返回当前顶点int getFirstNeighbor (int v);//取顶点v 的第一个邻接顶点int getNextNeighbor (int v, int w);//取v 的邻接顶点w 的下一邻接顶点bool insertVertex (const T& vertex);//插入顶点vertexbool insertEdge (int v1, int v2, E cost);//插入边(v1, v2),权值为costbool removeVertex (int v);//删去顶点v 和所有与它相关联的边bool removeEdge (int v1, int v2);//在图中删去边(v1,v2)int getVertexPos (T vertex) {//给出顶点vertex在图中的位置for (int i = 0; i < numVertices; i++)if (VerticesList[i] == vertex) return i;return -1;}//int numVertexPos(T vertex);private:int maxVertices;int numEdges;int numVertices;T *VerticesList; //顶点表E **Edge; //邻接矩阵const E maxWeight;};(四)详细设计函数通过调用图类中的函数实现一些功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邻接矩阵的实现1. 实验目的(1)掌握图的逻辑结构(2)掌握图的邻接矩阵的存储结构(3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容(1)建立无向图的邻接矩阵存储(2)进行深度优先遍历(3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template<class DataType> class MGraph {public:MGraph(DataType a[], int n, int e);~MGraph(){void DFSTraverse(int v);void BFSTraverse(int v);private:DataType vertex[MaxSize];int arc[MaxSize][MaxSize];}int vertexNum, arcNum;};#endifMGraph.cpp#include<iostream> using namespace std;#include "MGraph.h" extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e) { int i, j, k;vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++) vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++)arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: "cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0)DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v)int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v]; visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++) if(arc[v][j] == 1 &&visited[j] == 0){ cout << vertex[j]; visited[j] = 1;Q[++rear] = j;}}}MGraph_main.cpp #include<iostream> using namespace std;#include "MGraph.h"extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e){int i, j, k; vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++) vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++) arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: "cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0) DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v) {int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v];visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] ==0){ cout << vertex[j]; visited[j] = 1; Q[++rear] = j;}}4. 运行与测试5. 总结与心得通过该实验的代码编写与调试,熟悉了邻接矩阵在图结构中的应用,在调试过程中遇到很多的问题,在解决问题过程中也使我的写代码能力得到提升二,邻接表的实现1. 实验目的(1)掌握图的逻辑结构(2)掌握图的邻接表存储结构(3)验证图的邻接表存储及其遍历操作的实现2. 实验内容(1)建立一个有向图的邻接表存储结构(2)对建立的有向图进行深度优先遍历(3)对建立的有向图进行广度优先遍历3. 设计与编码ALGraph.h#ifndef ALGraph_H#define ALGraph_Hconst int MaxSize = 10;struct ArcNodeint adjvex;ArcNode * next;};template<class DataType>struct VertexNode{DataType vertex;ArcNode * firstedge;};template<class DataType>class ALGraph{public:ALGraph(DataType a[], int n, int e);~ALGraph();void DFSTraverse(int v);void BFSTraverse(int v);private:VertexNode<DataType> adjlist[MaxSize]; int vertexNum,arcNum;};#endifALGraph.cpp#include<iostream> using namespace std;#include"ALGraph.h"extern int visited[MaxSize];template<class DataType>ALGraph<DataType>::ALGraph(DataType a[], int n, int e) {ArcNode * s;int i, j, k;vertexNum = n; arcNum = e;for(i = 0; i < vertexNum; i++){adjlist[i].vertex = a[i];adjlist[i].firstedge = NULL;}for(k = 0; k < arcNum; k++){cout << "Please enter the edge of the serial number of two vertices: ";cin >> i >> j;s = new ArcNode; s->adjvex = j;s->next = adjlist[i].firstedge;adjlist[i].firstedge = s;}template<class DataType>ALGraph<DataType>::~ALGraph(){ArcNode * p = NULL;for(int i = 0; i < vertexNum; i++){p = adjlist[i].firstedge;while(p != NULL){adjlist[i].firstedge = p->next;delete p;p = adjlist[i].firstedge;}}}template<class DataType>void ALGraph<DataType>::DFSTraverse(int v) { ArcNode * p = NULL; int j;cout << adjlist[v].vertex;visited[v] = 1;p = adjlist[v].firstedge;while(p != NULL){j = p->adjvex;if(visited[j] == 0) DFSTraverse(j);p = p->next;}}template<class DataType>void ALGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;ArcNode * p = NULL;cout << adjlist[v].vertex; visited[v] = 1; Q[++rear] = v;while(front != rear){v = Q[++front];p = adjlist[v].firstedge;while(p != NULL){int j = p->adjvex;if(visited[j] == 0){cout << adjlist[j].vertex;visited[j] = 1; Q[++rear] = j;}p = p->next;}}}ALGraph_main.cpp#include<iostream> using namespace std;#include"ALGraph.cpp"int visited[MaxSize] = {0};int main(){char ch[] = {'A','B','C','D','E'};int i;ALGraph<char> ALG(ch, 5, 6);for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Depth-first traverse sequence is: ";ALG.DFSTraverse(0);cout << endl;for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Breadth-first traverse sequence is:ALG.BFSTraverse(0);cout << endl;return 0;}4. 运行与调试5. 总结与心得通过该实验,掌握了图的邻接表存储结构。