数据结构实验报告图实验

合集下载

数据结构实验———图实验报告

数据结构实验———图实验报告

数据结构实验报告目的要求1.掌握图的存储思想及其存储实现..2.掌握图的深度、广度优先遍历算法思想及其程序实现..3.掌握图的常见应用算法的思想及其程序实现..实验内容1.键盘输入数据;建立一个有向图的邻接表..2.输出该邻接表..3.在有向图的邻接表的基础上计算各顶点的度;并输出..4.以有向图的邻接表为基础实现输出它的拓扑排序序列..5.采用邻接表存储实现无向图的深度优先递归遍历..6.采用邻接表存储实现无向图的广度优先遍历..7.在主函数中设计一个简单的菜单;分别调试上述算法..源程序:主程序的头文件:队列#include <stdio.h>#include <stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2typedef int QElemType;typedef struct QNode{ //队的操作QElemType data;struct QNode *next;}QNode;*QueuePtr;typedef struct {QueuePtr front;QueuePtr rear;}LinkQueue;void InitQueueLinkQueue &Q{ //初始化队列Q.front =Q.rear =QueuePtrmallocsizeofQNode;ifQ.front exitOVERFLOW; //存储分配失败Q.front ->next =NULL;}int EnQueueLinkQueue &Q;QElemType e //插入元素e为Q的新的队尾元素{QueuePtr p;p=QueuePtrmallocsizeofQNode;ifp exitOVERFLOW;p->data=e;p->next=NULL;Q.rear->next=p;Q.rear =p;return OK;}int DeQueueLinkQueue &Q;QElemType &e //删除Q的队头元素;用e返回其值{ ifQ.front ==Q.rear return ERROR;QueuePtr p;p=Q.front ->next;e=p->data;Q.front->next=p->next ;ifQ.rear==p Q.rear =Q.front ;freep;return OK;}主程序:#include <stdio.h>#include<stdlib.h>#include"duilie.h"#define TRUE 1#define FALSE 0#define Status int#define MAX_VERTEX_NUM 8 /*顶点最大个数*/#define VertexType char /*顶点元素类型*/enum BOOlean {False;True};BOOlean visitedMAX_VERTEX_NUM; //全局变量——访问标志数组typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;int weight; /*边的权*/}ArcNode; /*表结点*/typedef struct VNode{ int degree;indegree;/*顶点的度;入度*/V ertexType data;ArcNode *firstarc;}VNode/*头结点*/;AdjListMAX_VERTEX_NUM;typedef struct{ AdjList vertices;int vexnum;arcnum;/*顶点的实际数;边的实际数*/}ALGraph;//建立图的邻接表void creat_linkALGraph *G{ int i;j;ArcNode *s;printf"请依次输入顶点数、边数:";scanf"%d%d";&G->vexnum;&G->arcnum;for i=0;i<G->vexnum;i++{ G->verticesi.data='A'+i;G->verticesi.firstarc=NULL;}for i=0;i<G->vexnum;{ printf"请输入顶点的数组坐标若退出;请输入-1:";scanf"%d";&i;ifi==-1 break;printf"请输入顶点所指向下一个顶点的数组坐标:";scanf"%d";&j;s=ArcNode *mallocsizeofArcNode;s->adjvex=j;s->nextarc=G->verticesi.firstarc;G->verticesi.firstarc=s;}}// 输出邻接表void visitALGraph G{ int i;ArcNode *p;printf"%4s%6s%18s\n";"NO";"data";"adjvexs of arcs";for i=0;i<G.vexnum;i++{printf"%4d%5c ";i;G.verticesi.data;forp=G.verticesi.firstarc;p;p=p->nextarcprintf"%3d";p->adjvex;printf"\n";}}// 计算各顶点的度及入度void cacuALGraph *G{ArcNode *p;int i;for i=0;i<G->vexnum;i++{G->verticesi.degree=0;G->verticesi.indegree=0;}//度与初度初始化为零for i=0;i<G->vexnum;i++forp=G->verticesi.firstarc;p;p=p->nextarc{G->verticesi.degree++;G->verticesp->adjvex.degree++;G->verticesp->adjvex.indegree++;}}void print_degreeALGraph G{int i;printf"\n Nom data degree indegree\n";for i=0;i<G.vexnum;i++printf"\n%4d%5c%7d%8d";i;G.verticesi.data;G.verticesi.degree;G.verticesi.indegree;printf"\n";}// 拓扑排序Status TopologiSortALGraph G{int i;count;top=0;stack50;ArcNode *p;cacu&G;print_degreeG;printf"\nTopologiSort is \n";fori=0;i<G.vexnum;i++ifG.verticesi.indegree stacktop++=i;count=0;whiletop=0{i=stack--top;if count==0 printf"%c";G.verticesi.data;else printf"-->%c";G.verticesi.data;count++;forp=G.verticesi.firstarc;p;p=p->nextarcif --G.verticesp->adjvex.indegreestacktop++=p->adjvex;}if count<G.vexnumreturnFALSE; else returnTRUE;}//在图G中寻找第v个顶点的第一个邻接顶点int FirstAdjVexALGraph G;int v{ifG.verticesv.firstarc return 0;else returnG.verticesv.firstarc->adjvex;}//在图G中寻找第v个顶点的相对于u的下一个邻接顶点int NextAdjVexALGraph G;int v;int u{ArcNode *p;p=G.verticesv.firstarc;whilep->adjvex=u p=p->nextarc; //在顶点v的弧链中找到顶点u ifp->nextarc==NULL return 0; //若已是最后一个顶点;返回0else returnp->nextarc->adjvex; //返回下一个邻接顶点的序号}//采用邻接表存储实现无向图的深度优先递归遍历void DFSALGraph G;int i{ int w;visitedi=True; //访问第i个顶点printf"%d->";i;forw=FirstAdjVexG;i;w;w=NextAdjVexG;i;wifvisitedw DFSG;w; //对尚未访问的邻接顶点w调用DFS}void DFSTraverseALGraph G{ int i;printf"DFSTraverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化fori=0;i<G.vexnum;i++ifvisitedi DFSG;i; //对尚未访问的顶点调用DFS}//按广度优先非递归的遍历图G;使用辅助队列Q和访问标志数组visited void BFSTraverseALGraph G{int i;u;w;LinkQueue Q;printf"BFSTreverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化InitQueueQ; //初始化队列fori=0;i<G.vexnum;i++ifvisitedi{visitedi=True; //访问顶点iprintf"%d->";i;EnQueueQ;i; //将序号i入队列whileQ.front ==Q.rear //若队列不空;继续{DeQueueQ;u; //将队头元素出队列并置为uforw=FirstAdjVexG;u;w;w=NextAdjV exG;u;wifvisitedw //对u的尚未访问的邻接顶点w进行访问并入队列{ visitedw=True;printf"%d->";w;EnQueueQ;w;}}}}void main{ALGraph G;int select;printf" 图的有关操作实验\n ";do{printf"\n1 创建一个有向图的邻接表 2 输出该邻接表\n";printf"3.输出该有向图的度和入度 4.输出该有向图拓扑排序序列\n";printf"5.创建一个无向图的邻接表 6.深度优先递归遍历该无向图\n";printf"7.广度优先遍历该无向图0.退出\n";printf"请输入选择:";scanf"%d";&select;switchselect{case 1:printf"\n创建一个有向图的邻接表:\n";creat_link&G;break;case 2:printf"\n输出该邻接表:\n";visitG;break;case 3:printf"\n输出该有向图的度和入度:\n";cacu&G;print_degreeG;break;case 4:printf"\n输出该有向图拓扑排序序列:\n";ifTopologiSortGprintf"Toposort is not success";break;case 5:printf"\n创建一个无向图的邻接表: \n";creat_link&G;break;case 6:printf"\n深度优先递归遍历该无向图: \n";DFSTraverseG;break;case 7:printf"\n广度优先遍历该无向图:\n";BFSTraverseG;break;case 0:break;default:printf"输入选项错误重新输入\n";}}whileselect;}运行结果截图:1.主菜单界面:2.创建一个有向图的领接表3.输出该邻接表4. 在有向图的邻接表的基础上计算各顶点的度;并输出..5. 输出它的拓扑排序序列6. 输出所建无向图的邻接表7. 深度优先递归遍历该无向图8. 广度优先遍历该无向图说明:本实验用的有向图是课本182页图7.28;无向图为课本168页图a实验总结这次的图的操作实验;与树的操作类似;但又比树复杂;包含更多的存储结构和遍历方法的操作;而且图的遍历需要沿着弧进行;以便输出弧上的信息..本实验中图的遍历采用邻接表的存储结构;在输入图的信息时;首先要画出图的邻接表信息..图有两种遍历的形式;一种为深度优先搜索;另一种为广度优先搜索..由于能力有限;没能实现图的深度非递归优先搜索;而是实现了图的深度递归优先搜索..本实验基本完成了图的操作;也学到了很多关于图的知识和算法..。

数据结构实验报告-答案.doc

数据结构实验报告-答案.doc

数据结构实验报告-答案数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。

实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。

实验主要步骤:1、分析、理解给出的示例程序。

2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。

3、修改程序:(1)增加插入结点的功能。

(2)将建立链表的方法改为头插入法。

程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存ListNode*AddNode();//修改程序:增加节点。

用头插法,返回头指针//==========主函数==============voidmain(){charch[10],num[5];LinkListhead;head=C reatList();//用头插入法建立单链表,返回头指针printlist(head);//遍历链表输出其值printf(“Deletenode(y/n):“);//输入“y“或“n“去选择是否删除结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){printf(“PleaseinputDelete_data:“);scanf(“%s“,ch);//输入要删除的字符串DeleteList(head,ch);printlist(head);}printf(“Addnode?(y/n):“);//输入“y“或“n“去选择是否增加结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){head=A ddNode(head);}printlist(head);DeleteAll(head);//删除所有结点,释放内存}//==========用尾插入法建立带头结点的单链表===========LinkListCreatListR1(void){charch[10];LinkListhead=(Li nkList)malloc(sizeof(ListNode));//生成头结点ListNode*s,*r,*pp;r=head;r->next=NULL;printf(“Input#toend“);//输入“#“代表输入结束printf(“\nPleaseinputN ode_data:“);scanf(“%s“,ch);//输入各结点的字符串while(strcmp(ch,“#“)!=0){pp=LocateNode(head,ch);//按值查找结点,返回结点指针if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);r->next=s;r=s; r->next=NULL;}printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);}returnhead;//返回头指针}//==========用头插入法建立带头结点的单链表===========LinkListCreatList(void){charch[100];LinkListhead,p;head =(LinkList)malloc(sizeof(ListNode));head->next=NULL;while(1){printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);if(strcmp (ch,“#“)){if(LocateNode(head,ch)==NULL){strcpy(head->data,ch);p=(Li nkList)malloc(sizeof(ListNode));p->next=head;head=p;}}elsebreak;}retu rnhead;}//==========按值查找结点,找到则返回该结点的位置,否则返回NULL==========ListNode*LocateNode(LinkListhead,char*key){List Node*p=head->next;//从开始结点比较while(p!=NULL//扫描下一个结点returnp;//若p=NULL则查找失败,否则p指向找到的值为key的结点}//==========修改程序:增加节点=======ListNode*AddNode(LinkListhead){charch[10];ListNode*s,*pp ;printf(“\nPleaseinputaNewNode_data:“);scanf(“%s“,ch);//输入各结点的字符串pp=LocateNode(head,ch);//按值查找结点,返回结点指针printf(“ok2\n“);if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);printf(“ok3\n“);s->next=head->next;head->next=s;}returnhead;}//==========删除带头结点的单链表中的指定结点=======voidDeleteList(LinkListhead,char*key){ListNode*p,*r,*q=hea d;p=LocateNode(head,key);//按key值查找结点的if(p==NULL){//若没有找到结点,退出printf(“positionerror”);exit(0);}while(q->next!=p)//p 为要删除的结点,q为p的前结点q=q->next;r=q->next;q->next=r->next;free(r);//释放结点}//===========打印链表=======voidprintlist(LinkListhead){ListNode*p=head->next;//从开始结点打印while(p){printf(“%s,“,p->data);p=p->next;}printf(“\n“);}//==========删除所有结点,释放空间===========voidDeleteAll(LinkListhead){ListNode*p=head,*r;while( p->next){r=p->next;free(p);p=r;}free(p);}实验结果:Input#toendPleaseinputNode_data:batInput#toendPleaseinputNode_data: catInput#toendPleaseinputNode_data:eatInput#toendPleaseinputNode_da ta:fatInput#toendPleaseinputNode_data:hatInput#toendPleaseinputNode_ data:jatInput#toendPleaseinputNode_data:latInput#toendPleaseinputNode _data:matInput#toendPleaseinputNode_data:#mat,lat,jat,hat,fat,eat,cat,bat ,Deletenode(y/n):yPleaseinputDelete_data:hatmat,lat,jat,fat,eat,cat,bat,Ins ertnode(y/n):yPleaseinputInsert_data:putposition:5mat,lat,jat,fat,eat,put,c at,bat,请按任意键继续...示意图:latjathatfateatcatbatmatNULLheadlatjathatfateatcatbatmatheadlatjatfateat putcatbatmatheadNULLNULL心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。

数据结构实验报告-队列的操作

数据结构实验报告-队列的操作
printf("元素入队列");
for(i=0 ; i<10; i++)
{
printf(" %d ",j);
EnQueue(S,j); //元素入队列
j++;
}
printf("\n元素出队列");
for(i=0 ; i<10; i++)
{
DeQueue(S,j); //元素出队列
printf(" %d ",j);
}
}
运行结果截图:
1.
四、分析与讨论
对上机实践结果进行分析,上机的心得体会。
五、教师评语
签名:
日期:
成绩
附源程序清单:
1.#include<iostream>
#include<queue>
using namespace std;
void main()
{
queue<char> cque;
char c;
typedef struct {
QElemType *base; // 动态分配存储空间
int front; // 头指针,若队列不空,指向队列头元素
int rear; // 尾指针,若队列不空, //指向队列尾元素 的下一个位置
}SqQueue;
Status InitQueue (SqQueue &Q) { // 构造一个空队列Q
if ((Q.rear+1) % MAXQSIZE == Q.front)
return ERROR; //队列满
Q.base[Q.rear] = e;

数据结构试验报告-图的基本操作

数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。

2、熟练掌握图的存储结构。

3、熟练掌握图的两种遍历算法。

二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。

[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。

【测试数据】由学生依据软件工程的测试技术自己确定。

三、实验前的准备工作1、掌握图的相关概念。

2、掌握图的逻辑结构和存储结构。

3、掌握图的两种遍历算法的实现。

四、实验报告要求1、实验报告要按照实验报告格式规范书写。

2、实验上要写出多批测试数据的运行结果。

3、结合运行结果,对程序进行分析。

【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。

2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。

3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。

3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。

3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。

3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。

我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。

3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。

我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。

4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。

5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。

6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。

7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。

数据结构实验报告

数据结构实验报告

A
B
C D
E F
G
主程序模块
结点单元模块构建先序二叉树模块
二叉树遍历模块
main
CreatBTree Preorder Inorder Postorde
程序的功能设计、数据结构设计及整体结构
设计合理; 程序运行情况良好, 算法说明清 晰,理论分析与计算正确,实验数据无误 熟练使用开辟工具, 能够迅速准确的进行调
试、纠错和运行
良好的编程风格(缩进,注释,变量名、函
数名见名知意等,程序运行界面友好)
提交的电子文档及打印文档的书写、存放符
合规范化要求
能简明扼要地阐述设计的主要内容, 能准确
流利地回答各种问题
端正的学习态度及认真刻苦程度等
30
20
10
10
20
10。

《数据结构》实验1实验报告

南京工程学院实验报告<班级>_<学号>_<实验X>.RAR文件形式交付指导老师。

一、实验目的1.熟悉上机环境,进一步掌握语言的结构特点。

2.掌握线性表的顺序存储结构的定义及实现。

3.掌握线性表的链式存储结构——单链表的定义及实现。

4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。

5.掌握线性表在链式存储结构——单链表中的各种基本操作。

二、实验内容1.顺序线性表的建立、插入及删除。

2.链式线性表的建立、插入及删除。

三、实验步骤1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。

2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。

3.建立一个带头结点的单链表,结点的值域为整型数据。

要求将用户输入的数据按尾插入法来建立相应单链表。

四、程序主要语句及作用程序1的主要代码(附简要注释)public struct sequenlist{public const int MAXSIZE=1024; /*最大值为1024*/public elemtype[] vec;public int len; /* 顺序表的长度 */public sequenlist( int n){vec=new elemtype[MAXSIZE ];len = n;}};class Program{static void Main(string[] args){sequenlist list1 = new sequenlist(5);for (int i = 0; i < 5; i++){list1.vec[i] = i;}for (int i = 0; i < 5; i++){Console.Write("{0}---", list1.vec[i]) ;}Console.WriteLine("\n");Console.WriteLine("表长:{0}\n",list1.len );Console.ReadKey();}}程序2的主要代码(附简要注释)public void insertlist(int i, int x){if (len >= MAXSIZE)throw new Exception("上溢"); /*长度大于最大值则抛出异常*/if (i < 1 || i > len + 1)throw new Exception("位置");/插入位置小于1或大于len+1则抛出插入位置错误的异常for (int j = len; j >= i; j--)vec[j] = vec[j - 1]; //注意第j个元素存在数组下标为j-1处vec[i - 1] = x;len++;}};class Program{static void Main(string[] args){sequenlist list2 = new sequenlist(7);list2.vec[0] = 21;list2.vec[1] = 23;list2.vec[2] = 14;list2.vec[3] = 5;list2.vec[4] = 56;list2.vec[5] = 17;list2.vec[6] = 31;Console.Write("请输入第i个位置插入元素:");int loc =Convert.ToInt32( Console.ReadLine());Console.Write("请输入第{0}个位置插入的元素:", loc);int ele = Convert.ToInt32(Console.ReadLine());Console.WriteLine("插入前的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");list2.insertlist(loc, ele);Console.WriteLine("插入后的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");Console.ReadKey();}}程序3的主要代码(附简要注释)class Node{private int num;public int Num{set { num = value; }/输入值get { return num; }/获得值}private Node next;public Node Next{set { next = value; }get { return next; }}}class Pp{static void Main(string[] args){Node head;Node tempNode, tempNode1;int i;head = new Node();Console.WriteLine("输入六项数据:\n");Console.Write("输入第1项数据:");head.Num = Convert.ToInt32(Console.ReadLine());head.Next = null;tempNode = head;for (i = 1; i < 6; i++){tempNode1 = new Node();Console.Write("输入第{0}项数据:",i+1);tempNode1.Num = Convert.ToInt32(Console.ReadLine());/插入项转换为整形数值 tempNode1.Next = null;tempNode.Next = tempNode1;tempNode = tempNode.Next;}Console.WriteLine("线性表:");tempNode = head;for (i = 0; i < 6; i++){Console.Write("{0}", tempNode.Num);if (i < 5){Console.Write("--");}tempNode = tempNode.Next;}Console.ReadKey();}}五、程序运行结果截图程序1程序2程序3六、收获,体会及问题(写得越详细、越个性化、越真实越好,否则我不知道你做这个实验的心路历程,也就无法充分地判断你是否是独立完成的这个实验、你是否在做这个实验时进行了认真仔细地思考、通过这个实验你是否在实践能力上得到了提高)这次试验刚开始做时完全不知道从哪下手,才刚上了几节课,对于线性表、链式表都不是理解的很透彻,不知道用哪个软件编写程序。

数据结构实验报告—图

《算法与数据结构》课程实验报告一、实验目的1.实现图的存储结构;2.通过图的相关算法实现,掌握其算法思想。

二、实验内容及要求1.无向带权图的存储结构(邻接矩阵、邻接表等自选)2.实现图的相关算法(1)计算指定顶点的度(2)图的深度优先遍历和广度优先遍历算法(3)分别使用Kruskal和Prim算法求解该图的最小生成树三、系统分析(1)数据方面:定义图的模板基类,在模板类定义中的数据类型参数表<class T,class E>中,T是定点数据的类型,E是边上所附数据的类型。

这个模板基类是按照带权无向图来定义的。

在该实验中定点的数据的类型为char型,边上所附数据的类型为int型。

且图的创建为无向图。

(2)功能方面:1.能够实现图的创建以及图的输出。

2.能够返回顶点在图中位置以及图中位置对应顶点的值。

3.返回当前图中的边数与顶点数。

4.返回输入边的权值。

5.能够插入一个顶点或插入顶点与之相关联的边。

6.删除边或删除顶点与之相关联的边。

7.计算顶点的度。

8.实现深度优先搜索、广度优先搜索遍历。

9.Kruskal算法、Prim算法生成最小生成树。

四、系统设计(1)设计的主要思路根据实验要求,首先确定图的存储结构,在根据存储结构编写模板类,并将需要实现的功能代码完善,再写出实现各个功能的菜单并进行调试。

由于在编写由图生成最小生成树中采用了最小堆以及并查集的算法,故需要将这两个个类的代码完成并进行调试。

最后将此次实验所涉及的类全部整理完全后,通过之前编写的菜单对功能进行依次调试,完成此次实验。

(2)数据结构的设计图是非线性结构,它的每一个顶点可以与多个其他顶点相关联,各顶点之间的关系是任意的。

可以用很多方法来存储图结构。

在此采用邻接矩阵来存储图结构。

首先将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示各顶点之间的邻接关系,称为邻接矩阵。

下面针对带权无向图的邻接矩阵作出说明。

其中有一个类型为顺序表的顶点表向量VerticesList,用以存储顶点的信息,还有一个作为邻接矩阵使用的二维数组Edge,用以存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关。

数据结构--图的实验报告

图的实验报告班级:电子091 学号:0908140620 姓名:何洁编号:19(一)实验要求创建一个图。

能够实现图的输入,插入顶点和边,利用队列进行深度和广度遍历。

(二)需求分析功能:1,输入图的信息;2,插入一个顶点;3插入一个边;4,删除一个顶点;5,删除一个边;6,深度优先遍历;7,广度优先遍历;8退出。

(三)概要设计本程序采用的是模板类,抽象数据类型有:T,E。

类:template <class T,class E>class Graphmtx {friend istream & operator>>(istream& in,Graphmtx<T, E>& G);friend ostream & operator<<(ostream& out, Graphmtx<T, E>& G);//输出public:Graphmtx(int sz=30, E max=0); //构造函数~Graphmtx () //析构函数{ delete []VerticesList; delete []Edge; }T getValue (int i) {//取顶点i 的值, i 不合理返回0return i >= 0 && i <= numVertices ?V erticesList[i] : NULL;}E getWeight (int v1, int v2) { //取边(v1,v2)上权值return v1 != -1 && v2 != -1 ? Edge[v1][v2] : 0;}int NumberOfEdges(){return numEdges;} //返回当前边数int NumberOfVertices(){return numVertices;} //返回当前顶点int getFirstNeighbor (int v);//取顶点v 的第一个邻接顶点int getNextNeighbor (int v, int w);//取v 的邻接顶点w 的下一邻接顶点bool insertVertex (const T& vertex);//插入顶点vertexbool insertEdge (int v1, int v2, E cost);//插入边(v1, v2),权值为costbool removeVertex (int v);//删去顶点v 和所有与它相关联的边bool removeEdge (int v1, int v2);//在图中删去边(v1,v2)int getVertexPos (T vertex) {//给出顶点vertex在图中的位置for (int i = 0; i < numVertices; i++)if (VerticesList[i] == vertex) return i;return -1;}//int numVertexPos(T vertex);private:int maxVertices;int numEdges;int numVertices;T *VerticesList; //顶点表E **Edge; //邻接矩阵const E maxWeight;};(四)详细设计函数通过调用图类中的函数实现一些功能。

数据结构实验报告及心得体会

数据结构实验报告及心得体会一、概述:介绍本次实验的目的、背景以及所使用的实验环境和工具。

本次实验旨在通过实际操作,深入理解和掌握数据结构的原理及应用。

实验背景源于课程学习的理论知识与实际应用相结合的需求,通过实验操作,期望能够将课堂所学的数据结构知识更好地运用到实际编程和解决现实问题中。

本次实验所使用的实验环境为先进的计算机实验室,配备了高性能的计算机硬件和丰富的软件开发工具。

为了完成实验,我使用了Java编程语言,并结合Eclipse开发环境进行编程和调试。

我还参考了相关的数据结构专业书籍和在线资源,以便更好地理解和应用数据结构知识。

在实验过程中,我严格按照实验指导书的步骤进行操作,并认真记录了实验数据和结果。

通过本次实验,我深刻体会到了数据结构的重要性,也对数据结构的实现和应用有了更深入的了解。

二、实验内容:分别介绍线性数据结构(线性表)、非线性数据结构(二叉树、图)的实验内容,包括其实现方法、操作过程等。

每个实验都包含具体的实验目的和预期结果。

三、实验过程及结果分析:详细描述实验过程,包括实验步骤的执行情况,遇到的问题及解决方法。

对实验结果进行展示,并进行数据分析和结论。

这部分是实验报告的核心部分,体现了学生的实践能力和问题解决能力。

四、心得体会:分享在实验过程中的心得体会,包括遇到的困难、收获,对数据结构的理解与认识提升,以及实验过程中的团队协作和学习体验等。

这部分内容可以体现出学生的思考深度和学习的主观感受。

五、总结与展望:对本次实验报告进行总结,并对未来数据结构与算法的学习提出展望和建议。

这部分内容可以帮助学生梳理所学知识,明确未来的学习方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图实验一,邻接矩阵的实现1.实验目的(1)掌握图的逻辑结构(2)掌握图的邻接矩阵的存储结构(3)验证图的邻接矩阵存储及其遍历操作的实现2.实验内容(1)建立无向图的邻接矩阵存储(2)进行深度优先遍历(3)进行广度优先遍历3.设计与编码MGraph.h#ifndef MGraph_H#define MGraph_Hconst int MaxSize = 10;template<class DataType>class MGraph{public:MGraph(DataType a[], int n, int e);~MGraph(){}void DFSTraverse(int v);void BFSTraverse(int v);private:DataType vertex[MaxSize];int arc[MaxSize][MaxSize];int vertexNum, arcNum;};#endifMGraph.cpp#include<iostream>using namespace std;#include "MGraph.h"extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e) {int i, j, k;vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++)vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++)arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: ";cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0)DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v];visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0){cout << vertex[j];visited[j] = 1;Q[++rear] = j;}}}MGraph_main.cpp#include<iostream>using namespace std;#include "MGraph.h"extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e) {int i, j, k;vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++)vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++)arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: ";cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0)DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v];visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0){cout << vertex[j];visited[j] = 1;Q[++rear] = j;}}}4.运行与测试5.总结与心得通过该实验的代码编写与调试,熟悉了邻接矩阵在图结构中的应用,在调试过程中遇到很多的问题,在解决问题过程中也使我的写代码能力得到提升二,邻接表的实现1.实验目的(1)掌握图的逻辑结构(2)掌握图的邻接表存储结构(3)验证图的邻接表存储及其遍历操作的实现2.实验内容(1)建立一个有向图的邻接表存储结构(2)对建立的有向图进行深度优先遍历(3)对建立的有向图进行广度优先遍历3.设计与编码ALGraph.h#ifndef ALGraph_H#define ALGraph_Hconst int MaxSize = 10;struct ArcNode{int adjvex;ArcNode * next;};template<class DataType>struct VertexNode{DataType vertex;ArcNode * firstedge;};template<class DataType>class ALGraph{public:ALGraph(DataType a[], int n, int e); ~ALGraph();void DFSTraverse(int v);void BFSTraverse(int v);private:VertexNode<DataType> adjlist[MaxSize]; int vertexNum, arcNum;};#endifALGraph.cpp#include<iostream>using namespace std;#include"ALGraph.h"extern int visited[MaxSize];template<class DataType>ALGraph<DataType>::ALGraph(DataType a[], int n, int e) {ArcNode * s;int i, j, k;vertexNum = n; arcNum = e;for(i = 0; i < vertexNum; i++){adjlist[i].vertex = a[i];adjlist[i].firstedge = NULL;}for(k = 0; k < arcNum; k++){cout << "Please enter the edge of the serial number of two vertices: ";cin >> i >> j;s = new ArcNode; s->adjvex = j;s->next = adjlist[i].firstedge;adjlist[i].firstedge = s;}}template<class DataType>ALGraph<DataType>::~ALGraph(){ArcNode * p = NULL;for(int i = 0; i < vertexNum; i++){p = adjlist[i].firstedge;while(p != NULL){adjlist[i].firstedge = p->next;delete p;p = adjlist[i].firstedge;}}}template<class DataType>void ALGraph<DataType>::DFSTraverse(int v) {ArcNode * p = NULL; int j;cout << adjlist[v].vertex;visited[v] = 1;p = adjlist[v].firstedge;while(p != NULL){j = p->adjvex;if(visited[j] == 0) DFSTraverse(j);p = p->next;}}template<class DataType>void ALGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;ArcNode * p = NULL;cout << adjlist[v].vertex; visited[v] = 1; Q[++rear] = v; while(front != rear){v = Q[++front];p = adjlist[v].firstedge;while(p != NULL){int j = p->adjvex;if(visited[j] == 0){cout << adjlist[j].vertex; visited[j] = 1; Q[++rear] = j;}p = p->next;}}}ALGraph_main.cpp#include<iostream>using namespace std;#include"ALGraph.cpp"int visited[MaxSize] = {0};int main(){char ch[] = {'A','B','C','D','E'};int i;ALGraph<char> ALG(ch, 5, 6);for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Depth-first traverse sequence is: "; ALG.DFSTraverse(0);cout << endl;for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Breadth-first traverse sequence is: "; ALG.BFSTraverse(0);cout << endl;return 0;}4.运行与调试5.总结与心得通过该实验,掌握了图的邻接表存储结构。

相关文档
最新文档