数据结构实验报告(图)
北邮数据结构实验一元多项式实验报告

数据结构实验报告实验名称:实验一—线性表实现一个多项式学生姓名:黄锦雨班级:2011211109班内序号:20学号:2011210263日期:2012年10月31日实验目的:1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法2.学习指针、模板类、异常处理的使用3.掌握线性表的操作的实现方法4.学习使用线性表解决实际问题的能力实验内容:利用线性表实现一个一元多项式Polynomialf(x) = a0 + a1x + a2x2 + a3x3+ … + a n x n要求:1.能够实现一元多项式的输入和输出2.能够进行一元多项式相加3.能够进行一元多项式相减4.能够计算一元多项式在x处的值5.能够计算一元多项式的导数(选作)6.能够进行一元多项式相乘(选作)7.编写测试main()函数测试线性表的正确性2. 程序分析由于多项式是线性结构,故选择线性表来实现,在这个程序中我采用的是单链表结构,每个结点代表一个项,多项式的每一项可以用其系数和指数唯一的表示。
如果采用顺序存储,那么对于结点的插入和删除的操作会比较麻烦,而且顺序表的结点个数固定,对于可能发生的情况无法很好的处理,而采用链表就会简单许多,还能自由控制链表的长度。
两个多项式要进行多次的计算,为了保护原始的数据,方便进行以后的计算,故选择把结果存储在一个新建的链表里。
2.1本程序完成的主要功能:1.输入和输出:需要输入的信息有多项式的项数,用来向系统动态申请内存;多项式各项的系数和指数,用来构造每个结点,形成链表。
输出即是将多项式的内容向屏幕输出。
2.多项式相加与相减:多项式的加减要指数相同即是同类项才能实现,所以在运算时要注意判断指数出现的各种不同的情况,分别写出计算方法。
将每项运算得到的结果都插入到新的链表中,形成结果多项式。
3.多项式的求导运算:多项式的求导根据数学知识,就是将每项的系数乘以指数,将指数减1即可,将每项得到的结果插入到结果多项式的链表中。
南邮数据结构实验一

实验报告(2014 / 2015 学年第二学期)课程名称数据结构实验名称线性表的基本运算及多项式的算术运算实验时间2015 年9 月28 日指导单位计算机科学与技术系指导教师黄海平学生姓名陈明阳班级学号Q学院(系) 贝尔英才专业信息科技强化班实验报告~SeqList() { delete[] elements; }bool IsEmpty() const;int Length() const;bool Find(int i, T& x) const;int Search(T x) const;bool Insert(int i, T x);bool Delete(int i);bool Update(int i, T x);void Output(ostream& out)const;private:int maxLength;T *elements;};template<class T>SeqList<T>::SeqList(int mSize){maxLength = mSize;elements = new T[maxLength];n = 0;}template<class T>bool SeqList<T>::IsEmpty() const{return n == 0;}template<class T>int SeqList<T>::Length()const{return n;}template<class T>bool SeqList<T>::Find(int i, T& x)const{if (i<0 || i>n - 1){cout <<"out of bounds"<< endl; return false;}x = elements[i];return true;}template<class T>int SeqList<T>::Search(T x)const{for (int j = 0; j < n; j++)if (elements[j] == x)return j;return -1;}template<class T>bool SeqList<T>::Insert(int i, T x){if (i<-1 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (n == maxLength){cout <<"over flow"<< endl;return false;}for (int j = n - 1; j > i; j--)elements[j + 1] = elements[j];elements[i + 1] = x;n++;return true;}template<class T>bool SeqList<T>::Delete(int i){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}if (!n){cout <<"over flow"<< endl;return false;}for (int j = i+1; j <n; j--)elements[j -1] = elements[j];n--;return true;}template<class T>bool SeqList<T>::Update(int i, T x){if (i<0 || i>n - 1){cout <<"out of bounds"<< endl;return false;}elements[i] = x;return true;}template<class T>void SeqList<T>::Output(ostream& out)const{for (int i = 0; i < n; i++)out << elements[i] << " ";out<< endl;}源.cpp:#include"seqlist.h"const int SIZE = 20;void main(){SeqList<int> LA(SIZE);int i = 0;for (i = 0; i<5; i++) LA.Insert(i - 1, i);LA.Insert(-1, 10);LA.Output(cout);}实现在线性表LA中插入0-4然后在一开始插入10 运行截图如下:多项式实验:定义类如下重构函数如下:源码:#include<iostream>using namespace std;class Term{public:Term(int c, int e);Term(int c, int e, Term* nxt);Term* InsertAfter(int c, int e);private:int coef;int exp;Term* link;friend ostream& operator<<(ostream &, const Term &);friend class Polynominal;};Term::Term(int c, int e) :coef(c), exp(e){link = 0;}Term::Term(int c, int e, Term *nxt) : coef(c), exp(e) {link = nxt;}Term* Term::InsertAfter(int c, int e){link = new Term(c, e, link);return link;}ostream& operator<<(ostream& out, const Term& val){if (0 == val.coef)return out;if (1!= val.coef)out<<val.coef;switch (val.exp){case 0:break;case 1:out<<"X"; break;default:out<<"X^"<<val.exp; break;}return out;}class Polynominal{public:Polynominal();~Polynominal();void AddTerms(istream& in);void Output(ostream& out)const;void PolyAdd(Polynominal& r);void PolyMul(Polynominal& r);private:Term* theList;friend ostream& operator<<(ostream &, const Polynominal &);friend istream& operator>>(istream&, Polynominal &);friend Polynominal& operator+(Polynominal &, Polynominal &);friend Polynominal& operator*(Polynominal &, Polynominal &); };Polynominal::Polynominal(){theList = new Term(0, -1); //头结点theList->link = NULL; //单链表尾结点指针域为空}Polynominal::~Polynominal(){Term* p = theList->link;while (p != NULL){theList->link = p->link;delete p;p = theList->link;}delete theList;}void Polynominal::AddTerms(istream & in){Term* q = theList;int c, e;for (;;){cout <<"Input a term(coef,exp):\n"<< endl;cin >> c >> e;q = q->InsertAfter(c, e);if (0 >= e) break;}}void Polynominal::Output(ostream& out)const{int first = 1;Term *p = theList->link;for (; p != NULL && p->exp >= 0; p = p->link){if (!first && (p->coef>0)) out<<"+";first = 0;out<< *p;}cout << endl;}void Polynominal::PolyAdd(Polynominal& r){Term *q, *q1 = theList, *p; //q1指向表头结点p = r.theList->link; //p指向第一个要处理的结点q = q1->link; //q1是q的前驱,p和q就指向两个当前进行比较的项while (p != NULL && p->exp >= 0)//对r的单循环链表遍历,知道全部结点都处理完{while (p->exp < q->exp) //跳过q->exp大的项{q1 = q;q = q->link;}if (p->exp == q->exp) //当指数相等时,系数相加{q->coef = q->coef + p->coef;if (q->coef == 0) //若相加后系数为0,则删除q{q1->link = q->link;delete(q);q = q1->link; //重置q指针}else{q1 = q; //若相加后系数不为0,则移动q1和qq = q->link;}}else//p>exp>q->exp的情况q1 = q1->InsertAfter(p->coef, p->exp); //以p的系数和指数生成新结点,插入q1后 p = p->link;}}void Polynominal::PolyMul(Polynominal& r){Polynominal result; //定义相乘后的数据Term *n = result.theList; //n指向result的头结点n = n->InsertAfter(0, 0); //在result的头结点后插入新结点,系数指数均为0 Term *p = r.theList->link; //p指向第一个要处理的结点while(p->exp >= 0) //对r的单循环链表遍历{Polynominal tmp; //存储某段相乘后的数据Term *m = tmp.theList; //m指向tmp的头结点Term *q = theList->link; //q指向表头结点的后继结点while(q->exp >= 0) //对当前对象的单循环环链表遍历{m = m->InsertAfter((p->coef)*(q->coef), (p->exp) + (q->exp)); //生成新结点插入n后 q = q->link;}result.PolyAdd(tmp); //将temp加到result上p = p->link;}Term *q = theList->link; //q指向表头结点的后继结点while(q != NULL) //删除原对象的所有数据{theList->link = q->link;delete q;q = theList->link;}q = theList;q = q->InsertAfter(0, 0);PolyAdd(result); //将result加到当前对象上}ostream &operator<<(ostream& out, const Polynominal& x){x.Output(out);return out;}istream &operator>>(istream& in, Polynominal &x){x.AddTerms(in);return in;}Polynominal & operator + (Polynominal &a, Polynominal &b){a.PolyAdd(b);return a;}Polynominal & operator * (Polynominal &a, Polynominal &b){a.PolyMul(b);return a;}int main()实验报告文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.。
《数据结构》实验报告

苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
数据结构实验报告(四)

《数据结构》实验报告班级:学号:姓名:实验四二叉树的基本操作实验环境:Visual C++实验目的:1、掌握二叉树的二叉链式存储结构;2、掌握二叉树的建立,遍历等操作。
实验内容:通过完全前序序列创建一棵二叉树,完成如下功能:1)输出二叉树的前序遍历序列;2)输出二叉树的中序遍历序列;3)输出二叉树的后序遍历序列;4)统计二叉树的结点总数;5)统计二叉树中叶子结点的个数;实验提示://二叉树的二叉链式存储表示typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;一、程序源代码#include <stdio.h>#include <stdlib.h>#define MAXSIZE 30typedef char ElemType;typedef struct TNode *BiTree;struct TNode {char data;BiTree lchild;BiTree rchild;};int IsEmpty_BiTree(BiTree *T) { if(*T == NULL)return 1;elsereturn 0;}void Create_BiTree(BiTree *T){char ch;ch = getchar();//当输入的是"#"时,认为该子树为空if(ch == '#')*T = NULL;//创建树结点else{*T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点//生成左子树Create_BiTree(&(*T)->lchild);//生成右子树Create_BiTree(&(*T)->rchild);}}void TraverseBiTree(BiTree T) { //先序遍历if(T == NULL)return;else {printf("%c ",T->data);TraverseBiTree(T->lchild);TraverseBiTree(T->rchild);}}void InOrderBiTree(BiTree T) { //中序遍历if(NULL == T)return;else {InOrderBiTree(T->lchild);printf("%c ",T->data);InOrderBiTree(T->rchild);}}void PostOrderBiTree(BiTree T) {if(NULL == T)return;else {InOrderBiTree(T->lchild);InOrderBiTree(T->rchild);printf("%c ",T->data);}}int TreeDeep(BiTree T) {int deep = 0;if(T){int leftdeep = TreeDeep(T->lchild);int rightdeep = TreeDeep(T->rchild);deep = leftdeep+1 > rightdeep+1 ? leftdeep+1 : rightdeep+1;}return deep;}int Leafcount(BiTree T, int &num) {if(T){if(T->lchild ==NULL && T->rchild==NULL){num++;printf("%c ",T->data);}Leafcount(T->lchild,num);Leafcount(T->rchild,num);}return num;}void LevelOrder_BiTree(BiTree T){//用一个队列保存结点信息,这里的队列采用的是顺序队列中的数组实现 int front = 0;int rear = 0;BiTree BiQueue[MAXSIZE];BiTree tempNode;if(!IsEmpty_BiTree(&T)){BiQueue[rear++] = T;while(front != rear){//取出队头元素,并使队头指针向后移动一位tempNode = BiQueue[front++];//判断左右子树是否为空,若为空,则加入队列 if(!IsEmpty_BiTree(&(tempNode->lchild))) BiQueue[rear++] = tempNode->lchild;if(!IsEmpty_BiTree(&(tempNode->rchild))) BiQueue[rear++] = tempNode->rchild;printf("%c ",tempNode->data);}}}int main(void){BiTree T;BiTree *p = (BiTree*)malloc(sizeof(BiTree));int deepth,num=0 ;Create_BiTree(&T);printf("先序遍历二叉树:\n");TraverseBiTree(T);printf("\n");printf("中序遍历二叉树:\n");InOrderBiTree(T);printf("\n");printf("后序遍历二叉树:\n");PostOrderBiTree(T);printf("\n层次遍历结果:");LevelOrder_BiTree(T);printf("\n");deepth=TreeDeep(T);printf("树的深度为:%d",deepth);printf("\n");printf("树的叶子结点为:");Leafcount(T,num);printf("\\n树的叶子结点个数为:%d",num);return 0;}二、运行结果(截图)三、遇到的问题总结通过死循环的部分可以看出,在判断时是不能进入结点为空的语句中的,于是从树的构建中寻找问题,最终发现这一条语句存在着问题:这里给T赋值为空,也就是给整个结构体地址赋值为空,但是我们的目的是给该结构体中的内容,即左孩子的地址指向的内容赋为空。
数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
数据结构实验报告2栈、队列、递归程序设计

日期:学号:姓名:
实验名称:实验报告二栈、队列、递归程序设计
实验目的与要求:
2.1栈和队列的基本操作
(1)正确理解栈的先进后出的操作特点,建立初始栈,通过相关操作显示栈底元素。
(2)程序中要体现出建栈过程和取出栈底元素后恢复栈的入栈过程,按堆栈的操作规则打印结果栈中的元素
{
return(s->top==-1);
}
//---出栈函数
int Pop(SeqStack *&s,ElemType &e)
{
if (s->top==-1)
return 0;
e=s->data[s->top];
s->top--;
return 1;
}
//---初始队列函数
void InitQueue(SqQueue *&q)
q->rear=(q->rear+1)%MaxSize;
q->elem[q->rear]=e;
return 1;
}
//---出队列函数
int OutQueue(SqQueue *&q,ElemType &e)
{
if (q->front==q->rear) //队空
return 0;
q->front=(q->front+1)%MaxSize;
printf("(10)栈为%s,",(StackEmpty(s)?"空":"非空"));
printf("队列为%s\n",(QueueEmpty(q)?"空":"非空"));
《数据结构》实验1实验报告

南京工程学院实验报告<班级>_<学号>_<实验X>.RAR文件形式交付指导老师。
一、实验目的1.熟悉上机环境,进一步掌握语言的结构特点。
2.掌握线性表的顺序存储结构的定义及实现。
3.掌握线性表的链式存储结构——单链表的定义及实现。
4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。
5.掌握线性表在链式存储结构——单链表中的各种基本操作。
二、实验内容1.顺序线性表的建立、插入及删除。
2.链式线性表的建立、插入及删除。
三、实验步骤1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。
2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。
3.建立一个带头结点的单链表,结点的值域为整型数据。
要求将用户输入的数据按尾插入法来建立相应单链表。
四、程序主要语句及作用程序1的主要代码(附简要注释)public struct sequenlist{public const int MAXSIZE=1024; /*最大值为1024*/public elemtype[] vec;public int len; /* 顺序表的长度 */public sequenlist( int n){vec=new elemtype[MAXSIZE ];len = n;}};class Program{static void Main(string[] args){sequenlist list1 = new sequenlist(5);for (int i = 0; i < 5; i++){list1.vec[i] = i;}for (int i = 0; i < 5; i++){Console.Write("{0}---", list1.vec[i]) ;}Console.WriteLine("\n");Console.WriteLine("表长:{0}\n",list1.len );Console.ReadKey();}}程序2的主要代码(附简要注释)public void insertlist(int i, int x){if (len >= MAXSIZE)throw new Exception("上溢"); /*长度大于最大值则抛出异常*/if (i < 1 || i > len + 1)throw new Exception("位置");/插入位置小于1或大于len+1则抛出插入位置错误的异常for (int j = len; j >= i; j--)vec[j] = vec[j - 1]; //注意第j个元素存在数组下标为j-1处vec[i - 1] = x;len++;}};class Program{static void Main(string[] args){sequenlist list2 = new sequenlist(7);list2.vec[0] = 21;list2.vec[1] = 23;list2.vec[2] = 14;list2.vec[3] = 5;list2.vec[4] = 56;list2.vec[5] = 17;list2.vec[6] = 31;Console.Write("请输入第i个位置插入元素:");int loc =Convert.ToInt32( Console.ReadLine());Console.Write("请输入第{0}个位置插入的元素:", loc);int ele = Convert.ToInt32(Console.ReadLine());Console.WriteLine("插入前的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");list2.insertlist(loc, ele);Console.WriteLine("插入后的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");Console.ReadKey();}}程序3的主要代码(附简要注释)class Node{private int num;public int Num{set { num = value; }/输入值get { return num; }/获得值}private Node next;public Node Next{set { next = value; }get { return next; }}}class Pp{static void Main(string[] args){Node head;Node tempNode, tempNode1;int i;head = new Node();Console.WriteLine("输入六项数据:\n");Console.Write("输入第1项数据:");head.Num = Convert.ToInt32(Console.ReadLine());head.Next = null;tempNode = head;for (i = 1; i < 6; i++){tempNode1 = new Node();Console.Write("输入第{0}项数据:",i+1);tempNode1.Num = Convert.ToInt32(Console.ReadLine());/插入项转换为整形数值 tempNode1.Next = null;tempNode.Next = tempNode1;tempNode = tempNode.Next;}Console.WriteLine("线性表:");tempNode = head;for (i = 0; i < 6; i++){Console.Write("{0}", tempNode.Num);if (i < 5){Console.Write("--");}tempNode = tempNode.Next;}Console.ReadKey();}}五、程序运行结果截图程序1程序2程序3六、收获,体会及问题(写得越详细、越个性化、越真实越好,否则我不知道你做这个实验的心路历程,也就无法充分地判断你是否是独立完成的这个实验、你是否在做这个实验时进行了认真仔细地思考、通过这个实验你是否在实践能力上得到了提高)这次试验刚开始做时完全不知道从哪下手,才刚上了几节课,对于线性表、链式表都不是理解的很透彻,不知道用哪个软件编写程序。
数据结构实验一 实验报告

班级:姓名:学号:实验一线性表的基本操作一、实验目的1、掌握线性表的定义;2、掌握线性表的基本操作;如建立、查找、插入和删除等..二、实验内容定义一个包含学生信息学号;姓名;成绩的顺序表和链表二选一;使其具有如下功能:1 根据指定学生个数;逐个输入学生信息;2 逐个显示学生表中所有学生的相关信息;3 根据姓名进行查找;返回此学生的学号和成绩;4 根据指定的位置可返回相应的学生信息学号;姓名;成绩;5 给定一个学生信息;插入到表中指定的位置;6 删除指定位置的学生记录;7 统计表中学生个数..三、实验环境Visual C++四、程序分析与实验结果#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<string.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status; // 定义函数返回值类型typedef struct{char num10; // 学号char name20; // 姓名double grade; // 成绩}student;typedef student ElemType;typedef struct LNode{ElemType data; // 数据域struct LNode *next; //指针域}LNode;*LinkList;Status InitListLinkList &L // 构造空链表L {L=struct LNode*mallocsizeofstruct LNode; L->next=NULL;return OK;}Status GetElemLinkList L;int i;ElemType &e // 访问链表;找到i位置的数据域;返回给 e{LinkList p;p=L->next;int j=1;whilep&&j<i{p=p->next;++j;}ifp||j>i return ERROR;e=p->data;return OK;}Status SearchLNode L;char str;LinkList &p // 根据名字查找{p=L.next;whilep{ifstrcmpp->;str==0return OK;p=p->next;}return ERROR;}Status ListInsertLinkList L;int i;ElemType e // 在i个位置插入某个学生的信息{LinkList p;s;p=L;int j=0;whilep&&j<i-1{p=p->next;++j;}ifp||j>i-1 return ERROR;s=struct LNode*mallocsizeofLNode;s->data=e;s->next=p->next;p->next=s;return OK;}Status ListDeleteLinkList p;int i // 删除i位置的学生信息{int j=0;whilep->next&&j<i-1{p=p->next;++j;}ifp->next||j>i-1 return ERROR;LinkList q;q=p->next;p->next=q->next;delete q;return OK;}void InputElemType *e{printf"姓名:"; scanf"%s";e->name;printf"学号:"; scanf"%s";e->num;printf"成绩:"; scanf"%lf";&e->grade;printf"输入完成\n\n";}void OutputElemType *e{printf"姓名:%-20s\n学号:%-10s\n成绩:%-10.2lf\n\n";e->name;e->num;e->grade;}int main{LNode L;LinkList p;ElemType a;b;c;d;printf"\n********************************\n\n";puts"1. 构造链表";puts"2. 录入学生信息";puts"3. 显示学生信息";puts"4. 输入姓名;查找该学生";puts"5. 显示某位置该学生信息";puts"6. 在指定位置插入学生信息";puts"7. 在指定位置删除学生信息";puts"8. 统计学生个数";puts"0. 退出";printf"\n********************************\n\n"; int x;choose=-1;whilechoose=0{puts"请选择:";scanf"%d";&choose;switchchoose{case 1:ifInitListpprintf"成功建立链表\n\n";elseprintf"链表建立失败\n\n";break;case 2:printf"请输入要录入学生信息的人数:";scanf"%d";&x;forint i=1;i<=x;i++{printf"第%d个学生:\n";i;Input&a;ListInsert&L;i;a;}break;case 3:forint i=1;i<=x;i++{GetElem&L;i;b;Output&b;}break;case 4:char s20;printf"请输入要查找的学生姓名:";scanf"%s";s;ifSearchL;s;pOutput&p->data;elseputs"对不起;查无此人";puts"";break;case 5:printf"请输入要查询的位置:";int id1;scanf"%d";&id1;GetElem&L;id1;c;Output&c;break;case 6:printf "请输入要插入的位置:";int id2;scanf"%d";&id2;printf"请输入学生信息:\n";Input&d;ifListInsert&L;id2;d{x++;puts"插入成功";puts"";}else{puts"插入失败";puts"";}break;case 7:printf"请输入要删除的位置:";int id3;scanf"%d";&id3;ifListDelete&L;id3{x--;puts"删除成功";puts"";}else{puts"删除失败";puts"";}break;case 8:printf"已录入的学生个数为:%d\n\n";x;break;}}printf"\n\n谢谢您的使用;请按任意键退出\n\n\n"; system"pause";return 0;}用户界面:(1)根据指定学生个数;逐个输入学生信息:(2)逐个显示学生表中所有学生的相关信息:(3)根据姓名进行查找;返回此学生的学号和成绩:(4)根据指定的位置可返回相应的学生信息学号;姓名;成绩:(5)给定一个学生信息;插入到表中指定的位置:(6)删除指定位置的学生记录:(7)统计表中学生个数:五、实验总结数据结构是一门专业技术基础课..它要求学会分析研究计算机加工的数据结构的特性;以便为应用涉及的数据选择适当的逻辑结构;存储结构及相应的算法;并初步掌握算法的时间分析和空间分析技术..不仅要考虑具体实现哪些功能;同时还要考虑如何布局;这次的实验题目是根据我们的课本学习进程出的;说实话;我并没有真正的读懂书本的知识;所以刚开始的时候;感到很棘手;于是又重新细读课本;这一方面又加强了对书本的理解;在这上面花费了一些心血;觉得它并不简单;是需要花大量时间来编写的....在本次实验中;在程序构思及设计方面有了较大的锻炼;能力得到了一定的提高..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录A
实验报告
课程:数据结构(c语言)实验名称:图的建立、基本操作以及遍历系别:数字媒体技术实验日期: 12月13号 12月20号
专业班级:媒体161 组别:无
姓名:学号:
实验报告内容
验证性实验
一、预习准备:
实验目的:
1、熟练掌握图的结构特性,熟悉图的各种存储结构的特点及适用范围;
2、熟练掌握几种常见图的遍历方法及遍历算法;
实验环境:Widows操作系统、VC6.0
实验原理:
1.定义:
基本定义和术语
图(Graph)——图G是由两个集合V(G)和E(G)组成的,记为G=(V,E),其中:V(G)是顶点(V ertex)的非空有限集E(G)是边(Edge)的有限集合,边是顶点的无序对(即:无方向的,(v0,v2))或有序对(即:有方向的,<v0,v2>)。
邻接矩阵——表示顶点间相联关系的矩阵
设G=(V,E) 是有n 1 个顶点的图,G 的邻接矩阵A 是具有以下性质的n 阶方阵特点:
无向图的邻接矩阵对称,可压缩存储;有n个顶点的无向图需存储空间为n(n+1)/2
有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n²
9
无向图中顶点V i的度TD(V i)是邻接矩阵A中第i行元素之和有向图中,
顶点V i的出度是A中第i行元素之和
顶点V i的入度是A中第i列元素之和
邻接表
实现:为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧)
特点:
无向图中顶点Vi的度为第i个单链表中的结点数有向图中
顶点Vi的出度为第i个单链表中的结点个数
顶点Vi的入度为整个单链表中邻接点域值是i的结点个数
逆邻接表:有向图中对每个结点建立以Vi为头的弧的单链表。
图的遍历
从图中某个顶点出发访遍图中其余顶点,并且使图中的每个顶点仅被访问一次过程.。
遍历图的过程实质上是通过边或弧对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构。
图的遍历有两条路径:深度优先搜索和广度优先搜索。
当用邻接矩阵作图的存储结构时,查找每个顶点的邻接点所需要时间为O(n2),n为图中顶点数;而当以邻接表作图的存储结构时,找邻接点所需时间为O(e),e 为无向图中边的数或有向图中弧的数。
实验内容和要求:
选用任一种图的存储结构,建立如下图所示的带权有向图:
要求:1、建立边的条数为零的图;
2、依次将图的边以及相应的权值插入,建立如上图所示的图,并将结点
集合和权值集合输出;
3、对所建立的图进行深度优先搜索或广度优先搜索,输出图的遍历序列;算法思想:
首先,选定所使用的图的存储结构(邻接矩阵存储或邻接表存储),建立图的结构体定义。
根据所选用的结构建立边条数为零的图,依次插入图的结点和图的各有向边以及权值weight;再次,将图的结点集合以及权值集合输出,以验证所建立图的正确性;最后,调用图的遍历函数,实现图的深度优先遍历或广度优先遍历,并输出遍历序列。
二、实验过程:
程序流程图:
实验中的关键语句:
void DepthFirstSearch(AdjList *adjlist)
{
int i;
int *visited;
visited=(int*)malloc(sizeof(int)*adjlist->vexnum); for(i=0;i<adjlist->vexnum;i++)
visited[i] = 0;
printf("\n深度优先搜索:\n");
for(i=0;i<adjlist->vexnum;i++)
{
if(visited[i] == 1)
continue;
VisitNext(adjlist,i,visited);
}
printf("\n");
}
void BreadthFirstSearch(AdjList *adjlist)
{
ArcNode *temp = NULL; int nth;
V exQueue *vexqueue = NULL; int i;
int *visited = NULL;
visited=(int*)malloc(sizeof(int)*adjlist->vexnum); for(i=0;i<adjlist->vexnum;i++)
visited[i] = 0;
printf("\n广度优先搜索:\n");
for(i=0;i<adjlist->vexnum;i++)
{
if(visited[i] == 1)
continue;
vexqueue = CreateQueue();
Push(vexqueue,i);
while(!IsEmpty(vexqueue))
{
Pop(vexqueue,&nth);
if(visited[nth] == 1)
continue;
visit(adjlist,nth,&visited);
temp=adjlist->vertex[nth].head;
while(temp)
{
Push(vexqueue,temp->adjvex-1);
temp = temp->next;
}
}
}
printf("\n\n");
}
编写及调试程序中遇到的问题及解决方法:
(1)没有注意到可以验证多次问题。
解决:用循环队列
(2)程序没错但不能运行。
解决:开始时需要初始化栈和队列
三、实验总结:
1. 实验结果及分析:用邻接矩阵法储存图,能编写深度优先搜索遍历,广度优先搜索遍历的算法等。
在编写完成调试的过程中,我发现了许多错误,及时对算法进行了优化修改,并掌握的调试,分析错误的一些小技巧。
2. 实验总结:通过本次实验我对图的基本操作有了更深的了解,基本上掌握了图的深度优先遍历和广度优先遍历。
同时,通过自己数次的调试、修改也搞懂了许多以前比较模糊的知识点,比如这次的界面是复制过来的,其中很多语句经过同学的讲解都理解了。
3. 思考题:
1、采用邻接表存储的图的深度优先遍历算法类似于二叉树的哪种遍历?
2、采用邻接表存储的图的广度优先遍历算法类似于二叉树的哪种遍历?
这是因为图的深度优先遍历算法先访问所在结点,再访问它的邻接点。
与二叉树的先序遍历先访问子树的根结点,再访问它的孩子结点(邻接点)类似。
图的广度优先遍历算法类似于二叉树的按层次遍历。