平面解析几何基础练习
平面解析几何一

平面解析几何(一)一、知识要点(一)平面直角坐标系中的基本公式: 1.两点间的距离公式. 2.中点坐标公式.(二)直线方程:1.直线的倾斜角. 2.过两点的斜率公式.3.直线的点斜式方程、两点式方程、斜截式方程、一般式方程(注意适用范围).4.直线平行、重合及垂直的充要条件.5.点到直线,两平行线间的距离公式二、基础练习1.直线经过第一、第三象限,则直线的倾斜角的取值范围是( ) A [0,)2πB [,)2ππ C (,)2ππ D (0,)π2.若三点A(0,8) 、B(-4,0) 、C(m,-4)共线,则实数m 的值为( )A -6B -2C 2D 63.若过原点的直线斜率为则直线方程是( )0y += 0y -= C 0x += D 0x -=4.若过原点的直线的倾斜角为3π,则直线方程是( )0y += 0y -= C 0x += D 0x -=5.过点(,1)A m 和(1,)B m -的直线与直线350x y -+=垂直,则实数m 的值是(A )-3 (B )-2 (C )2 (D )36.点(4,)P a 到直线4310x y --=的距离等于3,则实数a 的值是(A )12或7 (B )0或10 (C )7 (D )107.若直线l 经过第二象限和第四象限,则直线l 的倾斜角的取值范围是(A )[0,)2π(B )[,)2ππ (C )(,)2ππ (D )(0,)π8.若点A (2,3)--、B (0,)y 、C (2,5)共线,则y 的值等于(A )-4 (B )-1 (C )1 (D )49.直线2360x y +-=与y 轴的交点坐标是(A )(0,2) (B )(0,2)- (C )(3,0) (D )(3,0)-10.若斜率为3-的直线经过坐标原点,则该直线的方程为(A )03=-y x (B )03=-y x (C )03=+y x (D )03=+y x11.已知直线012=-+y mx 与直线013=+-y x 垂直,则实数m 等于(A )32(B )32- (C )23(D )23-12.过A (m ,1)和B (-1,m )的直线与直线x-3y+5=0垂直,则实数m 的值是(A )-3 (B )-2 (C )2 (D )313.已知过点A (-2,m )和B (m ,4)的直线与直线2x+y-1=0平行,则m 的值是(A )-8 (B )0 (C )2 (D )1014.与直线320x y -=平行,且过点(4,3)-的直线的一般式方程是 .15.过点(0,1)且与直线3570x y +-=垂直的直线方程是 .16.已知两点)3,5()1,1(--B A ,,则直线AB 的斜率等于 .17.直线l 过直线1:3420l x y +-=与2:220l x y ++=的交点,且与直线3:2350l x y ++=平行,求直线l 的方程.18.直线l 过直线1:10l x y +-=与2:10l x y -+=的交点,且与直线3:357l x y +=垂直,求直线l 的方程.。
平面解析几何单元测试题1

平面向量与平面解析几何练习一、选择题1、已知平面向量a =,1x (),b =2,x x (-), 则向量a b += ( ). A 、平行于y 轴 B 、平行于第一、三象限的角平分线C 、平行于x 轴D 、平行于第二、四象限的角平分线2、设M(-2,1),N(1,2)为平面直角坐标系中的两点,将M 和N 按向量)1,1(=a平移到点M '和N ',则N M ''的坐标是( )A 、(4,2)B 、(3,1)C 、(2,0)D 、(-1,3)3、下列直线中,垂直于直线01=+-y x 且与圆422=+y x 相切的是( ).A 、022=--y xB 、02=--y xC 、022=++y xD 、02=-+y x4、抛物线24x y =的焦点坐标为( ).A 、1(0,)16B 、1(,0)16C 、(0,1)D 、(1,0) 5、若向量(1,1)=-a ,(2,1)=-b , ,则向量3-a b 的模|3|-=a b ( )A.6、已知直线l 过点(1,1)P -,且与直线310x y +-=垂直,则直线l 的方程为( )A.13(1)y x +=-B.11(1)3y x -=-+C.13(1)y x -=+D.11(1)3y x +=-- 7、设P 是椭圆2212510x y +=上的一点,则P 到两焦点的距离的和为( )A.5B.6C.8D.108、设(2,1),(1,2)M N =-=为平面直角坐标系中两点,将,M N 按向量a =(1,1)平移到'',M N ,则''N M 的坐标为( )9、已知直线l 1:2y=x ,直线l 2:y+2x+1=0则l 1与 l 2 ( )A. 相交不垂直B.相交且垂直C. 平行不重合D.重合10、双曲线191622=-y x 的焦距为( ) A. 7 B.5 C. 72 D.1011、已知直线y=x-2与圆x 2+y 2=4交于两点M 和N ,O 是坐标原点,则=•ON OM ( )A. -1B.0C. 1D.212、垂直于x 轴的直线l 交抛物线y 2=4x 于A 、B 两点,且|AB|=43,则该抛物线的焦点到直线l 的距离是( )A.1B.2 B.3 D.413、以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程( )A.3)1()2(22=++-y xB. 3)1()2(22=-++y xC. 9)1()2(22=-++y x D .9)1()2(22=++-y x14、以141222=-x y 的顶点为焦点,长半轴长为4的椭圆方程为( ) A .1526422=+y x B .1121622=+y xC .141622=+y xD .116422=+y x 15、若抛物线==p px y ,则的点之横坐标为上到焦点的距离为2322( )A .4B .3C .2D .1二、填空题16、圆2240x x y -+=的圆心到直线40x +-=的距离为__________.17、已知m 为实数,椭圆1322=+m y x 的一个焦点为抛物线y 2=4x 的焦点,则m = .18、经过点(0,-1)与点(1,0),且圆心在直线y=x+1上的圆的方程是____________19、双曲线112422=-y x 的离心率是20、以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线.共轭双曲线的四个焦点在同一个圆上. 如果已知双曲线22124x y -=和22124x y -=-,那么它们的焦点所在的这个圆的方程为_______________.三、解答题21、(14分) 已知圆k C :0214222=--++y kx y x )(R k ∈. 椭圆M 的中心在坐标原点,长轴在x 轴上,离心率为23, 两个焦点分别为1F 和2F , 椭圆M 上一点到1F 和2F 的距离之和为12. (1)求椭圆M 的方程;(2)求过焦点且与长轴垂直的直线被椭圆M 所截得的线段的长;(3)问是否存在实数k,使得椭圆M 在圆k C 的内部? 请说明理由.22、(本小题满分12分) 已知椭圆1xy y x 2222=+的左、右两个焦点F1、F2为双曲线13y 4x 2222=-的顶点。
初中数学平面解析几何的点和直线关系练习题

初中数学平面解析几何的点和直线关系练习题解析几何是数学中的一个分支,它主要研究几何图形的性质和变换与代数的关系。
平面解析几何是解析几何的基础,其中点和直线是最基本的要素。
在学习平面解析几何的过程中,我们需掌握点和直线之间的各种关系。
本文将为大家提供一些针对初中数学平面解析几何的点和直线关系的练习题,以帮助大家加深对相关概念的理解。
练习题一:已知直线l的表示方程为2x + 3y - 4 = 0,点A(1, -2)在直线l上,请问点A是否满足直线l的方程。
解答:我们将点A的坐标代入直线l的方程:2(1) + 3(-2) - 4 = 0,化简得2 - 6 - 4 = -8,通过计算我们可以得出结论:点A不满足直线l的方程。
练习题二:已知点A(6, -1)和点B(-2, 5),求点A和点B之间的距离。
解答:根据两点间距离公式,我们可以计算点A和点B之间的距离。
距离公式为√[(x2 - x1)² + (y2 - y1)²],代入点A和点B的坐标可得√[(6 - (-2))²+ ((-1) - 5)²],化简得√[(6 + 2)² + (-6)²],继续计算得√[64 + 36],化简得√100,计算得10。
因此,点A和点B之间的距离为10。
练习题三:已知直线l的斜率为2,且经过点A(3, -4),求直线l的方程。
解答:直线的一般方程为y = kx + b,其中k为斜率,b为截距。
已知斜率为2,点A在该直线上,可代入点A的坐标得到方程-4 = 2(3) + b,化简得-4 = 6 + b,移项得b = -10。
因此,直线l的方程为y = 2x - 10。
练习题四:已知直线l1过点A(2, -3)和点B(4, 5),直线l2过点C(-1, 3)和点D(7, -1),求直线l1和直线l2的交点。
解答:首先,我们需要求得直线l1和直线l2的斜率。
直线的斜率公式为k = (y2 - y1)/(x2 - x1)。
第08练-平面解析几何(解析版)

第08练-平面解析几何一、单选题1.已知点F 为椭圆2221(1)x y a a+=>的一个焦点,过点F 作圆221x y +=的两条切线,若这两条切线互相垂直,则a =( )A .2B .1C .2D .3【答案】D【解析】【分析】根据切线垂直,推导出F 点至坐标原点的距离,即可求得交点坐标和a .【详解】由题可设(),0F c ,根据题意,作图如下:因为过F 点的两条切线垂直,故可得45OFH ∠=︒,则1OH HF ==,故可得2OF =,即点F 坐标为)2,0. 则2,1c b ==,故2223a b c =+=,解得3a =故选:D.【点睛】 本题考查椭圆方程的求解,涉及直线与圆相切时的几何性质,属基础题.2.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0,当直线l 被圆C 截得的弦长为23时,a 的值等于( )A B .2-C 1 D 1【答案】C【解析】【分析】由题意,结合垂径定理算出圆心到直线l :x ﹣y+3=0的距离d =1,利用点到直线的距离公式建立关于a 的方程,求解即可.【详解】∵圆C :(x ﹣a )2+(y ﹣2)2=4的圆心为C (a ,2),半径r =2∴圆心到直线l :x ﹣y+3=0的距离d=∵l 被圆C 截得的弦长为∴2d +2=22,解得d =1,因此,d=1,得1a =或1a =(舍) 故选C .【点睛】本题考查了圆的方程、点到直线的距离公式和直线与圆的位置等知识,属于基础题.3.已知两点()1,0A -,()10B ,以及圆C :222(3)(4)(0)x y r r -+-=>,若圆C 上存在点P ,满足0AP PB ⋅=u u u v u u u v ,则r 的取值范围是( )A .[]3,6B .[]3,5C .[]4,5D .[]4,6【答案】D【解析】【分析】由题意可知:以AB 为直径的圆与圆()()22234(0)x y r r -+-=>有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出r 的范围.【详解】 Q 0AP PB ⋅=u u u v u u u v,∴点P 在以()1,0A -,()1,0B 两点为直径的圆上,该圆方程为:221x y +=,又点P 在圆C 上,∴两圆有公共点.两圆的圆心距5d ==∴151r r -≤≤+解得:46r ≤≤故选D【点睛】本题考查了圆与圆的位置关系,还考查了向量垂直的数量积表示,属于中档题.4.已知椭圆22221(0)x y a b a b+=>>的离心率为35,直线2100x y ++=过椭圆的左顶点,则椭圆方程为( )A .22154x y += B .221259x y += C .221169x y += D .2212516x y += 【答案】D【解析】【分析】直线2100x y ++=过椭圆的左顶点,则椭圆的左顶点为(5,0)-,所以椭圆中5a =,由离心率为35,则3c =,可求出椭圆的b ,从而可得椭圆的方程.【详解】直线2100x y ++=与x 轴的交点为(5,0)-,直线2100x y ++=过椭圆的左顶点,即椭圆的左顶点为(5,0)-.所以椭圆中5a =,由椭圆的离心率为35,则3c =. 则4b =,所以椭圆的方程为:2212516x y +=. 故答案为:D【点睛】本题考椭圆的简单几何性质,根据离心率求,,a b c ,属于基础题.5.已知双曲线的标准方程为2222x y a b-=1(a >0,b >0),若渐近线方程为y =,则双曲线的离心率为( )A .3B .2CD .4【答案】B【解析】【分析】由双曲线22221(0,0)x y a b a b -=>>的渐近线方程是y =,可得b a=c e a == 【详解】Q 双曲线22221(0,0)x y a b a b-=>>的渐近线方程是y =,∴b a=∴双曲线的离心率2c e a ===. 故选:B .【点睛】本题考查双曲线的简单性质,考查学生的计算能力,确定b a= 6.已知点F 是抛物线24x y =的焦点,点P 为抛物线上的任意一点,(1,2)M 为平面上点,则PM PF +的最小值为( )A .3B .2C .4D .【答案】A【解析】【分析】作PN 垂直准线于点N ,根据抛物线的定义,得到+=+PM PF PM PN ,当,,P M N 三点共线时,PM PF +的值最小,进而可得出结果.【详解】如图,作PN 垂直准线于点N ,由题意可得+=+≥PM PF PM PN MN ,显然,当,,P M N 三点共线时,PM PF +的值最小;因为(1,2)M ,(0,1)F ,准线1y =-,所以当,,P M N 三点共线时,(1,1)-N ,所以3MN =.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.7.已知椭圆22221x y a b +=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为( )A .3y x =±B .3y x =C .2y x =D .2y x = 【答案】A【解析】【分析】由题意可得222222a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆22221(a b 0)x y a b +=>>与双曲线22221(a 0,b 0)2x y a b -=>>即22221(a 0,b 022)x y a b -=>>的焦点相同,可得:22221122a b a b -=+, 即223a b =,∴3b a =3=双曲线的渐近线方程为:3x y x =±=, 故选:A .【点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.8.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF V 的面积为( )A.2 B.2 C .32 D .92【答案】A【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF V 的面积,根据1F BF V 和BOF V 的关系即可得到答案.【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF ,依题可知四边形1AFBF 的对角线互相平分,则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠=即2211|BF |+|BF|+|BF ||BF|100=;又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=.两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF V 的面积为:111113||||sin 123322F BF S BF BF F BF =∠=⨯=V 因为O 为1F F 的中点,所以11332OBF F BF S S ==V V 故选:A【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.9.已知椭圆2221(02)4x y b b+=<<的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点,若22BF AF +的最大值为5,则b 的值为()A .1BCD .3【答案】C【解析】【分析】由题意可知椭圆是焦点在x 轴上的椭圆,利用椭圆定义得到228||BF AF AB +=-,再由过椭圆焦点的弦中通径的长最短,可知当AB 垂直于x 轴时||AB 最小,把||AB 的最小值2b 代入228||BF AF AB +=-,由22BF AF +的最大值等于5可求b 的值.【详解】由02b <<可知,焦点在x 轴上,∴2a =,∵过1F 的直线交椭圆于A ,B 两点,∴22112248BF AF BF AF a a a +++=+== ∴228||BF AF AB +=-.当AB 垂直x 轴时||AB 最小,22BF AF +值最大,此时222||b AB b a==,∴258b =-,解得b =C . 【点睛】 本题主要考查椭圆的定义,解题的关键是得出22114BF AF BF AF a +++=,属于一般题.10.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .2【答案】A【解析】【分析】 求得两圆的圆心和半径,设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F ,连接1PF , 2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆221:(2)4C x y ++=的圆心为(2,0)-,半径为12r =;圆222:(2)1C x y -+=的圆心为(2,0),半径为21r =, 设双曲线2213y x -=的左右焦点为1(2,0)F -,2(2,0)F , 连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=---2212(||4)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||32(||||)32232435a PF PF PF PF c =+-=+--=-=g g )….当且仅当P 为右顶点时,取得等号,即最小值5.故选A .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.二、多选题11.已知点A 是直线:20l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2B .()1,21-C .()2,0D .()21,1- 【答案】AC【解析】【分析】 设点A 的坐标为(),2t t -,可得知当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值90o ,可得出四边形APOQ 为正方形,可得出2OA =,进而可求出点A 的坐标.【详解】如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切, 由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o ,1OP OQ ==,则四边形APOQ 为正方形,所以22OA == 由两点间的距离公式得()2222OA t t =+-=整理得22220t t -=,解得0t =2,因此,点A 的坐标为(2或)2,0. 故选:AC.【点睛】 本题考查直线与圆的位置关系的综合问题,考查利用角的最值来求点的坐标,解题时要找出直线与圆相切这一临界位置来进行分析,考查数形结合思想的应用,属于中等题.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC 【解析】 【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在. 【详解】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A错误;当()()1,0,2,0,D B -时,12PDPE =,故B 正确;对于C 选项,222cos =2AP PO AO APO AP PO+-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+, ()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =可得()22220000=2x y x y +++,整理得220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC. 【点睛】本题主要考查阿氏圆的相关应用,轨迹方程的求解,意在考查学生的转化能力,计算能力,难度较大.三、填空题 13.直线与圆交于两点,则________.【答案】【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.已知抛物线()220y px p =>的焦点为F(4,0),过F 作直线l 交抛物线于M ,N 两点,则p=_______,49NF MF-的最小值为______. 【答案】8p =13【解析】 【分析】利用抛物线的定义可得8p =,设直线l 的方程为4x my =+,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得1114MF NF +=,代入到49NF MF-,再根据基本不等式求最值. 【详解】解:∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NF MF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-4?19NF NF ≥13=, 当且仅当49NF NF=即6NF =时,等号成立,故答案为:13. 【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.四、解答题15.已知抛物线21:2(0)C y px p =>与椭圆222:143x y C +=有一个相同的焦点,过点(2,0)A 且与x 轴不垂直的直线l 与抛物线1C 交于P ,Q 两点,P 关于x 轴的对称点为M . (1)求抛物线1C 的方程;(2)试问直线MQ 是否过定点?若是,求出该定点的坐标;若不是,请说明理由. 【答案】(1)24y x =;(2)(2,0)-【解析】 【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线PQ 的方程为()2y k x =-与抛物线联立,得到,P Q 横坐标关系,设直线MQ 的方程为y mx n =+与抛物线联立,得到,M Q 横坐标关系,从而得到,m n 的关系,找出定点.解法二:直线PQ 的方程为2x ty =+,与抛物线联立,得到,P Q 纵坐标关系,设直线MQ 的方程为x my n =+,与抛物线联立,得到,M Q 纵坐标关系,从而可以解出n ,得到定点.【详解】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为()1,0,所以2p =,所以抛物线的方程为24y x =;(2)【解法一】因为点P 与点M 关于x 轴对称 所以设()11,P x y ,()22,Q x y ,()11,M x y -, 设直线PQ 的方程为()2y k x =-,代入24y x =得:()22224140k x k x k -++=,所以124x x =,设直线MQ 的方程为y mx n =+,代入24y x =得:()222240m x mn x n +-+=,所以21224n x x m==,因为10x >,20x >,所以2nm=,即2n m =, 所以直线MQ 的方程为()2y m x =+,必过定点()2,0-. 【解法二】设()11,P x y ,()22,Q x y ,()33,M x y , 因为点P 与点M 关于x 轴对称,所以31y y =-, 设直线PQ 的方程为2x ty =+,代入24y x =得:2480y ty --=,所以128y y =-,设直线MQ 的方程为x my n =+,代入24y x =得:2440y my n --=,所以234y y n =-,因为31y y =-,所以()211248y y y y n -=-=-=,即2n =-, 所以直线MQ 的方程为2x my =-,必过定点()2,0-. 【点睛】本题主要考查直线与抛物线的关系,直线过定点问题,比较综合,对计算能力要求较高,属于难题.16.如图,已知椭圆Γ:()222210x y a b a b +=>>经过点()2,0A ,离心率3e =.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B 为椭圆与y 轴正半轴的交点,点C 为线段AB 的中点,点P 是椭圆Γ上的动点(异于椭圆顶点)且直线PA ,PB 分别交直线OC 于M ,N 两点,问OM ON ⋅是否为定值?若是,求出定值;若不是,请说明理由.【答案】(Ⅰ)2214x y +=;(Ⅱ)是定值,52【解析】 【分析】(Ⅰ)根据已知条件列方程组2222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,求解椭圆方程;(Ⅱ)由(Ⅰ)求得点C 的坐标,并求直线OC 的方程20x y -=,设()00,P x y ,()112,M y y ,()222,N y y ,根据三点共线求1y 和2y,并表示2125OM ON y y y y ==.【详解】(Ⅰ)由题意可知:22222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆Γ的方程:2214x y +=;(Ⅱ)由已知,点C 的坐标为11,2⎛⎫⎪⎝⎭,得直线OC 的方程为20x y -=, 设()00,P x y ,()112,M y y ,()222,N y y ,因P ,A ,M 三点共线,故0110222y y y x =--,整理得0100222y y x y -=--,因P ,B ,N 三点共线,故0220112y y y x --=,整理得020022x y x y =-+, 因点P 在椭圆Γ上,故220044x y +=,从而()000012200000022222224y x x y y y x y x y x y --=⋅=---+--00220000214442x y x y x y -==+--,所以1212552OM ON y y ===为定值.【点睛】本题考查椭圆方程以及椭圆直线与椭圆位置关系的综合问题,本题所涉及直线比较多,分析问题时抓住关键求点,M N 的纵坐标并用点P 的纵坐标表示,并将OM ON 2125y y y ,这样问题迎刃而解.。
中职教育数学《平面解析几何-复习课》练习题

第八章 平面解析几何(知识点)1. 直线:(1) 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角。
其范围是),0[π(2) 斜率:①倾斜角为090的直线没有斜率;②αtan =k(倾斜角的正切)③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --= )(21x x ≠(3) 直线的方程①两点式:121121x x x x y y y y --=-- ② 截距式 1=+b y a x③ 斜截式:b kx y += ④点斜式:)(00x x k y y -=- ⑤一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=0 2.求直线的方程最后要化成一般式。
(4) 两条直线的位置关系①点),(00y x P 到直线0=++C By Ax 的距离:2200||B A C By Ax d +++=②0:1=++C By Ax l 与0:2=++C By Ax l 平行2221||BA C C d ++=2. 圆的方程(1) 标准方程:222)()(r b y a x =-+-(0>r)其中圆心),(b a ,半径r 。
(2) 一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(2,2E D --) 半径:2422F EDr -+=(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较。
相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d3. 二次曲线:定义一:平面内到一个定点和一条定直线的距离的比等于定长e 的点的集合,①当0<e<1时,是椭圆.②当e>1时,是双曲线.③当e=1时,是抛物线. 4. 椭圆注:等轴双曲线:(1)b a =(2)离心率2=e (3)渐近线x y ±=6. 抛物线(如右图示) 注:(1)p 的几何意义表示焦点到准线的距离。
平面解析几何经典题(含答案)

平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率、直线的倾斜角与斜率(1)倾斜角a 的范围000180a £<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k Û=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ^Û=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
互相垂直。
二、直线的方程1、直线方程的几种形式名称名称方程的形式方程的形式 已知条件已知条件 局限性局限性 点斜式点斜式为直线上一定点,k 为斜率为斜率 不包括垂直于x 轴的直线轴的直线 斜截式斜截式k 为斜率,b 是直线在y 轴上的截距轴上的截距 不包括垂直于x 轴的直线轴的直线 两点式两点式是直线上两定点是直线上两定点 不包括垂直于x 轴和y 轴的直线直线截距式截距式a 是直线在x 轴上的非零截距,b 是直不包括垂直于x 轴和y 轴或线在y 轴上的非零截距轴上的非零截距过原点的直线过原点的直线 一般式一般式A ,B ,C 为系数为系数 无限制,可表示任何位置的直线直线 三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
专题10平面解析几何(第二部分)

专题10平面解析几何(第二部分)一、填空题1.若函数()21f x ax =-+恰有一个零点,则a 的取值范围为. 2.已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.3.设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .4.设抛物线22{2x pt y pt ==(0p >)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(,0)2C p ,AF 与BC 相交于点E ,若||2||C F AF =,且ACE ∆的面积为p 的值为.二、解答题5.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程. (2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤u u r u u u r .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.6.设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为BAB(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.7.设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQAOQ PQ =∠(O 为原点) ,求k 的值.8.设椭圆2221(3x y a a +=>的右焦点为F ,右顶点为A ,已知113||||||e OF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF HF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.9.已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,点M 在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P 在椭圆上,若直线FP OP (O 为原点)的斜率的取值范围.10.已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.11.已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =u u u r u u u r ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.12.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD△AP的方程.13.设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.已知|2||OA OB=(O为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线4x=上,且OC AP∥,求椭圆的方程.14.设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.15.已知椭圆22221(0)x ya ba b+=>>的左焦点为(,0)F c-,右顶点为A,点E的坐标为(0,)c,EFA△的面积为22 b.(I)求椭圆的离心率;(II)设点Q在线段AE上,32FQ c=,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM QNP,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.16.设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.17.已知椭圆22221(0)x y a b a b+=>>的上顶点为 B ,左焦点为F ,离心率为 (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点 M ,||=||PM MQ l . (ⅰ)求λ的值;(ⅱ)若||sin PM BQP ∠=求椭圆的方程.。
平面解析几何测试题及答案

平面解析几何测试题一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( )A.一条直线B.两条直线C.半个圆D.一个圆3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( )A.-1B.2C.1D.-24.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( )A.8,6B.8,-6C.-8,-6D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( )A.-13B.9C.-9D.136.已知过点P (2,2)的直线与圆(x-1)2+y 2 =5相切,且与直线ax-y+1=0垂直,则a 的值为( )A.2B.1C.-21D.21 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心8.已知双曲线22a x -22b y =1的渐近线的斜率k=±34,则离心率等于 ( )A.53B.45C.34D.359.若椭圆22a x +22by =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A.22 B.21 C.41D.3-1 10.已知双曲线22x -22by =1(b>0)的左右焦点分别为F 1,F 2,其中一条渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1PF •2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( )A.812x +722y =1B.812x +92y =1 C.812x +452y =1 D.812x +162y12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A.330B.6C.12D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( )A.6π B.3π C.2π D.3π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )A.92x +y 2=1 B.121822=+x y .121822=+y x D.92y +x 2=1 15.关于x ,y 的方程x 2+my 2=1,给出下列命题: ①当m<0时,方程表示双曲线; ②当m=0时,方程表示抛物线; ③当0<m<1时,方程表示椭圆; ④当m=1时,方程表示等轴双曲线; ⑤当m>1时,方程表示椭圆. 其中真命题的个数是 ( )A.2个B.3个C.4个D.5个x-y-1≦016.已知变量x ,y 满足的约束条件是 x+y ≦1,目标函数z=10x+y 的最优解是 ( ) x ≧0 A. (0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(1,0) D.(0,-1),(0,0) 17.已知双曲线17922=-y x ,直线AB 过焦点F 1,且|AB|=4,则▲ABF 2的周长是 ( )A.12B.20C.24D.48 18.已知椭圆的焦点F 1(0,-1),F 2(0,1),P 是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|,构成等差数列,则椭圆的方程为 ( )A.191622=+y x B.1121622=+y x C.13422=+x y D.13422=+y x 19. 已知点P 是等轴双曲线上除顶点外的任一点,A 1,A 2是双曲线的顶点,则直线PA 1与PA 2的斜率之积是( )A.1B.-1C.2D.-2 20.圆(x+1)2+(y+2)2=8上到直线x+y+1=0的距离等于2的点共有 ( )A.1个B.2个C.3个D.4个 二、填空题(本大题5个小题,每小题4分,共20分) 21.圆x 2+y 2=1上的点到直线3x+4y-25=0的最大距离为 . 22.已知点(2,-1)与点(a ,-2)在直线3x+y-4=0的两侧,则a 的取值范围是 .23.物线的顶点在原点,焦点是双曲线3x 2-y 2=12的左顶点,则其标准方程为 .24.若方程142222=-+-m y m x 表示椭圆,则m 的取值范围是 . 25.设点F 1,F 2为双曲线1422=-y x 的两焦点,点P 在双曲线上,且∠F 1PF 2=90°,则▲F 1F 2P 的面积等于 . 三、解答题(本大题5个小题,共40分)26.(本小题6分)已知抛物线y=241x ,点P (0,2)作直线l 交抛物线A ,B 两点,O 为坐标原点.(1)求证:OA •OB 为定值;(2)直线l 与向量n=(1,2)平行,求▲AOB 的面积.27.(本小题8分)已知点P 是椭圆16410022=+y x 上一点,点F 1,F 2是左、右焦点,若∠F 1PF 2=60°,求▲PF 1F 2的面积.28.(本小题8分)在抛物线y=2x 2上求一点P ,使P 到直线l :y=2x-3的距离最短,求P 点的坐标.29.(本小题8分)已知椭圆22a x +22by =1(a>b>0)经过点(0,3),离心率为21.(1)求椭圆的标准方程;(2)已知直线l :y=2x+m 与椭圆相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆上,O 为坐标原点,求直线l 的方程.30.(本小题10分)已知双曲线22a x -22by =1(a>0,b>0)的离心率为2,两顶点的距离为4.(1)求双曲线的标准方程;(2)已知直线l 过圆x 2+y 2-6x+2y+6=0的圆心并与双曲线交于A ,B 两点,且点A ,B 关于点M 对称,求直线l 的方程.第八章 平面解析几何测试题答案一、选择题1.C2.C3.D4.B5.C6.A7.D8.D9.B 10.C 11.A 12.C 13.C 14.C 15.B 16.C 17.B 18.C 19.A 20.C 二、填空题 21. 6 22. (2,∞-) 23. y 2=-8x24. (2,3)U (3,4) 25. 1三、解答题 26.(1)-4 (2)4627.3364 28.(21,21) 29.(1)13422=+y x (2)y=2x+219或y=2x -21930.(1)112422=-y x (2)0269=-+y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 以点A (-5,4)为圆心,且与x 轴的相切的圆标准方程是( ) A.16)4()5(22=-++y x B.16)4()5(22=++-y x C. 25)4()5(22=-+-y x D. 25)4()5(22=+--y x
2.与椭圆
133
492
2
=+
y
x
有公共焦点且离心率为3
4=
e 的双曲线的标准方程为( )
A.
1972
2
=-
y
x
B.
19252
2
=-
y
x
C.
179
2
2
=-
y
x
D.
125
9
2
2
=-
y
x
3.当方程
15
8
2
2
=-+
-k y
k x
表示焦点在y 轴上的双曲线时,k 的值是( )
A.k<5
B.5<k<8
C.k<8
D.k>8 4.椭圆的长轴是短轴的2倍,则椭圆的离心率是( ) A.
2
1 B.
3
1 C.
2
2 D.
2
3
5.如果直线y=x+b 与抛物线x y 42=的焦点的距离为2,那么b 等于( ) A.22 B. -22 C. ±22-1 D. ±22
6.当e>1时,圆锥曲线表示的曲线是
7.已知圆C 和直线x-y=0相切,圆心坐标为(1,3),则圆C 的方程是 8.椭圆
1100
36
2
2
=+
y
x
的交点坐标是 ,椭圆上任意一点到两焦点的距离之和是
9.在抛物线x y 122
=上和焦点的距离等于9的点的坐标是 10.抛物线2
x y =与直线y=2x-4的最短距离是
11.已知双曲线
19
16
2
2=-
y
x
,则它的离心率是
1. 在第四象限内到原点的距离为2的点的轨迹方程是( ) A.42
2
=+y x B 42
2
=+y x (x>0) C.2
4x y --= D. 2
4x y --=(0<x<2)
2.以双曲线0369422=+-y x 的中心为顶点,其焦点为焦点的抛物线方程是( ) A.x y 1322±= B. x y 1342±= C. y x 1342±= D. y x 1322±=
3.设θ为第四象限的角,那么方程θθsin sin 22=+y x 所表示的曲线是( ) A.焦点在x 轴上的双曲线 B.焦点在x 轴上的椭圆 C.焦点在y 轴上的双曲线 D.焦点在y 轴上的椭圆
4.顶点在原点,焦点在y 轴上的抛物线被直线y=x-1截得的弦长等于62,则抛物线的方程是( )
A.y x y x 622=-=或
B. y x -=2
C. y x y x 622-=-=或
D. y x 62=
5.若椭圆的短轴长、焦距,长轴长依次成等差数列,则这个椭圆的离心率为( ) A.
4
3 B.
5
3 C.
5
4 D.-
4
5
6.以点A (-5,4)为圆心,且与y 轴相切的圆的方程是
7.中心在原点,坐标轴为对称轴,短轴长为10,离心率为
13
12的椭圆方程为
8.若方程
110
2
2
2
=--
-n y
n x
表示焦点在x 轴上的双曲线,则n 的取值范围是
9.抛物线x y 62=与双曲线14
2
2
=-
y
x 的公共余弦长等于
10.已知圆0762
2
=--+x y x 与抛物线px y 22
=的准线相切,则p= 11.设圆132
2
=+y x 和斜率是3
2的直线相切,求此切线的方程
12.已知P 是椭圆116
25
2
2
==
y
x
上的点,21,F F 是焦点,若∠0
2160=PF F ,求△21F PF 的
面积
13.求焦点在x 轴上,焦距为20.渐近线方程是x y 3
4±=的双曲线方程
14.已知抛物线x y 82-=,过点)1,1(-o P 引一条弦,使此弦在0P 点被平分,求弦所在的直线方程
15.求过点M (1,0)所作椭圆14
2
2
=+y
x
的弦中点的轨迹方程
16.已知直线y=x+m 与抛物线x y 42=的焦点的距离为2,求m 的值。