材料科学基础-复习答案-学生用-2

合集下载

材料科学基础习题及答案2

材料科学基础习题及答案2

材料科学基础试卷(2009年1月17日)一. 名词解释(4分×5题= 20分)1. 位错:(4分)2. 马氏体转变:(4分)3. 晶体:(4分)4. 形变强化:(4分)5. 间隙固溶体:(4分)二.填空(30分,每空1分)1. 一个体心立方晶胞中占有的原子数目为。

2.典型金属的晶体结构有、、。

3.晶界分为、两类,两个晶粒的位向差小于,它们之间的晶界称为小角度晶界。

4.相界面分为、、、三大类。

5.固态相变按热力学可分为、,按原子迁移方式可分为、,按相变方式可分为、。

6. 板条马氏体显微组织是由许多成群的板条组成,亚结构为。

7.马氏体是C在α-Fe中的过饱和间隙式固溶体。

具有点阵。

马氏体相变属于相变。

8.脱溶沉淀包括、、、四个过程。

9.晶体材料在力的作用下,主要表现为、、、、五个过程。

10.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

11. 原子扩散的驱动力是。

三、是非题(正确打√,错误打×)(每小题1分, 共计10分)1、面心立方金属滑移面通常为{110},滑移方向为<111>。

()2、再结晶是指无畸变的等轴新晶粒逐渐取代变形新晶粒的过程。

()3、从热力学角度看,扩散的真正推动力是由浓度梯度的不同引起的,各组元的原子总是由高浓度扩散到低浓度。

()4、晶粒细化可以提高材料的强度,同时又可以提高材料的塑性指标。

()5、利用三元相图的垂直截面可分析给定合金在冷却过程中的相变过程,在两相区也可应用杠杆定律来计算两平衡相的相对量。

()6、实际金属结晶过程中,形核有均匀形核和非均匀形核两种方式,由于非均匀形核所需形核功较高,所以主要以均匀形核为主。

()7、二元合金中,固溶体结晶时,在正的温度梯度下,晶体只能以平面方式长大,不能以树枝状和胞状方式长大。

()8、孪生是晶体难以进行滑移时,而进行的另外一种塑性变形方式。

()9、一根位错线不能在晶体内部中断,也不能在晶体表面中断,只能在晶体内部自成封闭的位错环或者和其它位错线相连接。

材料科学基础2复习题与参考答案

材料科学基础2复习题与参考答案

材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。

2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。

3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。

(《笔记》聚合物拉伸时出现的细颈伸展过程。

)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。

(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。

(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。

)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。

7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。

8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。

(《书》晶体开始滑移时,滑移方向上的分切应力。

)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。

(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。

)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。

(《书》使金属在再结晶温度以上发生加工变形的工艺。

)11、柏氏矢量:是描述位错实质的重要物理量。

反映出柏氏回路包含的位错所引起点阵畸变的总积累。

(《书》揭示位错本质并描述位错行为的矢量。

)反映由位错引起的点阵畸变大小的物理量。

12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。

13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。

材料科学基础-复习答案-学生用 重点范围

材料科学基础-复习答案-学生用 重点范围

2、产生柯肯达尔效应的原因构成扩散的纯组元A,B作为溶质组元溶于对方一侧并进行扩散时,各自的扩散系数不同4、稳定化合物:是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物。

7、晶胞的选取原则1.几何形状与晶体具有同样的对称性、2.平行六面体内相等的棱与角的数目最多、3.当平行六面体棱间有直角时,直角数目最多、4.在满足上述条件下,晶胞体积应最小。

8、形成置换固溶体的条件和影响溶解度因素:1.条件:溶质取代了溶剂中原子或离子所形成的固溶体、2影响:原子或离子的尺寸的影响、晶体结构类型的影响、电负性的影响、电子浓度的影响。

9、碳对铁碳合金的组织与性能的影响:1.碳对铁碳合金平衡组织的影响:当含碳量增加时,使铁碳合金组成相的相对含量发生变化,从而导致不同性质的结晶。

2.碳对合金机械性能的影响:当含碳量达到0.77%时,铁碳合金不仅具有较高的强度和硬度,也具有一定的塑性和韧性,当>0.77%时,铁碳合金的塑性韧性降低。

3.碳对合金工艺性能的影响:12、材料科学材料科学是自然科学的一个分支,它从事于材料本质的发现、分析和了解方面的研究,目的在于提供材料结构的统一描绘和模型,以及解释这种结构与性能之间的关系。

13、合成的定义式什么,合成研究包括那些?指促使原子、分子结合而构成材料的化学与物理过程。

合成的研究既包括有关寻找新合成方法的科学问题,也包括以适当的数量和形态合成材料的技术问题;既包括新材料的合成,也应包括已有材料的新合成方法(如溶胶-凝胶法)及其新形态(如纤维、薄膜)的合成。

14、制备:研究如何控制原子与分子使之构成有用的材料。

15、结构的定义式什么,包括那些方面?1.定义:结构是理解和控制性能的中心环节。

2.包括{原子结构、原子的排列、相结构、显微组织、晶体中的结构缺陷。

16、离子键的特点:离子键可用化学式表示、高熔点,结合力强,硬而脆、电子周围无自由电子、无方向性、传导性差17、共价键的特点:具有饱和性符合8-n定律、具有方向性、结合力强,熔点高,硬、电子周围无自由电子、传导性差18、原子半径的影响因素:1.致密度越高,则Ra越小2、键合力越高,则Ra越小3、不同方向上Ra也可能不同19、晶向指数建立步骤1.选定坐标系、2通过原点作一条直线,使其平行于待标定的晶向、3在直线上任取一点P,求出P点在3个坐标轴的坐标、4取截距的最小整数比,去掉比例符号,用方括号括之。

材料科学基础-张代东-习题答案(2)

材料科学基础-张代东-习题答案(2)

第1章 习题解答1-1 解释下列基本概念金属键,离子键,共价键,范德华力,氢键,晶体,非晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14种布拉菲点阵,晶向指数,晶面指数,晶向族,晶面族,晶带,晶带轴,晶带定理,晶面间距,面心立方,体心立方,密排立方,多晶型性,同素异构体,点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙,点缺陷,线缺陷,面缺陷,空位,间隙原子,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏氏回路,柏氏矢量,位错的应力场,位错的应变能,位错密度,晶界,亚晶界,小角度晶界,大角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界(略)1-2 原子间的结合键共有几种?各自特点如何? 答:原子间的键合方式及其特点见下表。

类 型 特 点离子键 以离子为结合单位,无方向性和饱和性 共价键 共用电子对,有方向性键和饱和性 金属键 电子的共有化,无方向性键和饱和性分子键 借助瞬时电偶极矩的感应作用,无方向性和饱和性 氢 键依靠氢桥有方向性和饱和性1-3 问什么四方晶系中只有简单四方和体心四方两种点阵类型?答:如下图所示,底心四方点阵可取成更简单的简单四方点阵,面心四方点阵可取成更简单的体心四方点阵,故四方晶系中只有简单四方和体心四方两种点阵类型。

1-4 试证明在立方晶系中,具有相同指数的晶向和晶面必定相互垂直。

证明:根据晶面指数的确定规则并参照下图,(hkl )晶面ABC 在a 、b 、c 坐标轴上的截距分别为h a 、k b 、l c ,k h b a AB +-=,l h c a AC +-=,lk ca BC +-=;根据晶向指数的确定规则,[hkl ]晶向cb a L l k h ++=。

利用立方晶系中a=b=c , 90=γ=β=α的特点,有 0))((=+-++=⋅k h l k h ba cb a AB L 0))((=+-++=⋅lh l k h ca cb a AC L 由于L 与ABC 面上相交的两条直线垂直,所以L 垂直于ABC 面,从而在立方晶系具有相同指数的晶向和晶面相互垂直。

材料科学基础试卷(二)与答案

材料科学基础试卷(二)与答案

材料科学基础试卷(二)与参考答案、名词解释 (每小题 1 分,共 10 分 )1.晶胞2.间隙固溶体3.临界晶核4.枝晶偏析5.离异共晶6.反应扩散7.临界分切应力8.回复9.调幅分解10.二次硬化、判断正误 (每小题 1 分,共 10 分 )正确的在括号内画“V” ,错误的画“X”1. 金属中典型的空间点阵有体心立方、面心立方和密排六方三种。

( )2. 作用在位错线上的力 F 的方向永远垂直于位错线并指向滑移面上的未滑移区。

( )3. 只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。

( )4. 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程5. 固溶体凝固形核的必要条件同样是A GB V0、结构起伏和能量起伏。

()6. 三元相图垂直截面的两相区内不适用杠杆定律。

()7. 物质的扩散方向总是与浓度梯度的方向相反。

()8. 塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。

()9. 和液固转变一样,固态相变也有驱动力并要克服阻力,因此两种转变的难易程度相似。

()10. 除Co以外,几乎所有溶入奥氏体中的合金元素都能使 C曲线左移,从而增加钢的淬透性。

()三、作图题(每小题5分,共15分)1. 在简单立方晶胞中标出具有下列密勒指数的晶面和晶向:a)立方晶系(421), (123),[211]; b)六方晶系(2111),[2113]。

2. 设面心立方晶体中的(111)为滑移面,位错滑移后的滑移矢量为a - [110]。

2(1)在晶胞中画出柏氏矢量b的方向并计算出其大小。

(2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数3. 如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。

试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图四、相图分析(共20分)⑴就Fe-Fe3C相图,回答下列问题:1•默画出Fe-Fe3C相图,用相组成物填写相图;2. 分析含碳量为I.Owt%的过共析钢的平衡结晶过程,并绘出室温组织示意图。

材料科学基础复习题(含答案)

材料科学基础复习题(含答案)

材料科学基础考前重点复习题1. Mn 的同素异构体有一为立方结构,其晶格常数α为0.632nm ,密度ρ为26.7g/cm 3,原子半径r 等于0.122nm ,问Mn 晶胞中有几个原子,其致密度为多少?答案解析:习题册 P9 2-22.2. 如图1所示,设有两个α相晶粒与一个β相晶粒相交于一公共晶棱,并形成三叉晶界,已知β相所张的两面角为80℃,界面能ααγ为0.60Jm -2, 试求α相与β相的界面能αβγ。

图1答案解析:习题册 P17 3-42.3. 有两种激活能分别为1Q =53.7kJ/mol 和2Q =201kJ/mol 的扩散反应,观察在温度从25℃升高到800℃时对这两种扩散的影响,并对结果进行评述。

答案解析:习题册 P21 4-8.4. 论述强化金属材料的方法、特点和机理。

答:(1)结晶强化。

通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,提高金属材料的性能。

包括细化晶粒,提高金属材料纯度。

(2)形变强化。

金属材料在塑性变形后位错运动的阻力增加,冷加工塑性变形提高其强度。

(3)固溶强化。

通过合金化(加入合金元素)组成固溶体,使金属材料强化。

(4)相变强化。

合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料强化。

(5)晶界强化。

晶界部位自由能较高,存在着大量缺陷和空穴。

低温时,晶界阻碍位错运动,晶界强度高于晶粒本身;高温时,沿晶界扩散速度比晶内扩散速度快,晶界强度显著降低。

强化晶界可强化金属材料。

5. 什么是回复,请简述金属材料冷变形后回复的机制。

试举例说明回复的作用。

答:(1)回复是冷变形金属在低温加热时,其显微组织无可见变化,但物理性能、力学性能却部分恢复到冷变形以前的过程。

(2)回复机制:低温回复主要与点缺陷迁移有关,冷变形时产生大量的点缺陷,空穴与间隙原子。

温度较高时,中温回复会发生位错运动和重新分布。

位错滑移,异号位错相遇而抵消,位错缠结重新排列,位错密度降低。

材料科学基础试卷(二)与参考答案

材料科学基础试卷(二)与参考答案

材料科学基础试卷(二)与参考答案一、名词解释(每小题1分,共10分)1.晶胞2.间隙固溶体3.临界晶核4.枝晶偏析5.离异共晶6.反应扩散7.临界分切应力8.回复9.调幅分解10. 二次硬化二、判断正误(每小题1分,共10分)正确的在括号内画“√”, 错误的画“×”1. 金属中典型的空间点阵有体心立方、面心立方和密排六方三种。

( )2. 作用在位错线上的力F 的方向永远垂直于位错线并指向滑移面 上的未滑移区。

( )3. 只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。

( )4. 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。

( )5. 固溶体凝固形核的必要条件同样是ΔG B <0、结构起伏和能量起伏。

( )6. 三元相图垂直截面的两相区内不适用杠杆定律。

( )7. 物质的扩散方向总是与浓度梯度的方向相反。

( )8. 塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。

( )9. 和液固转变一样,固态相变也有驱动力并要克服阻力,因此两种转变的难易程度相似。

( )10.除Co 以外,几乎所有溶入奥氏体中的合金元素都能使C 曲线 左移,从而增加钢的淬透性。

( )三、作图题(每小题5分,共15分)1. 在简单立方晶胞中标出具有下列密勒指数的晶面和晶向:a)立方晶系 (421),(231),[112];b)六方晶系(1112),[3112]。

2. 设面心立方晶体中的(111)为滑移面,位错滑移后的滑移矢量为2a [110]。

(1)在晶胞中画出柏氏矢量b的方向并计算出其大小。

(2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。

3.如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。

试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。

四、相图分析(共20分)(1) 就Fe-Fe3C相图,回答下列问题:1. 默画出Fe-Fe3C相图,用相组成物填写相图;2. 分析含碳量为1.0wt%的过共析钢的平衡结晶过程,并绘出室温组织示意图。

《材料科学与工程基础》-第二章-课后习题答案.pdf

《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。

它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。

材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。

随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。

工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。

2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。

材料的结构包括原子、晶体和晶界等方面的组成和排列方式。

而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。

材料的结构直接决定了材料的性能。

例如,金属的结晶结构决定了金属的塑性和导电性。

硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。

因此,通过对材料的结构进行了解,可以预测和改变材料的性能。

3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。

不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。

例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。

聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。

陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。

因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。

4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。

它包括了物理、化学、力学、热学、电学等方面的特性。

测量材料的特性需要使用特定的实验方法和设备。

例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。

材料的强度可以通过拉伸试验或压缩试验来测量。

材料的导电性可以通过四探针法或霍尔效应进行测量。

通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础复习重点知识点及典型例题一、简答题:1、测定扩散系数的方法。

示踪原子扩散方法、化学扩散方法、弛豫方法、核方法。

2、产生柯肯达尔效应的原因由于两种原子以不同速度相对扩散而造成标记面的漂移。

3、影响扩散系数的因素:温度、晶体结构及固溶体类型、各向异性、第三组元、晶体缺陷、4、稳定化合物:是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物。

5、二元相图的几何规律:1.两个单相区只能交与一点,而不能交成线段、2.两个单相区之间,必定是一个由这两个单相构成的两相区、3三相共存区,必定是一条水平线,该水平线必须与由这3个相组合而成的3个两相区相邻、4如果两个恒温转变中有两个是相同的相,那么在这两条水平线之间一定是由这两个相组成的两相区、5.两相区和单相区的分界线与三相等温水平线相交,则分界线的延长线进入另一个两相区,而不会进入单相区。

6、相区接触法则:在二元系相图中,相邻相区中相的数目只能相差一个,这一规律称作相区接触法则。

7、晶胞的选取原则1.几何形状与晶体具有同样的对称性、2.平面六面体内相等的棱与角的数目最多、3.当平行六面体棱间有直角时,直角数目最多、4.在满足上述条件下,晶包体积应最小。

8、形成置换固溶体的条件和影响溶解度因素:1.条件:溶质取代了溶剂中原子或离子所形成的固溶体、2影响:原子或离子的尺寸的影响、晶体结构类型的影响、电负性的影响、电子浓度的影响。

9、碳对铁碳合金的组织与性能的影响:1.碳对铁碳合金平衡组织的影响:当含碳量增加时,使铁碳合金组成相的相对含量发生变化,从而导致不同性质的结晶。

2.碳对合金机械性能的影响:当含碳量达到0.77%时,铁碳合金不仅具有较高的强度和硬度,也具有一定的塑性和韧性,当>0.77%时,铁碳合金的塑性韧性降低。

3.碳对合金工艺性能的影响:10、写出下列缺陷反应式:(1) CaCl2固溶在NaCl晶体中(产生正离子空位,生成置换型SS)CaCl2+2NaCl→→Ca·Na+2Clcl+V’Na(2) MgO固溶在Na2O晶体中(产生正离子空位,生成置换型SS)MgO+Na2O→→Mg·Na+Oo+V’Na(3) Al2O3固溶在MgO晶体中(产生正离子空位,生成置换型SS)Al2O3+3MgO→→2Al·Mg+3Oo+V”Mg(4) YF3固溶在CaF2晶体中(产生正离子空位,生成置换型SS)2YF3+3CaF2→→2Y·Ca+6F F+V”Ca(5) MgO固溶在ZrO2晶体中(产生负离子空位,生成置换型SS)MgO+ZrO2→→Mg”zr+Oo+V··o11、材料科学基础《材料科学基础》系统地介绍了材料科学的基础理论,探讨材料的共性和普遍规律。

主要内容包括材料的结构,材料的凝固与相图,扩散,材料中铺缺陷,塑性变形、回复与再结晶等。

《材料科学基础》可作为高等院校材料类和机械类专业的学生及研究生的教科书和参考书,也可以为相关专业的学生及从事材料工作的科技工作者和工程技术人员提供参考。

12、材料科学材料科学是自然科学的一个分支,它从事于材料本质的发现、分析和了解方面的研究,目的在于提供材料结构的统一描绘和模型,以及解释这种结构与性能之间的关系。

13、合成的定义式什么,合成研究包括那些?指促使原子、分子结合而构成材料的化学与物理过程。

合成的研究既包括有关寻找新合成方法的科学问题,也包括以适当的数量和形态合成材料的技术问题;既包括新材料的合成,也应包括已有材料的新合成方法(如溶胶-凝胶法)及其新形态(如纤维、薄膜)的合成。

14、制备:研究如何控制原子与分子使之构成有用的材料。

这一点是与合成相同的,但制备还包括在更为宏观的尺度上或以更大的规模控制材料的结构,使之具备所需的性能和适用效能,即包括材料的加工、处理、装配和制造。

简而言之,合成与制备就是将原子、分子聚合起来并最终转变为有用产品的一系列连续过程。

15、结构的定义式什么,包括那些方面?1.定义:结构是理解和控制性能的中心环节。

2.包括{原子结构、原子的排列、相结构、显微组织、晶体中的结构缺陷。

16、离子键的特点:离子键可用化学式表示、高熔点,结合力强,硬而脆、电子周围无自由电子、无方向性、传导性差17、共价键的特点:具有饱和性符合8-n定律、具有方向性、结合力强,熔点高,硬、电子周围无自由电子、传导性差18、原子半径的影响因素:19、晶向指数建立步骤1.选定坐标系、2通过原点作一条直线,使其平行于待标定的晶向、3在直线上任取一点P,求出P点在3个坐标系的坐标、4取截距的最小整数比,去掉比例符号,用方括号括之。

20、晶面指数的确定步骤:1.选定以晶轴为坐标轴的坐标系,要求坐标原点不在待标晶面上,各轴单位分别是单位平行六面体边长a、b、c2.求出待标晶面在X、Y、Z轴上的截距pa、qb、rc,截距系数为p、q、r3取截距系数的倒数最小整数比、4.去掉比例符号,以小括号括之。

21、晶带定律晶带指数为【uvw】时,晶带中任何晶面指数(hkl)都能符合关系式:hu+kv+lw=0,这种规律称为晶带定律。

22、缺陷:晶体的某些区域总是存在原子或分子的不规则排列,这便是晶体结构缺陷23、热缺陷:热缺陷是由于晶体中的原子(或离子)的热运动而造成的缺陷。

24、非化学计量化合物:其各元素的原子(或离子)组成可以一定的比例范围内波动。

它们的组成不符合化合价规则,不服从组成定律,不能用小的整数来表示,只能用小数描述。

25、互扩散伴有浓度变化的扩散,与异类原子的浓度梯度有关,异类原子相对扩散,相互渗透。

扩散物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。

自扩散没有浓度变化的扩散,与浓度梯度无关。

异扩散溶质原子在溶剂金属中的扩散26、扩散通量指扩散物质在单位时间内通过单位截面积的质量。

27、固相反应的特点:1、相界面{共格界面、半共格界面、肥共格界面}2.界面能、3应变能、4取向关系、5.惯性面、6晶体缺陷29、固相反应的一般过程包括哪些:1、反应物颗粒间混合接触2、在颗粒表面发生反应3、形成细薄含大量结构缺陷的新相4、晶粒生长5、反应通过反应物的扩散而继续30、影响固相反应的因素:反应物化学组成与结构;反应物颗粒尺寸及分布的影响;反应温度压力、气氛;矿物剂及其它因素31、自由度(f)定义:指:在平衡系统中独立可变的因素。

33、何谓金属键?金属的性能与金属键的关系如何?定义:金属正离子与自由电子之间的相互作用就构成了金属原子间的结合力→金属键。

关系:由于金属键存在自由电子,金属就具有高导电性和导热性,自由电子能吸收光波能量,产生突跃,从而表现出有金属光泽、不透明,另外,金属正离子以球型密堆积方式组成,晶体原子间可滑动,表现出有延展性,并说明金属键没有方向性和饱和性。

34、定比例规则:从等边三角形的某一顶点向对边作一直线,则在线上的任一点表示对边两组分含量之比不变,而顶点组分的含量则随着远离顶点而降低。

35、等含量规则:在等边三角形中,平行于一条边的直线上的所有各点均含有相等的对应顶点的组成。

36、杠杆规则:在三元系统中,一种混合物分解为两种物质(或两种物质合成为一种混合物)时,它们的组成点在一条直线上,它们的重量比与其它组成点之间的距离成反比。

37、连线规则:将界线(或延长线)与相应的连线相交,其交点是该界线上的温度最高,温度走向是背离交点38、切线规则:将界线上的某一点所作的切线与相应的组成的连线相交,如交点在连线上,则表示界线上该处具有共熔性质;如交点在连线的延长线上,则表示界线上该处具有转熔性质,远离交点的晶相被回吸。

39、重心规则:无变量点处于其相应副三角形的重心位,则为共熔点;无变量点处于其相应副三角形的交叉位,则为单转熔点;无变量点处于其相应副三角形的共轭位,则为双转熔点。

40、三角形规则原始熔体组成点所在三角形的三个顶点表示的物质即为其结晶产物;与这三个物质相应的初晶区所包围的三元无变量点是其结晶终点。

41、均匀形核:均匀(或均质)形核是指在均匀单一的液相中形成固相结晶核心的过程。

42、什么是物理吸附、化学吸附,两者的区别.物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力所引起,化学吸附吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,化学吸附是指在吸附过程中伴随着化学反应,物理吸附在吸附过程中则没有化学反应。

一般来说,化学吸附是不可逆的,物理吸附可逆44、马氏体相变的基本特征?1.无扩散性2.切变性,即由母相变为新相的晶格改组过程是以切变方式进行的3.具有一定的晶体学位相关系的惯习面,即共格切变4.转变在一定的温度范围内进行5.快速转变,一般不需要孕育期6.转变不完全,会留有相当数量的残余奥氏体45、范得华力来源三方面:1.静电力、2.诱导力、3.色散力。

46、鲍林的具体内容有哪些?一个原子轨道最多只能容纳两个电子,且这两个电子自旋方向必须相反47、肖脱基空位;弗兰克尔空位。

肖脱基空位:离位原子迁移到外表面或内界面处称为肖脱基空位弗兰克尔:离位原子迁移到晶体点阵的间隙中称为弗兰克尔空位48、由于能量起伏和原子热振动,点缺陷将不断产生、运动和消亡,点缺陷是热力学稳定的缺陷。

49、晶体缺陷按几何组态可分哪几类?1.点缺陷、2.线缺陷、3.面缺陷。

50、获得过饱和点缺陷的方法哪些。

1.淬火法、2.辐射法、3.塑性变形。

51、试阐述粉体材料与人类社会的关系及其在各领域中的应用从材料古代文明、现代文明、社会发展、日常生活等方面进行论述材料、信息、能源归为现代文明的三大支柱,信息技术、生物技术和新型材料作为新的技术革命的重要标志。

先进材料是社会现代化的先导. 材料是人类文明的物质基础,从远古的石器时代到青铜器时代,然后再进入铁器时代,每一种新材料的出现和使用,都伴随着生产力和科学技术的发展,标志着人类文明的进步。

材料又是社会现代化的物质基础与先导,特别是先进材料的研究、开发与应用反应着一个国家科学技术与工业水平。

在人类的生活和生产中,材料是必需的物质基础。

人们的衣食住行,无一不与材料密切相关。

材料的发展水平直接影响人们的生活。

52、稳态扩散:指在扩散系统中,一体积元在任一时刻,流入的物质量与流出的物质量相等,即任一点的浓度不随时间变化。

53、材料科学与工程中的许多现象——烧结、氧化、蠕变、沉淀、化学热处理以及许多相变过程都与扩散密切相关54、共价键的本质是什么,共价键理论包括那些理论?本质:党原子相互靠近时,原子轨道发生作用,组成新的分子轨道,引起原子间电子分布情况发生变化,使两原子聚集程度变大,电子云密度增加,体系能量降低,形成稳定的化学键,称为共价键。

相关文档
最新文档