实数作业
12.6 实数的运算(作业)原卷版[001]
![12.6 实数的运算(作业)原卷版[001]](https://img.taocdn.com/s3/m/0f48d07f42323968011ca300a6c30c225801f05d.png)
12.6 实数的运算(作业)一、单选题1.(2019·上海兰田中学七年级期中)下列运算中,正确的是( )A 235=B .()23223-=C .2 a a =;D .2a ba b +=+.2.(2019·上海普陀区·七年级期中)在算式333中的□处填上运算符号,使结果为负实数,则填的运算符号为( ) A .加B .减C .乘D .除3.(2019·上海控江中学附属民办学校七年级单元测试)设a=20,b=(-3)2,39-d=11()2-,则a ,b ,c ,d 按由小到大的顺序排列正确的是( ) A .c<a<d<b B .b<d<a<c C .a<c<d<bD .b<c<a<d5.(2019·上海市三门中学七年级期中)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①②B .①③C .②③D .①②③6.(2019·上海七年级课时练习)实数2.6、 √7和2√2的大小关系是( )A .2.6<2√2<√7B .√7<2.6<2√2C .2.6<√7<2√2D .2√2<2.6<√77.(2019·上海市进才中学北校七年级月考)√2,√3,125的大小关系是( )A .√2<√3<125B .125<√2<√3C .√2<125<√3D .√3<125<√28.(2019·上海市中国中学七年级期中)如果0<x <1,比较x 、1xx 、2x 的大小正确的是( ) A .1 xx 2x >xB . x 1x>x>2x C .1 xx >x>2xD .以上答案均不对9.(2019·上海全国·七年级单元测试)已知01x <<,那么在21,,x x x x中,最大的数是( )A .xB .1xC xD .2x10.(20197-1与72的大小,结果是( ) A .后者大 B .前者大 C .一样大D .无法确定二、填空题11.(2020·上海静安区·七年级期中)比较大小:22-_________3-(填“<”或“=”或“>”).12.(2020·上海嘉烁教育培训有限公司)计算:()233x =____________.13.(20205(填“>”或“<”或“=”) 14.(2019·上海市闵行区七宝第三中学七年级月考)计算:()()()32a a a -÷-÷-=_________.15.(2019·上海市廊下中学七年级月考)如果定义a ⊕b =a ﹣2b ,计算:(3⊕x )﹣2=_____.16.(2019·上海青浦区·青教院附中七年级期中)在数学中,为了书写简便,我们记k=1kn∑=1+2+3+…+(n-1)+n ,nk=1(x+k)∑=(x+1)+(x+2)+(x+3)+…+(x+n),则化简3k=1[(x-k)(x-k-1)]∑的结果是______________________.17.(2019·上海市同洲模范学校七年级月考)对于任意实数m 、n ,都有m ▲n=3m+2n ,则[2▲(-3)▲(-1)]的值为__________。
2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析

2022-2023学年八年级数学上册第四章《实数》试题卷一、单选题1( )A .B .±9C .±3D .92.下列等式中,正确的是( )A .34=B 34=C .38=±D 34=± 3.下列语句中正确的是( )A .16的平方根是4B .﹣16的平方根是4C .16的算术平方根是±4D .16的算术平方根是4 4.在下列各组数中,互为相反数的一组是( )A .2-B .-2与1-2C .-D .25.下列说法:①无限小数都是无理数;②无理数都是带根号的数;③负数没有立方根;的平方根是±8;⑤无理数减去任意一个有理数仍为无理数.其中正确的有( )A .0个B .1个C .2个D .3个 6.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a 2>-B .b 1<C .a b ->D .a b <7.实数﹣3,3,0,中最大的数是( )A .﹣3B .3C .0 D8.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作 业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯9.某市年财政收入取得重大突破,地方公共财政收入用四舍五人法取近似值后为35.29亿元,那么这个数值( )A .精确到十分位B .精确到百分位C .精确到千万位D .精确到百万位10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是( )A B +1 C .1﹣ D .﹣二、填空题11.如果14x +是的平方根,那么x = .12.已知一个正数的两个平方根是32x +和520x -,则这个数是 .13的相反数为 ,倒数为 ,绝对值为 .14.可以作为“两个无理数的和仍为无理数”的反例的是 .151 3(填“>”、“<”或“=”).三、计算题16.计算:12011|7|(π 3.14)43--⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭. 17.计算:)1021112-⎛⎫-+ ⎪⎝⎭18.计算 ()31-+.四、解答题19.将-π,0,2 ,-3.15,3.5用“>”连接.20.把下列各数填入相应的集合圈里(填序号)⑴﹣30 ⑴ ⑴3.14 ⑴ 225 ⑴0 ⑴+20 ⑴﹣2.6 ⑴ ⑴ -2π⑴ 0.05 ;⑴﹣0.5252252225…(每两个5之间依次增加1个2) ⑴ ⑴21.若 x y + 是9的算术平方根, x y - 的立方根是 2- ,求 22x y - 的值.22.已知a 的平方根是±3,b -1的算术平方根是2,求a -2b 的立方根.23.已知实数 a 、 b 、 c 在数轴上的对应点为 A 、 B 、 C ,如图所示:化简: b a c b ----.24.甲同学用如图所示的方法作出C OAB 中,90OAB ∠=,2OA =,3AB =,且点O ,A ,C 在同一数轴上,OB OC =.仿照甲同学的做法,在如图所示的数轴上描出表示F .25.一个篮球的体积为39850cm ,求该篮球的半径r (π取3.14,结果精确到0.1cm ).答案解析部分1.【答案】A【解析】3=.故答案为:A.3=,再求出3的平方根即可.2.【答案】B【解析】【解答】解:34=±,故A、C错误;34=,故B正确,D错误;故答案为:B.【分析】根据平方根、算术平方根逐一计算,并判断即可.3.【答案】D【解析】【解答】解:∵16的平方根是±4,16的算术平方根是4,负数没有平方根,∴选项D正确.故答案为:D.【分析】一个正数x2=a(a>0)则这个正数x就是a的算术平方根,一个数x2=a(a>0)则这个数x就是a的平方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.4.【答案】C【解析】【解答】解:A2=-,故本选项不符合题意;B、-2与2是相反数,故本选项不符合题意;C、-=是相反数,故本选项符合题意;D2=,故本选项不符合题意故答案为:C.【分析】利用二次根式的性质、立方根、绝对值的性质将各选项中能化简的数先化简,再根据只有符号不同的数是互为相反数,可得答案.5.【答案】B【解析】【解答】解:根据无理数的定义可知:①无限小数都是无理数;说法错误;②无理数都是带根号的数;说法错误;③负数没有立方根;负数有立方根,故说法错误;=8的平方根是±,故说法错误;⑤无理数减去任意一个有理数仍为无理数.说法正确;正确说法有1个.故答案为:B.【分析】无限不循环小数叫做无理数,据此判断①②;每一个数都有立方根,据此判断③;根据平方根的概念可判断④;根据无理数的认识以及减法法则可判断⑤.6.【答案】C【解析】【解答】解:根据数轴得:a b <,a b >,故C 选项符合题意,A ,B ,D 选项不符合题意. 故答案为:C.【分析】根据数轴可得a<-2<0<1<b<2且|a|>|b|,据此判断.7.【答案】B【解析】【解答】解:根据题意得:3>>0>−3, 则实数−3,3,0, 中最大的数是3, 故答案为:B.【分析】利用实数的大小比较:正数都大于0和负数,观察可得答案.8.【答案】B【解析】【解答】解:66799=6.6799×104,精确到千位为46.710⨯.故答案为:B.【分析】利用科学记数法表示出此数,再利用四舍五入法将此数精确到千位.9.【答案】D【解析】【解答】∵35.29亿末尾数字9是百万位,∴35.29亿精确到百万位;故答案为:D .【分析】根据近似数的定义及四舍五入的方法求解即可。
《14.3实数》作业设计方案-初中数学冀教版12八年级上册

《实数》作业设计方案(第一课时)一、作业目标本次作业的目标是帮助学生巩固《实数》第一课时的知识点,包括实数的概念、分类、性质以及实数在数轴上的表示等。
通过作业练习,加深学生对实数基本概念的理解,提高其应用实数知识解决实际问题的能力。
二、作业内容1. 基础练习:包括填空题和选择题,内容涵盖实数的定义、分类以及数轴上点的表示。
要求学生准确理解实数的概念,并能正确判断实数的类型和在数轴上的位置。
2. 概念应用:设计几道应用题,让学生运用实数的性质解决实际问题。
例如,通过温度的表示理解正负数的实际意义,通过长度单位的换算理解有理数的大小关系等。
3. 拓展提高:设计一些稍具难度的题目,如探索实数与数轴的关系、实数的加减法运算等。
旨在培养学生的逻辑思维能力和解决问题的能力。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭他人答案。
2. 认真审题:仔细阅读题目,明确题目要求,避免因理解错误导致答案错误。
3. 规范答题:答案要规范、清晰,步骤要完整,尽量使用数学语言进行表述。
4. 及时提交:按照教师的要求,按时提交作业。
四、作业评价1. 评价标准:根据学生完成作业的准确性、规范性、解题思路的清晰程度以及是否独立完成等方面进行评价。
2. 评价方式:教师批改作业时,采用多种评价方式相结合,如过程性评价与结果性评价相结合、自评与互评相结合等。
3. 反馈形式:通过批改作业,及时向学生反馈学习情况,指出错误并给出正确答案及解题思路。
对于表现优秀的学生给予表扬和鼓励。
五、作业反馈1. 课堂讲解:教师利用课堂时间,针对学生作业中普遍存在的问题进行讲解,帮助学生掌握正确的解题方法和思路。
2. 个别辅导:对于个别学生存在的问题,教师可进行个别辅导,帮助学生解决学习中的困难。
3. 互动交流:鼓励学生之间进行互动交流,分享解题经验和技巧,共同提高学习成绩。
4. 复习巩固:要求学生将错题整理成错题本,以便于后期复习巩固,减少同类错误的再次发生。
人教版七年级数学下册第6章实数专题作业

【对应训练】 5.计算:
(1)
3 (-2)2 -
1 27
×
(-3)2 +
196 ×3 -64 ÷
(2)| 5 - 6 |-| 5 -3|-| 6 -4|.
12254 ;
解:(1)-39 (2)2 6 -7
6.已知(x-12)2=169,(y-1)3=-0.125,求 x - 2xy -3 4y+x 的值.
4 25
-|
7 -3|.
(3) 0.3;
解: 7
解:1525
21.解方程: (1)(x-2)3=64;
解:x=6
(2)4(3x+1)2-1=0. 解:x=-16 或-12
22.已知实数 x,y 满足 x-2 +(y+1)2=0,则 x-y 等于( A ) A.3 B.-3 C.1 D.-1
【对应训练】
3 3.
-64
的立方根为_3__-__4____.
4.如果 x<0,那么 x 的立方根为( A )
A.3 x
B.3 -x
C.-3 x
D.±3 x
四、对实数的有关概念理解不透彻 【例4】下列命题正确的是( D) A.无理数包括正无理数、0和负无理数 B.无理数不是实数 C.无理数是带根号的数 D.无理数是无限不循环小数
2.已知 M=m-1 m+6 是 m+6 的算术平方根, N=2m-3n+3 n+6 是 n+6 的立方根,试求 M-N 的值.
解:由题意可知 m-1=2,2m-3n+3=3,可得 m=3,n=2, 所以 M= 9 =3,N=3 8 =2,所以 M-N=3-2=1
二、实数的非负性 【例 2】若 x2-1 + y+1 =0,求 x2019+y2020 的值. 分析:由题意可知 x2-1=0,y+1=0,分别求出 x,y, 再代入求值,注意分两种情况.
《2.1.1 实数的大小》作业设计方案-中职数学高教版21基础模块上册

《实数的大小》作业设计方案(第一课时)一、作业目标本次作业旨在帮助学生进一步理解实数的基本概念和性质,掌握实数大小比较的方法,培养其运用数学知识解决实际问题的能力。
二、作业内容1. 基础练习(1)判断正误:实数可以用“>”和“<”符号进行大小比较。
()(2)写出三个大于-3的负实数,三个小于3的正实数。
()(3)比较大小:4 < 27 ()(4)写出两个大于3的负实数,两个小于-5的正实数。
()2. 综合练习(1)请分别用几何方法和计算方法比较-15和3的大小。
(2)如果a>b>-5且ab<0,请写出a和b可能的四个值。
(3)利用不等式的性质,比较1/2, 4和-4的大小。
三、作业要求1. 独立完成:学生需独立完成作业,禁止抄袭。
2. 正确书写:作业的解答过程应书写整洁,逻辑清晰。
3. 按时提交:请在规定时间内提交作业,逾期不予评价。
四、作业评价1. 评价标准:作业完成情况、解题方法合理性、逻辑清晰度等。
2. 评价方式:教师评价与学生互评相结合,结合作业完成情况给予学生相应的分数。
五、作业反馈请学生在完成作业后,将自己的疑惑和问题写在作业反馈表中,以便我们及时了解学生的学习情况,更好地提供指导。
以下是一个可能的作业反馈表模板:【作业反馈表】实数的大小比较作业1. 你是否完全理解了实数大小比较的基础知识和方法?A. 完全理解B. 基本理解C. 有些困惑2. 在完成综合练习的过程中,是否有任何困难?请详细说明。
3. 你是否觉得这个课程对数学学习的帮助很大?A. 是B. 一般C. 否4. 你对这次作业的评价是:() A. 很好 B. 一般 C. 需要改进 D. 其他:()请补充:()请提出改进意见或建议。
5. 你希望下次课程有哪些改进或新增内容?(请填写建议)请在完成作业后,将此表填写完整并提交。
我们将会认真阅读并考虑您的反馈意见。
同时,也欢迎您在学习过程中随时提出其他问题或建议。
人教版七年级下学期第6章《实数》常考题型练习30道(解析版)

2020年春人教新版七年级下学期第6章《实数》常考题型练习一.选择题(共15小题)1.若x2=4,则x=()A.﹣2 B.2 C.﹣2或2 D.2.9的平方根是()A.±3 B.3 C.±4.5 D.4.53.表示()A.16的平方根B.16的算术平方根C.±4 D.±24.下列计算中,正确的是()A.=±3 B.(﹣1)0=1 C.|a|﹣a=0 D.4a﹣a=3 5.若,那么y x的值是()A.﹣1 B.C.1 D.86.若+|b+2|=0,那么a﹣b=()A.1 B.﹣1 C.3 D.07.图中的内容是某同学完成的作业,嘉琪帮他做了批改,嘉琪批改正确的题数是()A.2个B.3个C.4个D.5个8.在平面直角坐标系中,点P(﹣,6)在()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的正平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.10 C.0.01 D.0.110.用计算器探索:已知按一定规律排列的20个数:1,,,…,,.如果从中选出若干个数,使它们的和<1,那么选取的数的个数最多是()A.4个B.5个C.6个D.7个11.下列各数是无理数的是()A.B.C.0.010010001 D.12.在﹣1、2、、这四个数中,无理数是()A.﹣1 B.2 C.D.13.给出四个实数,3,0,﹣1.其中负数是()A.B.3 C.0 D.﹣114.如果a是无理数,那么下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a015.﹣1的相反数是()A.1B.C.D.二.填空题(共12小题)16.若一个正数的平方根分别是a+1和2a﹣7,则a的值是.17.面积等于5的正方形的边长是.18.若x、y为实数,且|x+3|+=0,则的值为.19.的立方根是.20.约等于:(精确到0.1).21.写出一个同时符合下列条件的数:.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.22.在中,有理数的个数是个.23.计算:|﹣|=.24.在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)25.比较大小:3 (填写“<”或“>”)26.已知a,b为两个连续的整数,且a<<b,则b a=.27.计算:﹣()﹣1=.三.解答题(共8小题)28.求下列各数的和:﹣,()﹣1,||,()0,29.已知实数a、b满足(a+2)2+=0,则a+b的值.30.在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=;c=;(2)若AC的中点为M,则点M表示的数为;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?参考答案与试题解析一.选择题(共15小题)1.若x2=4,则x=()A.﹣2 B.2 C.﹣2或2 D.【分析】利用平方根定义开方即可求出x的值.【解答】解:若x2=4,则x=﹣2或2,故选:C.2.9的平方根是()A.±3 B.3 C.±4.5 D.4.5【分析】根据平方根的性质和求法,求出9的平方根是多少即可.【解答】解:9的平方根是:±=±3.故选:A.3.表示()A.16的平方根B.16的算术平方根C.±4 D.±2【分析】直接利用算术平方根的定义分析得出答案.【解答】解:表示16的算术平方根.故选:B.4.下列计算中,正确的是()A.=±3 B.(﹣1)0=1 C.|a|﹣a=0 D.4a﹣a=3【分析】直接利用算术平方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.【解答】解:A、=3,故此选项错误;B、(﹣1)0=1,正确;C、|a|﹣a=0(a≥0),故此选项错误;D、4a﹣a=3a,故此选项错误;故选:B.5.若,那么y x的值是()A.﹣1 B.C.1 D.8【分析】直接利用偶次方以及二次根式的性质得出x,y的值,进而化简得出答案.【解答】解:∵,∴x+3=0,y﹣2=0,解得:x=﹣3,y=2,∴y x=2﹣3=.故选:B.6.若+|b+2|=0,那么a﹣b=()A.1 B.﹣1 C.3 D.0【分析】根据非负数的性质列式求出a、b的值,然后求出a﹣b的值.【解答】解:∵,|b+2|≥0,∵+|b+2|=0,∴a+1=0,b+2=0,解得:a=﹣1,b=﹣2,把a=﹣1,b=﹣2代入a﹣b=﹣1+2=1,故选:A.7.图中的内容是某同学完成的作业,嘉琪帮他做了批改,嘉琪批改正确的题数是()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,即可作出判断.【解答】解:①﹣1的倒数=﹣1,符合题意;②1的平方根为±1,立方根等于本身,不符合题意;③(﹣)2=,符合题意;④|1﹣|=﹣1,符合题意;⑤=﹣=﹣2,不符合题意,故选:B.8.在平面直角坐标系中,点P(﹣,6)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简﹣=2,再根据各象限内点的横纵坐标符号特点即可得出答案.【解答】解:∵﹣=2>0,∴点P(﹣,6)在第一象限,故选:A.9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的正平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.10 C.0.01 D.0.1【分析】把数据代入程序中计算,得出一般性规律,确定出所求即可.【解答】解:把x=10代入程序中得:第三步结果为=,把代入程序中得:第三步结果为=10,依此类推,每六步以,10循环,∵2018÷6=336…2,∴第2018步之后,显示的结果是=0.01,故选:C.10.用计算器探索:已知按一定规律排列的20个数:1,,,…,,.如果从中选出若干个数,使它们的和<1,那么选取的数的个数最多是()A.4个B.5个C.6个D.7个【分析】首先用计算器分别计算,,,…,然后与1比较即可.【解答】解:≈0.2236<1;<1;≈0.6887<1;≈0.9313<1;1.1813>1.所以,选取的数的个数最多是4个.故选:A.11.下列各数是无理数的是()A.B.C.0.010010001 D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=17是整数,是有理数,选项错误;B、是无理数,选项正确;C、是有限小数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选:B.12.在﹣1、2、、这四个数中,无理数是()A.﹣1 B.2 C.D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:是无理数,,2,﹣1是有理数,故选:D.13.给出四个实数,3,0,﹣1.其中负数是()A.B.3 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,3,0,﹣1,其中负数是:﹣1.故选:D.14.如果a是无理数,那么下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a0【分析】根据有理数和无理数的定义解答.【解答】解:A、如果a是无理数,那么﹣a一定是无理数,故这个选项错误;B、如果a是无理数,那么a2可能是无理数,也可能是有理数,故这个选项错误;C、如果a是无理数,那么一定是无理数,故这个选项错误;D、如果a是无理数,那么a0一定是有理数,因为a0=1,故这个选项正确.故选:D.15.﹣1的相反数是()A.1B.C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣1的相反数是:1﹣.故选:A.二.填空题(共12小题)16.若一个正数的平方根分别是a+1和2a﹣7,则a的值是 2 .【分析】根据一个正数的平方根互为相反数,可得a+1和2a﹣7的关系,根据互为相反数的和为0,可得a的值.【解答】解:根据题意知a+1+2a﹣7=0,解得:a=2,故答案为:2.17.面积等于5的正方形的边长是.【分析】根据算术平方根的定义解答.【解答】解:面积等于5的正方形的边长是.故答案为:.18.若x、y为实数,且|x+3|+=0,则的值为﹣1 .【分析】先根据绝对值和算术平方根的非负性得出x和y的值,再代入计算可得.【解答】解:∵|x+3|+=0,∴x=﹣3,y=3,则原式=()2019=(﹣1)2019=﹣1,故答案为:﹣1.19.的立方根是.【分析】直接根据立方根的定义求解.【解答】解:的立方根为.故答案为.20.约等于:10.3 (精确到0.1).【分析】首先根据数的开方的运算方法,求出的值是多少;然后根据四舍五入法,把结果精确到0.1即可.【解答】解:=10.344…≈10.3.故答案为:10.321.写出一个同时符合下列条件的数:﹣.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.【分析】根据无理数的定义求解即可.【解答】解:写出一个同时符合下列条件的数﹣,故答案为:﹣.22.在中,有理数的个数是 3 个.【分析】根据有理数的定义:是整数与分数的统称即可作出判断.【解答】解:sin45°=是无理数;,π是无理数;,0.3,=2是有理数.故答案是:3.23.计算:|﹣|=.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故答案为:.24.在数轴上,实数2﹣对应的点在原点的左侧.(填“左”、“右”)【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左25.比较大小:3 >(填写“<”或“>”)【分析】将3转化为,然后比较被开方数即可得到答案.【解答】解:∵3=,且9>7,∴3>,故答案为:>.26.已知a,b为两个连续的整数,且a<<b,则b a=9 .【分析】直接利用的取值范围得出a,b的值,即可得出答案.【解答】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴b a=32=9.故答案为:9.27.计算:﹣()﹣1=﹣4 .【分析】直接利用立方根的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=﹣2﹣2=﹣4.故答案为:﹣4.三.解答题(共8小题)28.求下列各数的和:﹣,()﹣1,||,()0,【分析】求出各自的值,相加即可.【解答】解:原式=﹣+2++1+=3+.29.已知实数a、b满足(a+2)2+=0,则a+b的值.【分析】直接利用偶次方的性质以及算术平方根的定义得出a,b的值进而得出答案.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.30.在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=﹣1 ;c=7 ;(2)若AC的中点为M,则点M表示的数为 3 ;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?【分析】(1)根据非负数的和为零,可得每个非负数同时为零,可得答案;(2)根据中点坐标公式,可得答案;(3)根据BA=BC,可得关于x的方程,根据解方程,可得答案.【解答】解:(1)由|a+1|+(c﹣7)2=0,得a+1=0,c﹣7=0,解得a=﹣1,c=7,故答案为:﹣1,7.(2)由中点坐标公式,得=3,M点表示的数为3,故答案为:3.(3)设第x秒时,BA=BC,由题意,得x+1=7﹣x,解得x=3,第3秒时,恰好有BA=BC.。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
人教版初中数学七年级下册《6.3实数》同步练习(含答案)(最新整理)

(2) 3 2 ;
(3) 3 1 . 125
课后作业
8
9.下列说法正确的是( ) A.两个无理数的和一定是无理数 B.无理数的相反数是无理数 C.两个无理数的积一定是无理数 D.无理数与有理数的乘积是无理数
10.已知三个数:-π,-3, 7 ,它们按从小到大的顺序排列为( ) A. 3 7 B. 3 7 C. 7 3 D. 7 3 11.设实数 a、b 在数轴上对应的位置如图所示,且|a|>|b|,则化简 a2 | a b | 的结果是( )
A.2a+b B.-2a+b C.b D.2a-b
12.计算:(1) 3 5 2 5 ________ ; (2) 3 4 | 3 4 | ________ . 13. 7 2 的相反数是________,绝对值是________.
5 14.已知 a 是小于 3 5 的整数,且|2-a|=a-2,那么 a 的所有可能值是________.
6.把下列各数填在相应的表示集合的大括号内.
2
22
-6,π,- ,-|-3|, ,-0.4,1.6,
6 ,0,1.101 001 000 1…
3
7
整数:{
,…},
负分数:{
,…},
无理数:{
,…}.
5
7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点
6
3
(1)有理数集合:{ …};
(2)无理数集合:{ …};
(3)正实数集合:{ …}:
(4)负实数集合:{ …}.
课后作业
7.下列说法正确的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 实数
一.选择题 1.(2019·天门)下列各数中,是无理数的是( )
A.3.141 5
B. 4
C.22
7
D. 6
2.(2018·菏泽)下列各数:-2,0,1
3,0.020 020 002…,π,9,其中无理数的个数是
( )
A.4
B.3
C.2
D.1 3.下列说法中,正确的是( )
A.无理数包括正无理数、零和负无理数
B.无限小数都是无理数
C.正实数包括正有理数和正无理数
D.实数可以分为正实数和负实数两类 4.和数轴上的点一一对应的是( )
A.整数
B.有理数
C.无理数
D.实数 5.(2019·荆州)下列实数中最大的是()
A.3
2 B.π C.15 D.|-4| 6.如图,表示8的点在数轴上哪两个字母之间()
A.C 与D
B.A 与B
C.A 与C
D.B 与C 7.下列说法正确的是()
A.
3
3
是分数 B.
22
7
是无理数 C. π-3.14是有理数
D.3
-8
3
是有理数
8.(2019·宜昌)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()
A.点A
B.点B
C.点C
D.点D
9.有一个数值转换器,原理如下.当输入的x为4时,输出的y是()
A.4
B.2
C. 2
D.- 2
10.【数形结合思想】(教材P54探究变式)如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是()
A.π-1
B.-π-1
C.- π+1
D.π-1或-π-1
11.(2019·聊城)-2的相反数是() A.-
22 B.2
2
C.- 2
D. 2 12.π是1
π
的()
A.绝对值
B.倒数
C.相反数
D.平方根 13.(2019·遂宁)-|-2|的值为()
A. 2
B.- 2
C.± 2
D.2 14.下列各组数中互为相反数的一组是()
A.-|-2|与3-8
B.-4与-(-4)2
C.-32与|3
-2| D.-2与12
二.主观题
1.在下列各数中,选择合适的数填入相应的集合中.
-15,39,π2
,3.14·
,-3
27,0,-5.123 456 789 101 112 13…(小数部分由相继的正整数组成),0.25,-
3
2
. (1)有理数有:(2)无理数有:(3)正实数有:(4)负实数有:
2.如图,数轴上A ,B 两点表示的数分别为2和5.1,则A ,B 两点之间表示整数的点共有 个.
3.请将图中数轴上标有字母的各点与下列实数对应起来,再把下列各数用“>”号连接起来. 3,-1.5,-5,-π,0.4,10.
4.写出下列各数的相反数与绝对值.
3.5,3
4,
π
3
,2- 3.
解:
5.(2019·石家庄新乐市二模)计算:9+3
-27= . 6.计算:
(1)33+53;(2)|1-2|+|3-2|. 7.计算:
(1)π-2+3(精确到0.01);(2)|2-5|+0.9(保留两位小数). 8.若m ,n 互为相反数,则式子|m -5+n|= .
9.若规定一种运算为:a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3
8= . 10.求下列各式中的实数x :
(1)|x|=4
5; (2)|x -2|= 5.
11.计算:
(1)(2019·十堰)(-1)3
+|1-
2|+
3
8;(2)23+32-53-32;
(3)|3-π|+|4-π|.
12.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求12ab +c +d 5
+e 2+3
f 的值.
13.已知a 1=2-1,a 2=3-2,a 3=4-3,a 4=5-4,…,a n =n +1-n.定义:S 1=a 1=2-1,S 2=a 1+a 2=(2-1)+(3-2)=3-1,S 3=a 1+a 2+a 3=(2-1)+(3-2)+(4-3)=4-1,…,按此规律类推S n =a 1+a 2+a 3+…+a n = .。