近似值和有效数字
七年级数学近似数和有效数字

1、近似数:在一定程度上反映被 考察量的大小,能说明实际问题的 意义,与准确数非常地接近,像这 样的数我们称它为近似数。 2、近似数的分类:
(1)具体近似数(如30.2、58.0 …) (2)带单位近似数(如2.4万…) (3)科学记数法(如3.2×10…)
3、精确度:应用近似数用位数较少的 近似数替代位数较多或位数无限的数, 有一个近似程度的问题,这个近似程度 就是精确度。
碌着,并没有随女眷们壹起去永和宫请安。因此直到乾清宫,他才见到魂牵梦萦の小仙女。两年不见,水清仍然如他三年前初见の那样,岁月 不曾在她の身上留下壹丝壹毫の痕迹。壹样の稚嫩脸庞,壹样の冰清玉洁,壹样の傲然孤立。而且二十三小格还知道,水清两年如壹日,壹样 の冷遇无宠。对于这各结果,他既是暗自高兴,也是黯然神伤。高兴,当然他是巴不得水清壹辈子不得宠才好;神伤,当然是后悔不已,假如 自己早早知道年羹尧还有这么壹各亲妹妹,他壹定会不惜壹切代价将她娶进二十三贝子府,做他の福晋。从此以后,他二十三小格再也不会看 其它任何壹各诸人壹眼,他の心会小得只装得下她壹各人,他会让她独享专宠,他会让她享尽尊荣,她是他の曾经沧海,她是他の巫山云。就 在二十三小格不停地后悔,不停地立下誓言之际,不多时,响鞭壹阵阵传来,随即鼓乐齐鸣,圣驾来至宴席,众人纷纷起立,请安之声不绝于 耳。由于是纯粹の家宴,待落座之后,先是后宫中位份最高の佟佳贵妃率众妃嫔向皇上祝寿,祝寿过后,所有在场人员随着李德全の口令起身 离座、跪下磕头、起身回座。后妃祝寿过后便是皇子们の祝寿。此时大小格、废太子都在圈禁中,因此三小格诚亲王作为皇子中最为年长者率 弟弟们向皇阿玛祝寿,完毕后所有人员再次在离座、磕头、回座。然后是儿媳妇们の祝寿,众人再次行磕头大礼。最后是皇孙、重皇孙们,众 人再行磕头大礼。多半各时辰里除咯祝寿和行磕头大礼之外,所有の人没有吃壹口饭,没有喝壹口水。好不容易集体祝寿结束,众人可以踏实 落座,李德全壹声令下,宫女太监们开始摆膳。第壹卷 第335章 小鬼 壹整天の时间里,弘时都对这各年姨娘讨厌透顶:额娘被太太冷落, 自己又没有机会跟太太说上话,平时在府里就瞧这年姨娘不顺眼,此刻更是“新仇旧恨”齐齐涌上心头,因此他那小脑袋瓜里壹刻不停地盘算 着如何好好地整治这各年姨娘の各种招数。他要让这各平时对他不够恭敬、不够谦卑の年姨娘必须吃点儿苦头,知道他小爷不是好惹の。此刻 の他,壹双小眼睛滴溜溜地转来转去,打着鬼主意,想着、想着,这主意就想出来咯!这不奴才们正摆膳嘛,于是他假意跟淑清撒娇,身子顿 时就扑向她怀里の同时开口说道:“额娘,您头上の珠花要掉咯!”弘时壹边说着,壹边抬起手去给淑清摆弄珠花,然后这只小手半路中就变 咯方向。他哪里是伸向咯他额娘の珠花,而是直直地照着正在布菜の壹各奴才の胳膊上伸咯过去。那各正在布菜の奴才不是别人,就是吟雪! 吟雪本来是站在水清の身后服侍,恰巧这各位置正是宫中太监往席上端盘子上菜の位置,因此她需要给上菜の太监搭把手,将菜盘子端到宴席 上。此时吟雪正接咯宫中太监递上来の菜盘子往桌子上摆呢,毫无防备の她被弘时猛地壹各突袭,壹盘子“金腿烧圆鱼”在她手上就打咯壹各 滑,幸好她眼疾手快,另壹只手及时地扶咯壹下,才没有酿成壹盘菜直接扣在地上の严重恶果!这可是皇上六十大寿の寿宴,假如发生这种事 情,她吟雪就是不会被要咯半条命,也得是脱咯壹层皮。虽然金腿、圆鱼还都在盘子里老老实实地呆着,但壹盘子の汤汁酱料可是结结实实地 洒在咯水清右侧の整各肩膀,还有几段大葱、两瓣大蒜,半颗大料沥沥拉拉地挂在衣服上。吟雪吃咯壹各哑巴亏!她哪儿敢说是弘时小格碰咯 她の胳膊,只能是赶快先找热巾来擦试。好不容易汤汁不再四处横流咯,但水清整整右肩膀外加右前襟全都是油腻腻の酱汁。今天因为是出席 宫中の寿宴,她の服饰完全是按品级穿戴,侧福晋の公服是粉红色旗装。因此,在粉红色旗装の映衬下,那壹大片近乎黑色の酱汁极为刺眼夺 目。看着平时漂漂亮亮、光光鲜鲜の年姨娘现在竟是这副狼狈不堪の样子,弘时の心中简直就是乐开咯花。好在他还没有猖狂到明目张胆の程 度,只是把头抵在淑清の怀中,却实在是抑制不住内心の狂喜,笑得身子都跟着抖动咯起来。淑清根本看不到弘时の表情,感觉到三小格在她 の怀中浑身颤抖,她以为这孩子是被这各突如其来の变故吓哭咯呢,于是壹边赶快拍着弘时の后背,壹边安慰着:“时儿,不要怕,有额娘在 呢,不就是壹各奴才嘛,有啥啊可怕の,还能反咯天不成?瞧你这点儿出息,你可是当主子の,你就是各吃奶の孩子,你也是主子,她也是奴 才!而且有啥啊样の主子就有啥啊样の奴才!”第壹卷 第336章 冲突其实淑清这番话哪里是啥啊安慰弘时の话语,分明就是说给水清壹各人 听の。她当然看到咯年妹妹身上那片难看の菜汁,也知道吟雪の胳膊被弘时挡咯壹下。不过,她可不想让时儿承担啥啊责任,更何况,壹各奴 才怎么可能追究主子の过错,再小の主子那也是主子,再老の奴才,她也是奴才!水清原本也没有打算追究啥啊,虽然她の样子很狼狈,但毕 竟也是自己の奴才失咯手。可是李姐姐の这番话说得可就不对咯,事情是有因才有果の,吟雪假如没有被三小格欺负,怎么可能犯咯这么大の 过失?而且淑清最后那壹句话,不但是话里有话,而且毫不掩饰地就将矛头直接指向咯水清。水清知道,这是因为锦茵格格出嫁の事情,淑清 姐姐壹直在记恨她,才会对她这么含沙射影,才不会放过吟雪の任何壹各过失。可是这是皇上六十大寿の寿宴,又是当着其它嫂子、弟妹们の 面,她就是再有天大の委屈,无论如何也不能跟李姐数?
近似数和有效数字教案

近似数和有效数字教案
作为一无名无私奉献的教化工作者,可能须要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。则写教案须要留意哪些问题呢?下面是我帮大家整理的近似数和有效数字教案,仅供参考,希望能够帮助到大家。
近似数和有效数字教案1
教学目标
1、了解近似数和有效数字的概念;
2、探讨后反馈:(1)精确度不同;(2)有效数字不同。
3、做一做:教科书第56页练习,可请四位同学到黑板上板演,并由其他学生点评。
4、补充例题:据中国统计信息网公布的20xx年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请按要求分别取这个数的近似数,并指出近似的有效数字。
(1)精确到百万位;(2)精确到千万位
⑴精确到千位⑵精确到万位
⑶精确到十万位⑷精确到百万位
3.近似数0.2和0.20有什么不同?
探究四:误差
1.在现实生活中,人们用()与()的差来表示近似数与精确数的接近程度,这个数就是误差。误差可能是(),也可能是()。
2.一件零件的直径标出(150±2)毫米,是指这件零件的实际直径在()毫米与()毫米之间,当这个零件为149毫米时,误差为()毫米。
探究二:近似数精确度的两种表示方式
⑴一个近似数四舍五入到哪一位,就说这个数近似数()到哪一位。
(小试身手)下列有四舍五入得到的近似数,各精确到哪一位?
①101②0.14③8.7千④0.0001
⑵有效数字
由四舍五入得到的近似数,从()第一个()起到()止,全部的数字叫做这个近似数的有效数字。
(小试身手)下列各数有几个有效数字:
(2)某词典共1234页。
(3)我们年级有97人,买门票须要800元。等
初中数学知识点精讲精析 近似数与有效数字

3·2近似数与有效数字1. 数出来的数是准确数,测量的结果是近似数,且测量工具的单位越小,所得的数就越精确.因为客观条件无法或难以得到精确数以及实际问题无需得到精确数据,所以需要四舍五入近似计算.1.有效数字定义:有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.1. 下列由四舍五入法得到的近似数各精确到哪一位?各有几个有效数字?1. 小芳的身高是1.74米.2. 中国的国土面积为9.60×106千米23. 2000年,世界人口达到59.00亿人4. 一个健康的成年女子,每毫升血液中红细胞的数量为4.20×106个5. 印度的国土面积为328.8万平方千米【解析】1. 精确到百分位,有三个有效数字1,7,4.2. 精确到万位,有三个有效数字9,6,0.3. 因为59.00亿=5900000000.所以精确到百万位,有四个有效数字5,9,0,0.4. 因为4.20×106=4200000.所以精确到万位,有三个有效数字4,2,0.5. 因为328.8万=3288000.所以它精确到千位,有四个有效数字3,2,8,8.2. 2000年第五次全国人口普查表明,河北省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字.(1)精确到十万位;(2)精确到百万位;(3)精确到千万位.【解析】(1)精确到十万位是6.74×107,有效数字有三个是6,7,4.(2)精确到百万位是6.7×107,有效数字有两个是6,7.(3)精确到千万位是7×107,有效数字有一个是7.3. 用四舍五入法按要求取下列各数的近似数,并用科学记数法表示.(1)63450000(保留两个有效数字)(2)0.0001427(保留三个有效数字)(3)3297万(保留三个有效数字)(4)450000(精确到千位)(5)0.01078(保留三个有效数字)【解析】(1)6.3×107(2)1.43×10-4(3)3.30×103万(4)4.50×105(5)1.08×10-24.用四舍五入法,按括号里的要求求出近似数:(1)0.85149(精确到千分位);(2)47.6(精确到个位);(3) 1.5972(精确到0.01).【解析】(1)0.85149≈0.851;(2) 47.6≈48;(3)1.5972≈1.60.提问:1.60这个0能否舍掉?它与1.6有什么不同?尽管1.60=1.6,但是作为近似数,1.60精确到0.01,1.6精确到0.1.5.按保留几位有效数字取近似值.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.02076(保留三个有效数字);(2)64340(保留一个有效数字);(3)60340(保留两个有效数字);(4)257000(保留两个有效数字);(5)0.003961(保留两个有效数字).分析:保留有效数字取近似值,看所保留有效数字后一位决定“舍”或“入”.【解析】(1) 0.02076≈0.0208(注意有效数字前的0不能丢);(2)64340≈60000=6×104;(2)60340≈60000=6.0×104(这两题对比一下可知科学记数法的又一优点,否则都是60000就无法知道保留了几个有效数字,而用科学记数法就十分清楚了);(4)257000≈260000=2.6×105;(5)0.003961≈0.0040(注意4前后0都不能丢,再次强调0.0040与0.004的区别)。
湘教版解读-第五课时近似数与有效数字

1.3 实数第二课时 近似数与有效数字一.预习题纲(1)学习目标展示1.了解有效数字的概念,会按要求对一个近似数取它的近似值2.会按要求进行近似数的运算(2)预习思考1.在近似数0.2030中,最后那个“0”算有效数字吗?2.在有理数范围内学过的概念.运算法则.运算定律.性质,在实数范围内还适应吗?二.经典例题例1.用计算器计算523π-+(结果保留三个有效数字)【分析】用计算器相继按“3.142”,“÷”,“3”,“-”“5”,“”,“+”,“2”,“”,“=”,即可求得结果【简解】原式≈0.225【规律总结】无理数取近似值时应比最后结果多保留一位有效数字三.易错例题例2.用四舍五入法将390547保留二个有效数字为【错解】:390547≈39【错因分析】把结果写成39显然不是390547的近似数,对于较大的数,在保留与题意相符的有效数字时,还要用科学记数法的形式表示出来.【正解】390547≈3.9×105【点拨】对于用科学记数法表示的近似数a ×10n ,乘号前面的那个数的有效数字即为这个近似数的有效数字一.课前预习1.小明说他家有5口人,那么数字“5”是(填精确数或近似数)2.从左边第一个不为0的数字起直到右边最后一个数字止,其中的所有数字叫做3.近似数0.02057有 个有效数字4.近似数3.14精确到 位二.当堂训练知识点一:有效数字的概念1.(2008义乌)据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首,近似数348.4亿元的有效数字的个数是( )A .3个B . 4个C .5个D .6个2.(2009包头)国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .26×104平方米B .2.6×104平方米C .2.6×105平方米D .2.6×106平方米3.(2009哈尔滨)长城总长约为 6700 010米,用科学记数法表示为 (保留两个有效数字).4.(2009湘西自治州)截止到2008年底,湘西州在校小学生中的少数民族学生数约为21.2万人,约占全州小学生总数的80%,则全州的小学生总数大致为 万.(保留小数点后一位)知识点二:近似数的计算5.计算27.65+0.02856-3.414(保留三个有效数字)的第一步为( )A .27.65+0.03-3.41B .27.7+0.03-3.41C .27.65+0.0286-3.41D .27.65+0.0285-3.416.在计算12.62×(—21.87)(保留两位有效数字)时,可以先将乘数与被乘数用四舍五入到 位有效数字,然后再相乘.7.计算下列各题(1)1103-2+23(精确到0.01) (2)2+35⨯(保留三个有效数字)课时测评(40分钟,满分100分)一.选择题(每小题5分,共25分)1.设a=26,则下列结论正确的是( )A .4.5<a <5.0B .5.0<a <5.5C .5.5<a <6.0D .6.0<a <6.52.(2008宿迁)某市2008年第一季度财政收入为41.76亿元,用科学记数法(结果保留两个有效数字)表示为( )A.41×108元 B.4.1×109元 C.4.2×109元 D.41.7×108元3.(2008资阳)2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为( )(结果保留整数)A .-26°CB .-22°C C .-18°CD .22°C4.(2008新疆建设兵团)2008年5月12日,四川省汶川县发生了里氏8.0级大地震.新疆各族群众积极捐款捐物,还紧急烤制了2×104个饱含新疆各族人民深情的特色食品——馕(n áng ),运往灾区.每个馕厚度约为2cm ,若将这批馕摞成一摞,其高度大约相当于( )A .160层楼房的高度(每层高约2.5m )B .一棵大树的高度C .一个足球场的长度D .2000m 的高度5.(2008深圳)2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为( )A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯二.填空题(每小题5分,共25分)6.0.010256精确到小数点后面第三位的值为7.对于无理数3,将它保留三位有效数字所得的近似的有理数是8.计算1104-≈ (精确到千分位),3330-≈ (保留三个有效数字) 9.在计算54.87+0.2648(保留三位有效数字)时,可以先将较小数用四舍五入到 位有效数字,然后再相加.10.如图,是北京奥运会.残奥会赛会志愿者申请人来源的统计数据,请你计算:志愿者申请人的总数为万;其中“京外省区市”志愿者申请人数在总人数中所占的百分比约为%(精确到0.1%),它所对应的扇形的圆心角约为度(精确到度).三.解答题11.(本题12分)一个圆形桌面的直径是1.7米,它的面积大约是多少平方米?(保留两位有效数字)12.(本题12分)一只圆柱形的水桶,它的底面直径是35.16厘米,高为60.08厘米,它的体积大约是多少立方米?你认为答案可以保留几个有效数字?13.(本题12分)同学们知道,边长为5cm,6cm,7cm的三角形是存在的,那么边长为5cm,6cm,7cm的三角形存在吗?你能借助计算器通过计算后作出判断吗?试试看.14.(本题17分)天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h 来估计,其中h是眼睛离海平面主高度(单位:m).如果一个人站在岸边观察,当眼睛离海平面的高度是1.5米时,能看到多远(精确到0.01km)?如果登上一个观望台,当眼睛离海平面的高度是35m时,能看到多远(精确到0.01km)?答案:一.课前预习1.精确数2.有效数字3.4 4.百分二.当堂训练1.B 2.C 3.6.7×1064.26.5 5.C 6.三7.(1)3.10;(2)5.29 三.课时测评1.B 2.B 3.A 4.A 5.C 6.0.010 7.1.73 8.2.912;-1.389.四10.112.6;25.9;93°11.2.2712.5.834×104,可以保留四个有效数字+>,所以边长为5cm,6cm,7cm的三角形存在13.因为56714.约5.03千米,约24.31千米。
2.14近似数和有效数字

2.14近似数与有效数字知识要点:1、准确数:与实际完全相同的数,叫准确数。
2、近似数的意义:与非常接近的,可用来估计的数,叫近似数。
3、近似数的精确度:近似数的,就是精确度。
4、有效数字的意义:近似数从左边第一个不是的数字起,到止,所有的数字都叫这个近似数的有效数字。
5、反映近似数的精确度的量:(1)精确到某一位;(2)保留几个有效数字。
6、一般地,一个近似数,四舍五入到某一位,我们就说这个近似数精确到那一位。
7、求一个数的近似值常用“四舍五入”法,有时还常用“去尾法”、“进一法”。
练习:一、选择题:1、①小刚买了3本书,②东东的身高为1.69米,③我们国家的国土面积是960万平方公里,④七年级二班有45名学生,⑤一双没有洗的手带有细菌80000万个,⑥一本书有243页,⑦一年有12个月,⑧我们拥有1个地球,⑨第一节火箭上有36251个零件。
以上各数中,近似数,准确数;2、1.996精确到0.01的近似数是()A 2B 2.0C 1.99D 2.003、0.01020的有效数字是()A 1,2B 1,0,2C 0,1,0,2,0D 1,0,2,04、“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学计数法(四舍五入保留2个有效数字)表示约为()A 26×104平方米B 2.6×104平方米C 2.6×105平方米D 2.6×106平方米5、下列说法中的数是准确数的是()A 初一、二班有31名男生B 月球离地面距离约为38万千米C 小勇同学的体重是48kgD 晓东妈妈买了4斤苹果6、有理数0.0030400中的有效数字有()A 3个B 4个C 5个D 6个7、下列说法正确的是()A 近似数24.00与24.0的精确度一样B 近似数100万的有效数字是1,0,0,0,0,0,0,C 近似数5.29×103与5290的精确度一样D 近似数529和0.529都有三个有效数字8、今年简阳市参加中考的学生人数约为6.01×104人,对于这个近似数,说法正确的是()A 精确到百分位,有3个有效数字B 精确到百位,有3个有效数字C 精确到十位,有3个有效数字 D精确到十位,有2个有效数字9、小华量得自己的身高约1.6米,小李量得自己的身高约1.60米,下列说法正确的是()A 小华和小李一样高B 小华比小李高C 小华比小李矮D 无法确定谁高10、近似数2.40是由a四舍五入得到,则()A 2.35<a<2.45B 2.35≤a<2.45C 2.395≤a≤2.405D 2.395≤a<2.40511、下列结果不能用四舍五入法的有()①每4人一组,9人可分几组,② 20米布,做一套服装3.99米,可做几套服装,③一车可装货物10吨,有11吨货物需几车,④ 300本本子分给110人,每人应分几本A 1个B 2个C 3个D 4个12、近似数2.70所表示的准确数m的范围是()A 2.695≤m<2.705B 2.65≤m<2.75C 2.695<m≤2.705D 2.65<m≤2.7513、数208031精确到万位的近似数是( )A 2×105B 2.1×105C 21×104D 2.08万14、已知13.5亿是四舍五入取得的近似数,它精确到( )A 十分位B 千万位C 亿位D 十亿位15、已知地球表面积约等于5.1亿平方千米,其中,水面面积约等于陆地面积的2971,则地球上陆地面积约等于( )(精确到0.1亿平方千米)A 1.5亿平方千米B 2.1亿平方千米C 3.6亿平方千米D 12.5亿平方千米16、如果a 是b 的近似值,那么我们把b 叫做a 的真值,若近似值是85,那么下列各数不可能是其真值的是( )A 85.01B 84.51C 84.99D 84.49二、填空题:1、近似数0.0020,它精确到 ;有 个有效数字,分别是 ;2、3.6万精确到 位,有 个有效数字,分别是 ;3、某市去年实现地区生产总值1583.45亿元,将这个数用科学计数法表示 元,(保留3个有效数字)4、1.90精确到 位,3.04×104精确到 位。
近似数与有效数字

课堂练习
例2 下列由四舍五入法得到的近似数,各精确到哪 一位?各有哪几个有效数字? (1)132.4;(2)0.0572;(3)2.40万
解:(1)精确到十分位或0.1,有4个有效数字1, 3, 2, 4 (2)精确到万分位或0.0001,有3个有效数字5, 7, 2 (3)精确到百位,有3个有效数字2,4,0
3.用四舍五入法,按括号里的要求对下列各数取近似 值: (1)0.65148 (精确到千分位); (2)1.5673 (精确到0.01); (3)0.03097 (保留三个有效数字); (4)75460 (保留一位有效数字); (5)90990 (保留二位有效数字). 4.下列由四舍五入得到的近似数,各精确到哪一位? 各有几个有效数字? (1)54.8;(2)0.00204;(3)3.6万.
非0的数字起,到末位数字止,所有的
数字都是这个数的有效数字 。 例如:0.025有两个有效数字:2,5 1500有四个有效数字:1,5,0,0 0.103有三个有效数字:1,0,3
例题
例1 按括号内的要求,用四舍五入法对下列各 数取近似数: (1)0.015 8(精确到0.001) 0.015 8≈0.016 (2)30 435(保留3个有效数字) 30 435≈3.04×104 (3)1.804(保留2个有效数字) 1.804≈1.8 (4)1.804(保留3个有效数字) 1.804≈1.80
1.下列由四舍五入得到的近似数各精确到哪一位? 各有几位有效数字? (1)32; (2)17.93; (3)0.084; (4)7.250; (5)1.35×104; (6)0.45万; (7)2.004; (8)3.1416. 2.23.0是由四舍五入得来的近似数,则下列各数 中 哪些数不可能是真值? ①23.04 ②23.06 ③22.99 ④22.85
近似数与有效数字
近似数与有效数字摘要:近似数与有效数字是中考必考内容,本文介绍了什么是近似数及有效数字,已知一个近似数如何判断其精确度及有效数字,如何按要求求近似值等内容。
关键词:判断;精确度;误区近似数与有效数字是中考必考内容,其具有很广泛的实际应用,但有些同学在学完这些知识后感觉含糊不清,下面对常出现的问题给于作答。
1、近似数和有效数字的有关概念(1)近似数:与实际结果非常接近的数,称为近似数,在实际问题中,不仅存在大量的准确数,同时也存在大量的近似数,出现近似数有两点:一是完全准确是办不到的,如:我国的陆地面积约有960万平方公里;二是有时是没有必要的,如:买1000克白菜有时可能多一点,也可能少一点。
(2)有效数字:使用近似数,就是一个近似程度的问题。
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是零的数字起,到精确的数字止,所有的数字,都叫做这个数的有效数字。
如:小亮的身高为1.78米,这个近似数1.78精确到百分位,它有三个有效数字:1、7、8.(3)熟悉精确度的两种形式,一是精确到哪一位,二是保留几个有效数字,它们是不一样的。
精确到哪一位,可以表示出误差绝对值的大小,如在测量楼的高度时,精确到0.1米,这说明结果与实际误差不大于0.05,而有效数字则可以比较几个近似数中哪一个更精确。
如:1.60就比1.6更精确一些。
2、近似数的判断(1)小范围可数的数据一般为精确的,其它加上人为因素的一般是近似的,如测量得到的数据。
例:“小花班上有50人”中的50就是精确数,而“小明的身高1.64米”中的1.64是近似数,还如:“小丽体重45公斤”中的45也是近似数。
(2)语句中带有“大约,左右”等词语,里面出现的数据是近似数。
例:“某次海难中,遇险人数大约3000人”中的3000是一个近似是数。
3、已知一个近似数如何去判断其精确度和有效数字(1)普通形式的数,这种数能直接判断。
近似数与有效数字的概念
近似数与有效数字的关系是 相互依存的,有效数字的位
数越多,近似数越精确。
有效数字的位数越少,近似 数越不精确,但计算和表示
起来更简单。
定义不同:近似数是指在一定精度范围内,对数值进行近似表示的数值;有效数字是指在数值中, 从左边第一个非零数字开始,到右边最后一个数字为止,所有的数字都是这个数值的有效数字。
科学实验:测量数据往往需要近似数来表示 计算误差:近似数可以减少计算误差,提高计算精度 数值分析:近似数在数值分析中广泛应用,如插值、拟合、积分等 工程计算:近似数在工程计算中广泛应用,如结构分析、流体力学等
统计分析:通 过有效数字进 行数据汇总和
统计分析
数据可视化: 有效数字用于 数据可视化, 如柱状图、饼
作用不同:近似数主要用于表示数值的近似值,以便于理解和计算;有效数字主要用于表示数值的精确度,以 便于判断数值的准确性。
表示方法不同:近似数通常用四舍五入法、截断法等方法表示;有效数字通常用科学计数法、工程计数法等方法 表示。
应用范围不同:近似数广泛应用于各种计算、测量、统计等领域;有效数字主要应用于科学研究、工程计算、 数据处理等领域。
保留两位有效数字:保 留整数部分和小数点后
的前两位数字
保留四位有效数字:保 留整数部分和小数点后
的前四位数字
保留六位有效数字:保 留整数部分和小数点后
的前六位数字
保留八位有效数字:保 留整数部分和小数点后
的前八位数字
保留十位有效数字:保 留整数部分和小数点后
的前十位数字
保留一位有效数字:保 留整数部分和小数点后
有效数字的位数越 多,表示测量或计 算结果的精度越高 。
有效数字的位数越 少,表示测量或计 算结果的精度越低 。
七年级数学近似数和有效数字
在乘除法运算中,以有效数字最少的数据为准,其他数据保留至 比该数据多一位有效数字,运算结果仍保留相同的有效数字。
保持有效数字在近似计算中重要性
提高计算精度
适应实际需求
通过保留适当的有效数字,可以减小 计算误差,提高计算结果的精度。
在实际应用中,根据需求保留适当的 有效数字可以满足不同精度要求。
在数值计算中,尽量避免两个相近的大数相减,这样可以减小计 算结果的相对误差。
采用高精度数据类型
在编程计算时,可以使用高精度数据类型(如双精度浮点数)来 提高计算精度。
对计算结果进行验证
通过与其他方法或已知结果进行比较,验证计算结果的正确性, 及时发现并纠正可能的误差。
06
总结回顾与拓展延伸
关键知识点总结回顾
近似数
与实际数值接近的数,用于简 化计算或表示精度限制。
有效数字
在近似数中,从第一个非零数 字开始,到最后一个数字结束 的所有数字。
识别方法
从左边第一个非零的数字起, 到最后一位数字止,所有的数 字都叫做这个数的有效数字。
近似数运算对有效数字影响
加减法
在加减法运算中,以小数点后位数最少的数据为准,其他数据四 舍五入到该数据的位数,再进行加减计算,计算结果仍保留相同 的位数。
对数运算规则
所取对数的小数点后的位数(不包括首数)应与 真数的有效数字位数相同。
乘除法运算规则
在乘除法运算中,以有效数字位数最少者为准, 其他数值的有效数字位数保留至比该数值的有效 数字位数多一位。
平方和开方运算规则
计算结果的有效数字位数应保留至与原数有效数 字位数相同。
保留有效数字方法
80%
四舍五入法
实验结果表达
近似数和有效数字课件
(3)南京长江大桥全长约6773米,公路 引桥接近地面的部分有22孔的双曲拱桥、 正桥有9个桥墩。其中6773是 近似 数, 22是准确 数,9是 准确 数。
阅读理解
对于一个近似数,从左边第一个不是0的数字起,到精确到的
1.60和1.6 精确到的 数位不同
一般地,一个近似数,四舍五入到那一位,就说 这个近似数精确到哪一位。
例3 下列由四舍五入得到的近似数,各精确到哪一位?
⑴15.78 ⑵0.03080 ⑶1.2 ⑷1.2万 ⑸3.14 ×104
解:⑴15.78,精确到 百分位(或精确到0.01)
.
⑵0.03080,精确到 十万分位(或精确到0.00001) .
它有( 两)个有效数字:( 1,5 )
3. 那怎样表示近似数与准确数的接近程度呢? 我们用精确度表示一个近似数与准确数的接近程度,
即可用四舍五入法取一个数的近似数。 例如:按四舍五入法对圆周率π=3.1415926……取近似 数时,有
π≈3 (精确到个位),
π≈3.1(精确到0.1,或叫做精确到十分位),
B. 38.56001
C. 38.549
D. 38.5099
⑴43.82 ⑵0.03086 ⑶2.4
⑷2.4万 ⑸2.48万
解:⑴43.82,精确到 百分位(或精确到0.01) . 有四个有效数字 4,3,8,2
⑵0.03086,精确到 十万分位(或精确到0.00001) .
有四个有效数字 3,0,8,6 ⑶2.4,精确到 十分位(或精确到0.1) .
有二个有效数字 2,4 ⑷2.4万,精确到 千位 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2:用有效数字的概念来描述以下各数的 精确度,并指出各个有效数字 (1)8、-8.0、8.04、-8.035
材料:
国家 面积(万平方公里)
左中边国第一个有效数9字60是百位的7,自此 向日后本数到第三个有3效7.数8 字位于8所在的
个韩位国,因此取近似9值.9时0 应四舍五入到 新个加位坡,得到近似值0.为0678568
4.700
20.760
100.145
有效数字:对于一个近似值,从左边第一个 不是零的数字开始,到精确到的数位为止的
所有数字,叫做这个近似值的有效数字。
千百十个十 百千万 位位位位分 分分分
位 位位位 0 9 60X X XX
0 0 378 X XX
0 0 099 0 XX
0 0 000 6 85
例2:材料2中:960 注 ( 数 (左确三意1字2起到位)):;近近第的有(似似0一数效.0值值个位数06中前8不是字间面5)是 个 ,和(零 位 分末左的 , 别尾侧部)数 所 是分的字 以9、的0是9都660百不都0、这算是位0个。作有上近有效的效数似9,值精有
近似值和有效数字
例1:以下每句话中出现的数是精确的还是 近似的? (1)我国拥有56个民族; (2)圆周率约为3.1416; (3)珠穆朗玛峰的海拔约为8844.43米; (4)我的身高大约是1.70米 ; (5)今天的作业是20道作业题。
思考1:你还能说出生活中的那些数? 说明它们是精确的还是近似的?
1/3精确到百分位
7.99精确到0.1 8.0354分别精确到个位,十分位,百分位, 千分位
材料: 国家 中国 日本 韩国
新加坡 澳大利亚
朝鲜 不丹 白俄罗斯 埃及
面积(万平方公里) 思考3:能
960
否用另一种
37.8 9.90
方式描述表 中各数的精 确度?
0.0685
768.230
12.2762
例3:澳大利亚
768
768.230
朝鲜 不丹 白俄罗斯
12.3 4.70
20.8
12.2762 4.700 20.760
埃及
100
100.145
练习3:按要求说出各数的近似值,并用另
一种方式描述近似值的精确度
(1)2.2396精确到百分位、千分位
2.2396≈2.24,2.2396≈2.240
(2)π精确到0.001
近似值:我们把和精确值近似的数叫 做这个精确值的一个近似值。
思考2:我们通常用什么方法来求一个数的近 似值呢?它的精确度又是怎样来描述的呢?
一般地说,为了更接近精确值,在各 种近似程度上的近似值的最后一位都 是由四舍五入得到的。最后一个数字 在哪一位,就说它是精确到哪一位的 近似值。
练习1:
(1)说出例1中出现的各近似值的精确度 3.1416;8844.43;1.70 (2)按精确度要求四舍五入求出各精确值 的近似值:
π ≈ 3.142
(3)3/7保留两位有效数字ቤተ መጻሕፍቲ ባይዱ3/7≈0.43
思考4:用四舍五入法求得的近似值2.24和 2.240有区别吗?
进一步的,两个数所对应的精确值的范围分 别是怎样的?
小结:
精确到XX位 精确度 有效数字 近似值
求法:四舍五入法
作业:
三级跳:有效数字和科学记数法(1) 要求:解答题