2013数学建模国赛B题答案

合集下载

2013年全国大学生数学建模竞赛B题全国一等奖论文.

2013年全国大学生数学建模竞赛B题全国一等奖论文.

碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

本文主要解决碎纸机切割后的碎纸片拼接复原问题。

针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。

利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。

最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下:思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。

本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。

对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。

对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。

对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。

最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录1.3、1.4、2.3、2.4,同时本文给出了横向排序中人工干预的位置节点和方式。

针对第三问,附件5为双面文件既横切又纵切后的209张碎片(包含正反面),即包含418张图像。

2013高教社杯全国大学生数学建模竞赛题目

2013高教社杯全国大学生数学建模竞赛题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题储药柜的设计储药柜的结构类似于书橱,通常由若干个横向隔板和竖向隔板将储药柜分割成若干个储药槽(如图1所示)。

为保证药品分拣的准确率,防止发药错误,一个储药槽内只能摆放同一种药品。

药品在储药槽中的排列方式如图2所示。

药品从后端放入,从前端取出。

一个实际储药柜中药品的摆放情况如图3所示。

为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送过程中不会出现并排重叠、侧翻或水平旋转。

在忽略横向和竖向隔板厚度的情况下,建立数学模型,给出下面几个问题的解决方案。

1.药房内的盒装药品种类繁多,药盒尺寸规格差异较大,附件1中给出了一些药盒的规格。

请利用附件1的数据,给出竖向隔板间距类型最少的储药柜设计方案,包括类型的数量和每种类型所对应的药盒规格。

2. 药盒与两侧竖向隔板之间的间隙超出2mm的部分可视为宽度冗余。

增加竖向隔板的间距类型数量可以有效地减少宽度冗余,但会增加储药柜的加工成本,同时降低了储药槽的适应能力。

设计时希望总宽度冗余尽可能小,同时也希望间距的类型数量尽可能少。

仍利用附件1的数据,给出合理的竖向隔板间距类型的数量以及每种类型对应的药品编号。

3.考虑补药的便利性,储药柜的宽度不超过2.5m、高度不超过2m,传送装置占用的高度为0.5m,即储药柜的最大允许有效高度为1.5m。

药盒与两层横向隔板之间的间隙超出2mm的部分可视为高度冗余,平面冗余=高度冗余×宽度冗余。

在问题2计算结果的基础上,确定储药柜横向隔板间距的类型数量,使得储药柜的总平面冗余量尽可能地小,且横向隔板间距的类型数量也尽可能地少。

4. 附件2给出了每一种药品编号对应的最大日需求量。

在储药槽的长度为1.5m、每天仅集中补药一次的情况下,请计算每一种药品需要的储药槽个数。

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

2013年全国高中数学联赛(B卷)参考答案

2013年全国高中数学联赛(B卷)参考答案

M; = CM BC
A, B, C, D
AB < BC
∠AP B = ∠BP C
7
AB BC
1
B
A
P
∠BP C = ∠CP D
P
BM BC
C2 =
M; = DM CD
C
D
A, B, C, D
3.
x, y, z
x2 + y2 + z2 = 10
u = 6 − x2 + 6 − y2 + 6 − z2
AB = BC
AP = P C
P
AC
∠CP D = ∠BP C
C
PD
E
∆BP C ≡ ∆EP C
BC = EC
∆C DE
CD
EC
CD > BC
BC < CD
∠CP D = ∠BP C
∠CP D = ∠BP C
a<0<c
a) P (x, y)
A, B, C AP, BP, CP
y
y
y
kA
=
x

a , kB
4
y2 = 4x
x1, x2
√2 x1 + x2 = (x1 − x2)2 + 4x1x2 = 4 3 + 4 × 4 = 8.
−→ −−→ F A · F B = (x1 − 1)(x2 − 1) + y1y2
= (x1x2 + y1y2) − (x1 + x2) + 1 = −4 − 8 + 1 = −11
mn ≡ m mod 2
j + k + 1 + k + l + 1 ≡ j + l + 1 mod 2.

2013全国数学建模竞赛B题优秀论文.

2013全国数学建模竞赛B题优秀论文.

基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。

附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01,09,13,10,08,12,14,17,16,04。

针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。

我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。

针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。

经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。

关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。

近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013数学建模竞赛答案

2013数学建模竞赛答案

表错误!未找到引用源。

.1 单面印刷文字碎纸片(附件1:中文)复原后序号表位置 1 2 3 4 5 6 7 8 9 10 图片008 014 012 015 003 010 002 016 001 004 位置11 12 13 14 15 16 17 18 19图片005 009 013 018 011 007 017 000 006注:扩展名为.bmp,下同表错误!未找到引用源。

.2 单面印刷文字碎纸片(附件2:中文)复原后序号表位置 1 2 3 4 5 6 7 8 9 10 图片003 006 002 007 015 018 011 000 005 001 位置11 12 13 14 15 16 17 18 19图片009 013 010 008 012 014 017 016 004表4.3 单面印刷文字碎纸片(附件3:中文)复原后序号表表4.4 单面印刷文字碎纸片(附件4:英文)复原后序号表表4.6 双面印刷文字碎纸片(附件5:英文)复原后序号表2复原图见下页附录G主要算法程序%部分求解代码b=[];c=[];filename=cell(1,19);for i=0:18filename(i+1)={[sprintf('%03d',i) '.bmp']};a=imread(['附件2\\' filename{i+1}]);a=im2bw(a);b=[b a(:,72)]; %每片最后一列c=[c a(:,1)]; %每片第一列endminnonzero=[]; %匹配到最小的非0个数matchresult=[]; %匹配结果for k=1:19matindex=-1;minnonzero(k)=size(b,1);if size(nonzeros(b(:,k)),1)~=size(b(:,k),1) for i=1:19d=c(:,i)-b(:,k);nonzero=size(nonzeros(d),1);%for j=1:size(d,1)% if d(j)% nonzero=nonzero+1;% end%endif nonzero<minnonzero(k)minnonzero(k)=nonzero;matindex=i;endendelsematindex=0; %是纸张的两端endmatchresult(k)=matindex;endmatchresult=matchresult-1;newfile=cell(1,19);index=-1;for i=19:-1:1for j=1:19%matchresult(j)if matchresult(j)==indexnewfile(i)=filename(j);index=j-1;break;endendendj=1:19;%xlswrite('result.xls',filename,'第一问','B6');%xlswrite('result.xls',matchresult,'第一问','B7'); %xlswrite('result.xls',minnonzero,'第一问','B8'); xlswrite('result.xls',j,'第一问','B4');xlswrite('result.xls',newfile,'第一问','B5');a=[];for i=0:18a=[a imread(['附件2\\' newfile{i+1}])]; endimshow(a)。

2013年高教社杯全国大学生数学建模竞赛B题优秀论文资料

2013年高教社杯全国大学生数学建模竞赛B题优秀论文资料

碎纸片的拼接复原摘要本文主要解决碎纸片拼接复原问题。

利用附件所给碎纸片的数据,运用蚁群优化算法、Adaboost算法、Harris角点检测算法,利用Matlab软件编程求解,得到碎纸片拼接复原结果。

针对问题一,依据文字所在行的几何特征,先将文字进行二值化处理,得到文字的数据信息。

运用蚁群优化全局匹配方案完成整体匹配,利用回溯的Best-First搜索算法,得到最佳候选匹配对,由于碎纸片形状相似,Best-First搜索算法会大大降低拼接效率,最后建立蚁群优化算法模型对复原结果进行优化,得到中、英文拼接复原图(见附录一)及顺序表(见表2、表3)。

针对问题二,先对附件3、附件4中的碎纸片进行像素特征分析,将每一个矩形像素特征区域的白色区域设为0、黑色区域设为1,利用Adaboost算法对碎纸片进行分类处理,再依据矩形像素特征进行匹配,得到拼接复原中文、英文图片。

对每次匹配循环进行人工干预得出碎纸片的拼接复原顺序图(见附录二)及顺序表(见表4、表6)。

针对问题三,在对比经典角点检测算法的基础上,利用附件5中图片的信息,运用Harris角点检测的多层匹配图像拼接算法,得到图片的角点信息。

采用标准互相关联法和互信息法对Harris角点进行粗匹配,之后根据特征点周围的边缘信息过滤为匹配点,再用RANSAC进行精确匹配,得到一幅完整的拼接复原图像。

最后,运用神经网络边缘检测算法进行优化,快速的获取准确的碎纸片的拼接复原顺序图(见附录三)及顺序表(见表8、表9)。

关键词:蚁群优化算法 Adaboost算法 Harris角点检测神经网络1 问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档