轴对称图形复习教案教案
轴对称图形教案(6篇)

轴对称图形教案(6篇)轴对称图形教案篇一教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识对称图形。
2、使学生能根据对称图形初步认识,在图形中识别对称图形,用一些方法做出对称图形。
3、使学生在认识和制作简单的对称图形的过程中,感受到物体或图形的对称美。
激发数学学习的兴趣。
教学重点:对称图形的初步认识和制作。
教学难点:对称图形的初步认识。
教学准备:1.师:课件等2.生:剪刀、纸、等材料教学过程:一、谈话激趣。
1、你们喜欢玩吗?给你们一张纸,你们能玩吗?怎么玩?2、你们猜猜老师会玩吗?想知道老师是怎么玩的?(撕纸)只有一张纸,先对折,认真的撕一部分……同学们注意看老师是在很认真的撕……3、想学老师这样玩吗?请拿出纸玩玩。
(认真的撕)4、作品展示二、“认”对称,悟特征。
1.以撕(剪)出的图形为例。
撕(剪)出的图形,有什么特点?动手试一试,互相交换试试。
(对折,完全重合。
)师:像这样的图形,对称图形。
(板书课题)对折,两侧完全重合,这个图形就是对称图形,2、巩固判断对称图形。
课件①同学们,我们刚才认识了一种新的图形(对称图形)。
问:想一想,我们学过哪些图形?强调:有些图形看起来象是轴对称图形,但他们却不是轴对称图形;有些图形看起来不象是轴对称图形,但他们却是轴对称图形;折一折,看一看哪些是对称图形,投影出示,折一折,说明是否是对称图形,并说说各原因。
三、观对称,加强认识。
(课件)1、展示数学课件,欣赏图片。
今天,老师为同学们带来了一些美丽的'图案。
请看。
请判断这些图案是不是对称图形?(课件)2、判断电脑中的图案是否是对称的。
(学生说说判断的依据)。
四、猜图案自己想。
选择你喜欢的一个说说……奥运五环(奥运五环也称为奥林匹克环,从左至右为天蓝、黄、黑、绿、红五色。
五环的含义是“象征五大洲的团结,全世界的运动员以公正、坦率的比赛和友好的精神,在奥运会上相见”。
轴对称章节复习教案

轴对称复习教案一.复习目标1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。
3、理解线段的垂直平分线的概念并掌握其性质,理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。
二.复习重点复习轴对称的性质、等腰三角形的性质和判定,构建本章知识结构三.教学难点灵活运用轴对称性质简化解决问题的途径四.教学过程1.温故而知新先请同学们打开课本,看看轴对称这章我们都学了那些知识(一)基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做__________,这条直线就叫做__________。
折叠后重合的点是对应点,叫做__________。
2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线__________,这条直线叫做_________,折叠后重合的点是对应点,叫做_________。
(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段_______点并且_______这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形有_______的三角形,叫做等腰三角形。
相等的两条边叫做_______,另一条边叫做_______,两腰所夹的角叫做_______,底边与腰的夹角叫做_______。
5.等边三角形三条边都_______的三角形叫做等边三角形。
例题:下面几种图形,一定是轴对称图形的是()(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_______。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的_______。
2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离_______。
3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
13章复习教案

第十三章轴对称复习教案一. 轴对称图形•1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做_对称点_____.3. 轴对称的性质:①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二. 用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.练习例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴对称的图形。
思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗?如图,分别作出△ABC关于直线x=1(记为m) 和直线y=-1(记为n)对称的图形,它们的对应点的坐标之间分别有什么关系?•如图:类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则;4.利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)•.作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。
证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE,∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。
《轴对称图形》教案(优秀8篇)

《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
初中数学轴对称图形学习教案2

初中数学轴对称图形学习教案2。
在轴对称图形学习的教学中,教师们需要根据学生们的实际情况,采取灵活多样的教学方法,以达到良好的教学效果。
以下,我们将从教学目的、教学内容、教学方法、教学步骤以及注意事项五个方面进行阐述。
一、教学目的轴对称图形学习的目的在于让学生能够掌握轴对称图形的概念,了解其在数学中的应用,掌握轴对称图形的绘制方法,以及培养学生的几何想象力和创造力。
教学目标主要包括:1.认识轴对称概念,明确轴对称的概念及轴的概念2.理解轴对称的特点,能够区分轴对称和非轴对称图形3.掌握轴对称图形的绘制方法,能够自如地通过轴对称关系画出轴对称图形4.培养学生的几何想象力和创造力,通过轴对称图形学习,培养学生的感性认识能力和审美能力,提高学生的绘图技能和布局设计能力。
二、教学内容轴对称图形学习的内容包括轴对称图形的概念、特点和绘制方法。
具体包括以下方面:1.轴对称图形的概念轴对称图形是指一个图形可以通过一个轴线沿着图形对称复制到对称面上,使得图形的每一部分与对称面上的一部分完全重合。
轴对称图形可以是平面图形或立体图形,而轴线是一个既可以是直线,也可以是曲线,可以是图形的中心轴线,也可以是图形的边界线。
常见的轴对称图形有:正方形、长方形、圆、等边三角形等。
2.轴对称图形的特点轴对称图形的特点是轴对称,即图形的任何一部分都可以通过轴对称关系得到另一部分。
3.轴对称图形的绘制方法轴对称图形的绘制方法是沿着轴线将图形对称复制到另一侧。
在绘制轴对称图形时,需要找到图形的轴线并将图形清晰地绘制出来,然后将图形复制到对称面上。
三、教学方法在轴对称图形学习的教学中,为达到良好的教学效果,教师需要采用多样灵活的教学方法,其中包括:1.演示教学法通过教师或者助教的示范,使学生能够清晰地了解轴对称概念,掌握轴对称图形的绘制方法。
2.互助学习法让学生相互帮助,共同完成一系列轴对称相关的问题,以提高学习效果。
3.游戏化教学法通过游戏、绘图、布置家庭作业等形式,活跃学生课堂氛围,增加学习的趣味性和参与性。
八年级数学上册轴对称教案

八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。
快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
轴对称图形认识教案6篇

轴对称图形认识教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、先进事迹、条据文书、合同协议、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, advanced deeds, normative documents, contract agreements, rules and regulations, emergency plans, teaching materials, essay summaries, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!轴对称图形认识教案6篇在编写教案时,教师应该考虑到学生的年龄和发展水平,以确保内容的合适性,在编写教案时,教师需要考虑如何引发学生的兴趣和积极参与,以下是本店铺精心为您推荐的轴对称图形认识教案6篇,供大家参考。
轴对称全章复习 优秀教案

《轴对称》的全章复习(1)【教学目标】:(1)理解5个基本概念:轴对称图形,线段的垂直平分线,轴对称变换,等腰三角形,等边三角形;(2)掌握5主要性质:轴对称的性质,线段的垂直平分线的性质,用坐标表示对称的性质,等腰三角形的性质,等边三角形的性质.(3)掌握3种图形的判定:线段的垂直平分线的判定,等腰三角形的判定,等边三角形的判定.【教学重点】:5个性质,3种图形的判定.【教学难点】:灵活运用轴对称的性质、等腰三角形的性质.【教学突破点】:用框架图使本章知识条理化、系统化.【教法、学法设计】:本课是这一章的小结与复习,为了进一步理解与巩固本章知识,明确所学知识来源于生活又服务于生活,尽量取材于学生感兴趣、贴近生活的问题,让学生在解决问题的过程中得到巩固,让学生的能力在处理问题中得到提高,让学生领悟自己尚存的不足与困难.【课前准备】:课件【教学过程设计】:一、概念复习:(1)轴对称图形,(2)线段的垂直平分线;等腰三角形,(5)等边三角形.练习一(概念的简单应用):.它的中线、角平分线、高线共有条..个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图(1,-2)关于y轴对称点的坐标是_____3,-2)关于x轴的对称点是,㎝,则斜边的长为 .答案:1.2.3.B4.A与B关于x轴对称,B与E关于y轴对称,点C和点E不关于x轴对称.5.B6.正多边形对称轴的条数分别为3、4、5、6、7、…、n7.8.(1)中两个三角形关于y轴对称;(2)中四边形Ⅰ沿y轴向下平移3个单位,再沿x轴向左平移5个单位得到四边形Ⅱ;(3)中三角形Ⅰ沿y轴向下平移3个单位,再沿x轴向右平移5个单位得到三角形Ⅱ;(4)中两个三角形关于x轴对称.9.C10.B11. △PCD的周长为6cm12.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCDP阜宁县陈集中学八年级数学第一章复习教学案第一课时考点1:轴对称及轴对称图形的意义一、知识点:1.轴对称: 2.轴对称图形: 3.轴对称的性质:4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线.角:有一条对称轴:该角的平分线所在的直线.等腰(非等边)三角形:有一条对称轴,底边中垂线.等边三角形:有三条对称轴:每条边的中垂线.等腰梯形:过两底中点的直线正n边形有n条对称轴圆有无数条对称轴。
二、基本图形:1.已知:点A、B分别在直线l的同侧,在直线l上找一点P,使PA+PB最短。
变形1:正方形ABCD中,点E是AB边上的一点,在对角线AC上找一点P,使PA+PB最短。
变形2:已知点A(1,6)、点B(6,4),在x轴和y轴上各找一点C、D,使四边形ACDB 的周长最短。
三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是()4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D6.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()AB ABlA.B.C.D.BF EGDCB AC11.(2006十堰市3分)如图,在平面直角坐标系中,请按下列要求分别作出ABC △变换后的图形(图中每个小正方形的边长为1个单位): (1)向右平移8个单位;(2)关于x 轴对称;(3)绕点O 顺时针方向旋转180.考点2:折叠问题一、考点讲解:常见的折叠问题有两种类型:一种是将一个图形沿着某一条直线折叠到另一个位置,这时候,这条直线两旁的图形全等;另一种是将一个图形沿着某一条直线折叠,使两个点重合,此时,这折痕所在的直线是这两点连线的垂直平分线。
二、基本图形:1.将矩形ABCD 沿着对角线AC 对折,则三角形AFC 是 三角形。
变形:若矩形ABCD 中,AB=6,AD=3,求三角形AFC 的面积。
2.将矩形ABCD 沿着EF 对折,使点B 与点D 重合,若AB=8,AD=10,求折痕EF 的长。
三、典型例题剖析:(2006内江市3分)如图(1)将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB=3,则AE 的长为( )A.23B. 3C. 2D.3326.(2006汉川市3分)将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是7.(2006郴州市10分)如图7,矩形纸片ABCD 的边长分别为()a b a b ,.将纸片AB CDEFB`BACDEFy(第11题图)A任意翻折(如图8),折痕为PQ .(P 在BC 上),使顶点C 落在四边形APCD 内一点C ',PC '的延长线交直线AD 于M ,再将纸片的另一部分翻折,使A 落在直线PM 上一点A ',且A M '所在直线与PM 所在直线重合(如图9)折痕为MN .(1)猜想两折痕PQ MN ,之间的位置关系,并加以证明.(2)若QPC ∠的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ MN ,间的距离有何变化请说明理由.(3)若QPC ∠的角度在每次翻折的过程中都为45(如图10),每次翻折后,非重叠部分的四边形MC QD ',及四边形BPA N '的周长与a b ,有何关系,为什么第二课时考点3:线段的垂直平分和角的平分线一、知识点:1. 线段垂直分线: (1)定义:(2)线段垂直平分线上的点;到线段两端距离相等的点 2.角的平分线:(1)角平分线上的点;到角两边距离相等的点。
二、基本图形:1.三角形ABC 中,DE 垂直平分AC ,则三角形BCD 的周长等于变形:三角形ABC 中,DF 、EG 分别垂直平分AB 和AC ,则三角形AFG 的周长等于BA D CB a b 图7 图8 图9图102.在DEC ∠中找一点P ,使点P 到DEC ∠两边的距离相等,并且到M 、N 两点的距离也相等。
3.在平面内找一点P ,使点P 到三条直线的距离相等。
三、典型例题剖析:1.如图,△ABC 中,DE 是AC 的垂直平分线,若AC=6,△ABD 的周长是13,,则△ABC 的周长是 ;若△ABC 的周长 是30,△ABD 的周长是25,则AC= 。
若∠C=30°,则 ∠ADB=2.(2006泰州市3分)如图,在10×10的正方形网格纸中,线段AB 、CD 的长均等于5.则图中到AB 和CD 所在直线的距离相等的网格点的个数有A .2个B .3个C . 4个D .5个 第三课时考点4:等腰三角形一、知识点:1.等腰三角形:(1)定义:(2)性质:(3)判定:2.等边三角形:(1)定义:(2)性质:(3)判定:3.直角三角形:(1)定义:。
(2)性质:(3)判定:二、基本图形:1.等腰三角形一腰上的高与底边的夹角与顶角的关系。
变形:等腰三角形一腰上的高与另一腰的夹角与顶角的关系。
2.在三角形ABC 中,AB=AC ,点P 是BC 边上的任意一点,PM ⊥AB,PN ⊥AC,垂足分别为M 、N ,BD 是AC 边上的高,则PM+PN= 。
ED CMNABCAD CB 第3题图图7QCPAB变形1:矩形ABCD 中,PM ⊥BD ,PN ⊥AC ,若AB=3,BC=4,则PM+PN= 变形2:正方形ABCD 中,AB=2,BC=BE ,PM ⊥BD ,PN ⊥BC ,则PM+PN= 3.△ABC 中,BD 平分∠ABC ,DE ∥BC ,则△BDE 是 三角形。
变形1:BD 、CD 分别平分∠ABC 和∠ACB ,MN ∥BC ,则BM+CN=变形2:BD 、CD 分别平分∠ABC 和∠ACB 的外角,MN ∥BC ,则BM-CN=变形3:BD 、CD 分别平分∠ABC 的外角和∠ACB 的外角,MN ∥BC ,则BM+CN= 三、典型例题剖析1:若等腰三角形一个角为72°,则顶角为 。
若等腰三角形的一个角是另一个角的2倍少10°,则顶角为 。
若等腰三角形的两条边长分别是3、6,则周长是 。
3.(2006扬州市10分)如图, △ABC 中, D 、E 分别是AC 、AB 上的点, BD 与CE 交于点O. 给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.⑴ 上述三个条件中, 哪两个条件....可判定△ABC 是等腰三角形(用序号写出所有情形); ⑵ 选择第⑴小题中的一种情形, 证明△ABC 是等腰三角形. 4.(2006常德市8分)如图7,P 是等边三角形ABC 内的一点,连结PA PB PC ,,,以BP 为边作60PBQ ∠=,且BQ BP =,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(4分)(2)若::3:4:5PA PB PC =,连结PQ ,试判断PQC △的形状,并说明理由.(4分)7.(2006日照8分)如图,已知,等腰Rt △OAB 中,∠AOB =90o ,等腰Rt △EOF 中,∠EOF =90o,连结AE 、BF . 求证:(1)AE=BF ;(2)AE ⊥BF .M N BCDAMNBCDP PMNPABCDEA第四课时考点5:等腰梯形一、考点讲解:1.梯形: (1)定义:(2)分类: 2.等腰梯形:(1)定义:(2)性质:(3)判定: 二、基本图形:1.等腰梯形ABCD 中,∠B=60°,则BC=AD+AB2.等腰梯形ABCD 中,若AB=AD=CD ,则BD 平分∠ABC 三、典型例题剖析:1.(2006新疆维吾尔自治区3分)如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( ) A.75° B.60° C.45° D.30° 2.(2006徐州市2分)如图2,用四个全等的等腰梯形拼成四边形ABCD ,则∠A = 3.(2006深圳市7分)如图7,在梯形ABCD 中,AD ∥BC , AD DC AB ==,120ADC ∠=.(1)(3分)求证:DC BD ⊥(2)(4分)若4AB =,求梯形ABCD 的面积.4.(2006钦州市8分)已知:如图,在等腰梯形ABCD 中,AB CD ∥中,点E F ,分别在AD BC ,上,且DE CF =.求证:AF BE =.5.(2006贵州黔南10分)如图,梯形ABCD 中,AD BC ∥,AB DC =,P 为梯形A D C EB A D CE B 第7题 ADC E B AFCDE D C B A 图2 B C图7ABCD 外一点,PAPD ,分别交线段BC 于点E F ,,且PA PD =. (1)写出图中三对你认为全等的三角形(不再添加辅助线) (2)选择你在(1)中写出全等三角形中任意一对进行证明.16.(2006常州市7分)已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点,求证:(1)△ACE ≌△BCD ;(2)222DE AE AD =+思考题21.(2006连云港市12分)操作与探究:(1)图①是一块直角三角形纸片。
将该三角形纸片按如图方法折叠,是点A 与点C 重合,DE 为折痕。
试证明△CBE 等腰三角形;(2)再将图①中的△CBE 沿对称轴EF 折叠(如图②)。
通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”。
你能将图③中的△ABC 折叠成一个组合矩形吗如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上)。
请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件是,一定能折成组合矩形22.如图,在等腰梯形ABCD 中,AB DC ∥,45A =∠,10cm AB =,4cm CD =.等腰直角三角形PMN 的斜边10cm MN =,A 点与N 点重合,MN 和AB在一条直线上,(第28题图)A A A BCDC DC F图①图②图③图④设等腰梯形ABCD 不动,等腰直角三角形PMN 沿AB 所在直线以1cm/s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角三角形PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由 形变化为 形;(2)设当等腰直角三角形PMN 移动(s)x 时,等腰直角三角形PMN 与等腰梯形ABCD 重叠部分的面积为2(cm )y ,求y 与x 之间的函数关系式;(3)当4(s)x 时,求等腰直角三角形PMN 与等腰梯形ABCD 重叠部分的面积.A(N ) MANMB。