2021年正弦定理的几种证明方法
正弦定理的几种证明方法

正弦定理的几种证明方法正弦定理是三角学中的重要定理,它可以用于求解任何三角形中的未知边和角,下面将介绍几种证明正弦定理的方法:证明方法一:三角形的面积法设三角形ABC的三边长度分别为a、b、c,对应的角度分别为A、B、C。
根据三角形面积公式,可以得到:S(三角形ABC)=0.5*a*h1=0.5*b*h2=0.5*c*h3其中h1、h2、h3分别为三角形ABC对应边的高,可以通过正弦函数关系得到:h1 = b * sinCh2 = c * sinAh3 = a * sinB代入前面的面积公式,得到:S(三角形ABC) = 0.5 * a * b * sinC = 0.5 * b * c * sinA = 0.5 * c * a * sinB移项整理后得到正弦定理:a / sinA =b / sinB =c / sinC证明方法二:向量法在平面直角坐标系中,设三角形ABC的三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。
根据向量的定义,可以得到:\vec{AB} = \vec{B} - \vec{A} = (x2 - x1, y2 - y1)\vec{AC} = \vec{C} - \vec{A} = (x3 - x1, y3 - y1)根据向量的数量积公式,可以得到:\vec{AB}, = \sqrt{(x2 - x1)^2 + (y2 - y1)^2} = a\vec{AC}, = \sqrt{(x3 - x1)^2 + (y3 - y1)^2} = c又根据向量的叉积公式,可以得到:而叉积的模也可以通过坐标计算得到:综上,可以得到正弦定理的向量形式:证明方法三:海伦公式法根据海伦公式,三角形ABC的面积S可以通过三角形的周长p和三条边的长度a、b、c计算得到:S = \sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)}其中p=(a+b+c)/2、又根据三角形面积的定义,可以得到:S = 0.5 \cdot a \cdot b \cdot \sin\angle C将前面两个公式等式右边进行等式转换,得到:\sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)} = 0.5\cdot a \cdot b \cdot \sin\angle C两边平方,整理得到:16p^2 \cdot (p - a) \cdot (p - b) \cdot (p - c) = a^2 \cdot b^2 \cdot \sin^2\angle C整理后得到:16(p-a)(p-b)(p-c)p = a^2 b^2 \cdot \sin^2\angle C再根据赫罗定理,可以得到:p(p-a)(p-b)(p-c)=S^2将上面两个等式联立,整理得到:16S^2 = a^2 b^2 \cdot \sin^2\angle C再开更号,得到:2S = ab \cdot \sin\angle C即得正弦定理。
正弦定理证明推导方法

正弦定理证明推导方法正弦定理证明推导方法正弦定理应用的学科是数学,使用的领域范围是几何。
下面是店铺给大家整理的正弦定理证明推导方法,供大家参阅!正弦定理证明推导方法显然,只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径即可。
现将△ABC,做其外接圆,设圆心为O。
我们考虑∠C及其对边AB。
设AB长度为c。
若1 ∠C为直角,则AB就是⊙O的直径,即c= 2R。
正弦定理∵(特殊角正弦函数值)正弦定理∴2 若∠C为锐角或钝角,过B作直径BC`'交⊙O于C`,连接C'A,显然BC'= 2R。
∵在同圆或等圆中直径所对的圆周角是直角。
∴∠C'AB是直角。
2A 若∠C为锐角,则C'与C落于AB的同侧,此时∵在同圆或等圆中同弧所对的圆周角相等。
∴∠C'=∠C正弦定理∴,有。
示意图2B若∠C为钝角,则C'与C落于AB的异侧,此时∠C'=180°-∠C,亦可推出。
在△DAB中,应用正弦函数定义,知因此,对任意三角形的任一角及其对边,均有上述结论。
考虑同一个三角形内的三个角及三条边,应用上述结果,分别列式可得。
故对任意三角形,定理得证。
实际上该定理也可以用向量方法证明。
正弦定理定义正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2R(R为外接圆半径)。
正弦定理是解三角形的重要工具。
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。
正弦定理意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
正弦定理证明推导方法

正弦定理证明推导方法正弦定理应用的学科是数学,使用的领域范围是几何。
下面是店铺给大家整理的正弦定理证明推导方法,供大家参阅!正弦定理证明推导方法显然,只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径即可。
现将△ABC,做其外接圆,设圆心为O。
我们考虑∠C及其对边AB。
设AB长度为c。
若1 ∠C为直角,则AB就是⊙O的直径,即c= 2R。
正弦定理∵(特殊角正弦函数值)正弦定理∴2 若∠C为锐角或钝角,过B作直径BC`'交⊙O于C`,连接C'A,显然BC'= 2R。
∵在同圆或等圆中直径所对的圆周角是直角。
∴∠C'AB是直角。
2A 若∠C为锐角,则C'与C落于AB的同侧,此时∵在同圆或等圆中同弧所对的圆周角相等。
∴∠C'=∠C正弦定理∴,有。
示意图2B若∠C为钝角,则C'与C落于AB的异侧,此时∠C'=180°-∠C,亦可推出。
在△DAB中,应用正弦函数定义,知因此,对任意三角形的任一角及其对边,均有上述结论。
考虑同一个三角形内的三个角及三条边,应用上述结果,分别列式可得。
故对任意三角形,定理得证。
实际上该定理也可以用向量方法证明。
正弦定理定义正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2R(R为外接圆半径)。
正弦定理是解三角形的重要工具。
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况,可参考三角形性质、钝角三角形性质进行判断。
正弦定理意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
如何证明正弦定理

如何证明正弦定理引言正弦定理是三角学中的一个重要定理,它描述了一个三角形中的边长和其对应的角度之间的关系。
通过证明正弦定理,我们可以深入理解三角形的性质和特点,并在实际问题中应用它。
什么是正弦定理正弦定理是指在一个任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间满足以下关系:a/sinA = b/sinB = c/sinC其中,sinA、sinB和sinC分别表示角A、B和C的正弦值。
证明思路为了证明正弦定理,我们需要利用一些基本的几何知识和三角函数的性质。
下面将详细介绍证明思路以及每个步骤的推导过程。
步骤1:构造高首先,我们需要在三角形ABC中构造高AD。
通过这一步骤,我们可以将三角形ABC 划分为两个直角三角形:△ABD和△ACD。
步骤2:计算△ABD和△ACD的面积根据几何知识,我们知道一个三角形的面积等于底边乘以高的一半。
因此,我们可以计算出△ABD和△ACD的面积:Area(△ABD) = (1/2) * AD * AB * sinAArea(△ACD) = (1/2) * AD * AC * sinB步骤3:计算三角形ABC的面积三角形ABC的面积可以通过△ABD和△ACD的面积相加来计算:Area(△ABC) = Area(△ABD) + Area(△ACD)= (1/2) * AD * AB * sinA + (1/2) * AD * AC * sinB步骤4:使用三角函数的性质根据三角函数的定义,我们可以得到以下关系:sinA = AB / csinB = AC / c将这两个等式代入步骤3中的面积表达式中,我们可以得到:Ar ea(△ABC) = (1/2) * AD * c * sinA + (1/2) * AD * c * sinB= (1/2) * AD * c (sinA + sinB)步骤5:计算三角形ABC的面积另一种表达式另一方面,根据三角形ABC的面积公式,我们有:Area(△ABC) = (1/2) * a* b* sinC步骤6:证明正弦定理将步骤4和步骤5中的面积表达式相等,我们可以得到:(1/2) * AD * c (sinA + sinB) = (1/2) * a* b* sinC通过消除公式中的分母和分子的分式,我们可以得到正弦定理的一种形式:a/sinA = b/sinB = c/sinC结论通过以上证明过程,我们成功地证明了正弦定理。
正弦定理的证明方法

正弦定理的证明方法•相关推荐正弦定理的证明方法正弦定理的证明方法如图1,△ABC中,AD平分乙A交BC于D,由三角形内角平分线有AB BDAC一DC由正弦定理有:由(1)(2)(3,得:韶=韶幼朋=Ac:.△ABc为等腰三角形。
证明‘三角证法,:BE平分匕B二器二黯…(l)AB AC AB滋nC舀石乙二蕊丽劝元二舀丽””’‘(2)CF平分二C幼器二默…(2);EF//BC用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC证明如下:在三角形的外接圆里证明会比较方便例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:2RsinD=BC (R为三角形外接圆半径)角A=角D得到:2RsinA=BC同理:2RsinB=AC,2RsinC=AB这样就得到正弦定理了2一种是用三角证asinB=bsinA用面积证用几何法,画三角形的`外接圆听说能用向量证,咋么证呢?三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,因为AB+BC+CA=0即j*AB+J*BC+J*CA=0|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0所以asinB=bsinA3用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证4满意答案好评率:100%正弦定理步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。
正弦定理的三种证明

△ABC 中的三个内角∠A,∠B,∠C 的对边,分别用 a ,b ,c 表示.正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即a b c= =sin A sin B sin C证明:按照三角形的种类,分三种情形证明之.A(1) 在Rt A BC 中,如图1-1absin A=,sin B =cca b因此,= =sin A sin Bcbc a b c有因为sin C =1 ,所以= =sin A sin B sin C C aB(2)在锐角△ABC 中,如图1-2CC D C D作C D AB 于点 D ,有sin = ,sin B =A ,b aa b 因此, b sin A= a sin B ,即=sin A sin B baa c 同理可证:=sin A sin Ca b c,故= =sin A sin B sin C.BAc(3)在钝角△ABC 中,如图1-3D作C D AB ,交AB 的延长线于点 D ,则CC D C Dsin A = ,sin A B C =sin C BD =b aa b因此, b sin A= a sin B ,即=sin A sin Bbb c同理可证:=sin B sin Caa b c 故= =sin A sin B sin CcA BD综上所述,在任意的三角形中,正弦定理总是成立.证明:如图所示,圆 O 是△ABC 的外接圆,半径为 R 连接 A O 并延长,交圆 O 于点 D ,连接 C D ,A易知,ACD =90 , B = DA C b sin D = =A D 2R,即 sin B = b 2R b因此 = 2Rsin BO 同理,延长 BO ,CO ,B Cac可证== 2sin A sin CR a b c 故 = = = 2 sin A sin B sin CR D证明:过点 B 作单位向量 j BC ,那么就有 j A C j AB j B CAb C cB b sin Cc sin Bcos(90 )cos(90 )b c ,sin Bsin C ab 同理有sin A sin B。
正弦定理的证明方法

正弦定理的证明方法正弦定理是三角学中的重要定理之一,它描述了在任意三角形中,三边的长度和角度之间的关系。
正弦定理可以用于解决一些与三角形有关的问题,例如确定未知边长或角度的大小。
为了证明正弦定理,我们首先需要定义一些符号。
设在一个三角形ABC中,边长a、b、c 分别对应于角A、B、C;角度α、β、γ分别对应于边a、b、c。
我们可以利用三角形的面积来证明正弦定理。
设三角形ABC的面积为S。
根据三角形的面积公式,S可以表示为:S = 1/2 * a * b * sinγ同样,我们可以将面积表示为其他两个角的正弦函数。
设三角形ABC的面积分别与角A、B、C 对应的边的正弦函数表示为Sa、Sb、Sc,则有:Sa = 1/2 * b * c * sinαSb = 1/2 * c * a * sinβSc = 1/2 * a * b * sinγ通过对上述三个公式进行观察,我们可以发现Sa、Sb、Sc 都是相等的,因为它们都代表了同一个三角形的面积。
即:Sa = Sb = Sc = S将上述公式进行整理,我们可以得到以下等式:a *b * sinγ= b *c * sinα= c * a * sinβ= 2S为了得到正弦定理,我们将上述等式进行变换。
首先,我们将其中一对等式分子和分母进行交换:a / sinα=b / sinβ=c / sinγ此时,我们可以将上述等式的分子和分母都除以边长abc 的乘积,得到这样的等式:a / (bc) =b / (ac) =c / (ab)接下来,我们可以通过简单的代数运算来证明正弦定理。
设上述等式左半边等于k,则有:a = kbcb = kacc = kab将上述等式代入三角形ABC 的面积公式S = 1/2 * a * b * sinγ,我们可以得到以下表达式:S = 1/2 * (kbc) * (kac) * sinγ= 1/2 * (k^2 * a * b * c) * sinγ根据上述表达式,我们可以推出以下等式:k^2 * a * b * c * sinγ= 2S将上述等式转换回正弦函数的形式,我们可以得到正弦定理的表达式:sinγ= 2S / (abc)利用相似的推理,我们还可以得出其他两个角度对应的正弦定理表达式:sinα= 2S / (bca)sinβ= 2S / (cab)至此,我们通过利用三角形的面积公式进行代数推理,证明了正弦定理的正确性。
正弦定理 几何法证明

正弦定理是三角形中的一种定理,它用于计算三角形的边长和角度。
可以表示为:
a/sin A = b/sin B = c/sin C
其中a、b和c分别表示三角形的边长,而A、B和C则表示相应的角度。
正弦定理可以用于计算任何三角形,无论是锐角、钝角还是直角三角形。
几何证明如下:
假设三角形ABC的边长为a、b和c,相应的角度为A、B和C。
首先,我们可以将任何三角形分成两个直角三角形,如下所示:
将角度A和C的角平分线相交于点D,假设AD=x,CD=y。
根据正弦函数,我们可以得到:
sinA = BD/a
sinC = BD/c
解出BD:
BD = a*sinA = c*sinC
因此,我们可以得到:
a*sinA = c*sinC
同样,将角度B和C的角平分线相交于点E,假设BE=y,AE=x。
我们可以利用正弦函数和三角形内角和为180度的定理得到:
sinB = CE/b
sinC = CE/c
解出CE:
CE = b*sinB = c*sinC
因此,我们可以得到:
b*sinB = c*sinC
同时,利用三角形内角和为180度的定理,我们可以得到:A + B + C = 180°
通过将以上等式代入正弦定理公式中,我们可以得到:
a/sin A = b/sin B = c/sin C
因此,我们证明了正弦定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理的几种证明方法
欧阳光明(2021.03.07)
1.利用三角形的高证明正弦定理
(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角
三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得 sin sin a
b
A
B
=
,
同理可得
sin sin c
b
C
B
=
,
故有 sin sin a
b
A
B
=
sin c
C
=
.从而这个结论在锐角三角形中成立.
(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有
=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得
=
∠sin sin a
b
A
ABC ,
同
理可得 =
∠sin sin c b
C ABC
故有
=
∠sin sin a
b
A
ABC
sin c
C =
.
由(1)(2)可知,在∆ABC 中,sin sin a
b
A
B
=
sin c
C
=
成立.
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a
b
A
B
=
sin c
C =
.
1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题:
已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:
在如图△ABC 中,已知角A ,角B ,|AB |=
a
b
D
A
B
C
A
B C
D
b a
c ,
求边AC 的长b
解:过C 作CD^AB 交AB 于D ,则 推论:
sin sin b c
B C
= 同理可证:
sin sin sin a b c
A B C
== 2.利用三角形面积证明正弦定理
已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为D.则Rt
△ADB 中,AB
AD
B =
sin ,∴AD=AB·sinB=csinB.
∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21
sin 21=.
∴ S △ABC =B ac A bc C ab sin 2
1
sin 21sin 21==.∴absinc=bcsinA=acsinB,
在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C
c
B b A a sin sin sin =
=. 3.向量法证明正弦定理
(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .
由向量的加法原则可得
AB CB AC =+,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.
B
∴|j |AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j
∴asinC=csinA.∴
C
c A a sin sin =
. A
另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j
D
C
B
A
C
与AB 的夹角为90°+B ,可得B
b C
c sin sin =.
(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )
∴
C
c
B b A a sin sin sin =
=.
(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j 与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .
由AB CB AC =+,得j ·AC
+j ·
CB =j ·AB , j
即a·Cos(90°-C)=c·Cos(A-90°),∴asinC=csinA.∴
C c
A a sin sin =
另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得C
c
B b sin sin =
.∴
C
c
B b simA a sin sin =
= 4.外接圆证明正弦定理
在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接
圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R
c B C 2sin sin =
'=.∴
R C
c
2sin =.
同理,可得
R B
b
R A a 2sin ,2sin ==.∴
R C
c
B b A a 2sin sin sin ===.
这就是说,对于任意的三角形,我们得到等式
C
c
B b A a sin sin sin =
=.
A
C B
A。