混凝土结构设计原理 第四章 受弯构件正截面的.
-第四章:钢筋混凝土受弯构件正截面承载力计算 共72页PPT资料

矩形应力图形与抛物线应力图形的形心位置相同)。
保持混凝土压应力合力C的作用点位置不变。
(等效矩形应力图形抛物线应力图形的面积相等)。
27
单筋矩形截面受压区混凝土的等效矩形应力图
等效矩形应力图受压区高度 x 与按平截面假定确定的 受压区高度 x0 之间的关系:
截面破坏。
P
P
混凝土压坏
P
P
混凝土压坏
正截面破坏
斜截面破坏
受弯构件的破坏形式
9
P
P
P
P
A
BC
D
+
CD
AB
_
M
V
BC段称为纯弯段;AB、CD段称为剪弯段。
xy
x
x
x
x
xy
3
1 10
§4.2 受弯构件正截面的受力特性 4.2.1 配筋率对正截面破坏特征的影响
AS b
as hh0
fy
…4-3
s,max 0.01 …4-4
24
4.3.2 单筋矩形截面正截面承载力计算
单筋截面:仅在受拉区配置受力钢筋的截面。 双筋截面:同时在受拉区和受压区配置受力钢筋的截面。
架立钢筋
a
单筋
b
单筋
c
单筋
d
双筋
25
1. 计算简图
单筋矩形截面计算简图
26
为简化计算,采用等效矩形应力图代替混 凝土受压区应力图。
第4章 钢筋混凝土受弯构件正截面承载力
Strength of Reinforced Concrete Flexural Members
第四章 受弯构件正截面承载力计算

因此得出
b
1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P
钢筋混凝土结构设计原理第四章 受弯构件正截面承载力

第四章 受弯构件正截面承载力计 算 题1. 已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25,f c =11.9N/mm 2,2/27.1mm N f t =, 钢筋采用HRB335,2/300mmN f y =截面弯矩设计值M=165KN.m 。
环境类别为一类。
求:受拉钢筋截面面积;2.已知一单跨简支板,计算跨度l =2.34m ,承受均布荷载q k =3KN/m 2(不包括板的自重),如图所示;混凝土等级C30,2/3.14mm N f c =;钢筋等级采用HPB235钢筋,即Ⅰ级钢筋,2/210mm N f y =。
可变荷载分项系数γQ =1.4,永久荷载分项系数γG =1.2,环境类别为一级,钢筋混凝土重度为25KN/m 3。
求:板厚及受拉钢筋截面面积A s3.某矩形截面简支梁,弯矩设计值M=270KN.m ,混凝土强度等级为C70,22/8.31,/14.2mm N f mm N f c t ==;钢筋为HRB400,即Ⅲ级钢筋,2/360mmN f y =。
环境类别为一级。
求:梁截面尺寸b ×h 及所需的受拉钢筋截面面积A s4. 已知梁的截面尺寸为b ×h=200mm ×500mm ,混凝土强度等级为C25,22/9.11,/27.1mm N f mm N f c t ==,截面弯矩设计值M=125KN.m 。
环境类别为一类。
求:(1)当采用钢筋HRB335级2/300mm N f y =时,受拉钢筋截面面积;(2)当采用钢筋HPB235级2/210mmN f y =时,受拉钢筋截面面积;(3)截面弯矩设计值M=225KN.m ,当采用钢筋HRB335级mm N f y /300=2时,受拉钢筋截面面积;5.已知梁的截面尺寸为b ×h=250mm ×450mm;受拉钢筋为4根直径为16mm 的HRB335钢筋,即Ⅱ级钢筋,2/300mmN f y =,A s =804mm 2;混凝土强度等级为C40,22/1.19,/71.1mm N f mm N f c t ==;承受的弯矩M=89KN.m 。
混凝土结构设计原理(第五版)课后习题答案

《混凝土结构设计原理》 第4章 受弯构件的正截面受弯承载力4.1混凝土弯曲受压时的极限压应变cu ε的取值如下:当正截面处于非均匀受压时,cu ε的取值随混凝土强度等级的不同而不同,即cu ε=0.0033-0.5(f cu,k -50)×10-5,且当计算的cu ε值大于0.0033时,取为0.0033;当正截面处于轴心均匀受压时,cu ε取为0.002。
4.2所谓“界限破坏”,是指正截面上的受拉钢筋的应变达到屈服的同时,受压区混凝土边缘纤维的应变也正好达到混凝土极限压应变时所发生的破坏。
此时,受压区混凝土边缘纤维的应变c ε=cu ε=0.0033-0.5(f cu,k -50)×10-5,受拉钢筋的应变s ε=y ε=f y /E s 。
4.3因为受弯构件正截面受弯全过程中第Ⅰ阶段末(即Ⅰa 阶段)可作为受弯构件抗裂度的计算依据;第Ⅱ阶段可作为使用荷载阶段验算变形和裂缝开展宽度的依据;第Ⅲ阶段末(即Ⅲa 阶段)可作为正截面受弯承载力计算的依据。
所以必须掌握钢筋混凝土受弯构件正截面受弯全过程中各阶段的应力状态。
正截面受弯承载力计算公式正是根据Ⅲa 阶段的应力状态列出的。
4.4当纵向受拉钢筋配筋率ρ满足b min ρρρ≤≤时发生适筋破坏形态;当min ρρ<时发生少筋破坏形态;当b ρρ>时发生超筋破坏形态。
与这三种破坏形态相对应的梁分别称为适筋梁、少筋梁和超筋梁。
由于少筋梁在满足承载力需要时的截面尺寸过大,造成不经济,且它的承载力取决于混凝土的抗拉强度,属于脆性破坏类型,故在实际工程中不允许采用。
由于超筋梁破坏时受拉钢筋应力低于屈服强度,使得配置过多的受拉钢筋不能充分发挥作用,造成钢材的浪费,且它是在没有明显预兆的情况下由于受压区混凝土被压碎而突然破坏,属于脆性破坏类型,故在实际工程中不允许采用。
4.5纵向受拉钢筋总截面面积A s 与正截面的有效面积bh 0的比值,称为纵向受拉钢筋的配筋百分率,简称配筋率,用ρ表示。
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理

第四章钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M和剪力V共同作用,而轴力N可以忽略的构件(图4-1)。
梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
图4-3 受弯构件的破坏特性§4-2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s与截面有效面积的百分比。
sAbh式中sA——纵向受力钢筋截面面积。
b——截面宽度,h——截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式:1、少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4-4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用。
破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
受拉区钢筋不屈服。
破坏前有一定变形和裂缝预兆,但不明显,。
项目四:受弯构件正截面的性能和设计

4.2 受弯构件的基本构造要求
二、梁的一般构造要求
梁的截面尺寸 截面最小高度:h=(1/16~1/10) l0 截面宽高比: b/h=(1/3~1/2) 梁内钢筋布置 受力钢筋直径:10~30mm 构造钢筋: 架立钢筋直径 每侧纵向构造钢筋面积 纵向构造钢筋间距: 不大于200mm 梁内箍筋: 按规定选用
e0— 对应于砼压应力刚达到fc时砼压应变, e0<0.002
时,取0.002. ecu—正截面砼极限压应变,处非均匀受压时, ecu>0.0033时,取0.0033. n—系数, n>2时, 取2. fcu,k—砼标准立方体抗压强度标准值。
4.4 受弯构件正截面承载力计算 的基本理论
二、受压区砼应力图形的简化 极限状态时受弯构件受压区砼的应力图形呈曲线形, 为使砼应力计算简单,可简化为矩形应力图形.
4.3 单筋矩形截面钢筋混凝土梁 受力状态
适筋梁破坏 (受拉破坏)
受拉钢筋先屈服,然后受压区混凝土压坏,中间有 一个较长的破坏过程,有明显预兆,“塑性破坏”, 破坏前可吸收较大的应变能。 min ≤ ≤ max
4.3 单筋矩形截面钢筋混凝土梁 受力状态
超筋梁破坏 (受压破坏) 如果 > max,则在钢筋没有达到屈服前,压区混凝 土就会压坏,表现为没有明显预兆的混凝土受压脆 性破坏的特征。这种梁称为“ 超筋梁 ”。工程实践 中严禁使用.
图4-2a 梁第Ⅰ阶段应力及应变图
4.3 单筋矩形截面钢筋混凝土梁 受力状态
第Ⅱ阶段——带裂缝工作阶段 从梁受拉区出现第一条裂缝开始,到梁受拉区钢筋 即将屈服时的整个工作阶段。
图4-2b 梁第Ⅱ阶段应力及应变图
4.3 单筋矩形截面钢筋混凝土梁 受力状态
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算

◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
(完整版)第4章受弯构件正截面受弯承载力计算

第4章 受弯构件正截面受弯承载力计算一、判断题1.界限相对受压区高度ξb 与混凝土等级无关。
( √ )2.界限相对受压区高度ξb 由钢筋的强度等级决定。
( √ )3.混凝土保护层是从受力钢筋外侧边算起的。
( √ )4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。
( × )5.在适筋梁中增大截面高度h 对提高受弯构件正截面承载力的作用不明显。
( × )6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。
( √ )7.梁板的截面尺寸由跨度决定。
( × )8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。
( √ )9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。
( × )10.单筋矩形截面受弯构件的最小配筋率P min =A s,min /bh 0。
( × )11.受弯构件截面最大的抵抗矩系数αs,max 由截面尺寸确定。
( × )12.受弯构件各截面必须有弯矩和剪力共同作用。
( × )13.T 形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。
( √ )14.第一类T 形截面配筋率计算按受压区的实际计算宽度计算。
( × )15.超筋梁的受弯承载力与钢材强度无关。
( × )16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。
( × )17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。
( × )18.素混凝土梁的破坏弯矩接近于开裂弯矩。
( √ )19.梁的有效高度等于总高度减去钢筋的保护层厚度。
( × )二、填空题1.防止少筋破坏的条件是___ρ≥ρmin _______,防止超筋破坏的条件是__ρ≤ρmax ____。