5.2.2《平行线的判定》导学案
人教版七年级数学下册5.2.2平行线的判定 导学案

5.2.2《平行线的判定》导学案一、学习目标1、使学生进一步理解并掌握判定两条直线平行的方法;2、了解简单的逻辑推理过程.重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 二、预习导学1、预习课本P13—P15页并完成以下练习2、判定两条直线平行的方法有哪些? 判定方法1:__________________________ 判定方法2:__________________________ 判定方法3:__________________________三、探究学习: 1、如图1(1)如果∠1=∠4,根据_______________,可得AB ∥CD (2) ∠1=∠2,根据_______________,可得AB ∥CD (3) 果∠1+∠3=1800,根据__________,可得AB ∥CD 2、如图2(1)如果∠1=∠D ,那么______∥_______ (2)如果∠1=∠B ,那么______∥_______ (3)如果∠A+∠B=1800,那么_____∥____ (4)如果∠A+∠D=1800,那么____∥____ 3、如图3(1) 直线AD 与BC 被直线AB 所截,∠1和∠2是 ,∠2和∠DAB 是 (2)∠5和∠6是直线 和直线 被直线 所截而形成的内错角;ACCDDE 11122233445566F图2A B CDEF12 3 4图1图3图4四、巩固测评: 1、如图10,,如果∠3=∠7,或______,那么___//___, 理由是____________;如果∠5=∠3,或_______,那么____//___, 理由是______________;如果∠2+ ∠5= ___ 或者_____,那___//__ 理由是__________. 2、如图(1)如果已知∠1=∠3,则可判定AB ∥______,其理由 是__________________;(2)如果已知∠4+∠5=180°,则可判定__//___,其理由 是__________________;(3)如果已知∠1+∠2=180°,则可判定___∥___,其理由 是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=_ _,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________. 3、如图,若∠2=∠6,则______∥____ 如果∠3+∠4+∠5+∠6=180°那么__∥__, 如果∠9=_____,那么AD∥BC; 如果∠9=_____,那么AB∥CD.4、填注理由如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,求证:AB//CD °. 证明:∵∠1=∠2 ( ) 又∵∠2=∠3 ( ) ∴∠1=∠3 ( ) ∴AB∥CD ( ) 五、学习心得:9654321DCB A图11。
人教版七年级下册数学5.2.2平行线的判定导学案

5.2.2 平行线的判断一、课前准备及预习1、课前准备:1.假如 a∥b,b∥c,那么。
理由是。
2.如图,请填空:①∠1 与∠2 是直线和直线被直线所截而成的角;②∠3 与∠2 是直线和直线被直线所截而成的角;③∠ 2 与∠ 4 是直线和直线被直线所截而成的角。
3.填空:经过直线外一点,_____一条直线与这条直线平行.问题一:假如有a、b 两条直线,如何判断它们能否平行?问题二:按要求作图:用直尺点 P 做已知直线 AB 的平行线。
P●A B二、课内研究研究点一:平行线的判断方法一判断方法一:简单说成:。
几何语言:(如上图 4)展现点 1:以以下图 1 ∵∠ 1=∠2,∴_______∥________()。
∵∠ 2=∠3,∴_______∥________()。
图1图2研究点 2:平行线的判断方法二问题2:如上图2,直线a、b 被直线l 所截,已知∠1=115°,∠2=115°,直线 a、b 平行吗?为何?判断方法二:简和单说三。
成:角几板何语言:(如上图 2)过第1页/共6页展现点 2:如图 3 ∵∠ 1=∠2,∴_______∥________()∵∠ 3=∠4,∴_______∥________()图3图 4研究点 3:平行线的判断方法三问题 3:如上图 4,直线 a、b 被直线l 所截,已知∠ 1+∠2=180°,直线 a、b平行吗?为何?判断方法三:简单说成:。
几何语言:(如上图)展现点3:以以下图,在四边形ABCD中,已知∠ B=60°,∠C=120°,AB 与 CD 平行吗?AD 与 BC 平行吗?讲堂小结第2页/共6页文字表达符号语言图形∵察看内容的(已知)选择,我本着∴a∥b先静后动,由 ()近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的观察内容。
随机察看也是不可少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。
5.2.2 平行线的判定复习导学案1

C 5.2.2 平行线的判定学习目标:1、从“用三角尺和直尺画平行线”的过程中发现“同位角相等,两直线平行”,进而推出“内错角相等,两直线平行”;2、会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。
教学重点:同位角相等两直线平行教学难点:运用平行线的判定方法进行简单的推理一、复习回顾1、在__________________,__________的两条直线叫做平行线.2、如果两条直线都与第三条直线平行,那么______________________________.简单说成,平行于同一直线的两直线________.二、自主导学用平行线的定义及平行公理的推论都可以证明两直线平行,但是,这两个途径都有局限性,那么,有没有其他的途径判定两条直线是否平行呢?探究1 平行线的判定方法1观察用三角板和直尺过一点P画已知直线l的平行线的过程,发现实际上就是过点P画与∠1相等的∠2,而∠1和∠2是一对__________角,这说明如果______角相等,那么l∥l′.判定方法1 两条直线被第三条直线所截,如果_________,那么这________________。
简单说成:_________________________。
平行线判定方法1的符号语言:如图1,已知,直线l、l′被c所截,∠1=∠2,求证:l∥l′证明:∵∠1=∠2 (已知)∴l∥l′(同位角相等,两直线平行)练习一1、如图2,∠C=31°,当∠ABE= 度时,就能使BE//CD?2、如图3,∠1=150°,∠2=150°, a //b 吗?判定方法2 两条直线被第三条直线所截,如果__________ __________,那么这_______________________。
简单说成:______________________。
平行线判定方法2的符号语言:如图4,已知,直线a 、b 被c 所截,∠4=∠2,求证:a ∥b 证明:∵∠4=∠2(已知)∴a ∥b (同位角相等,两直线平行)练习二1、如图5,填空并在括号中填理由:(1)∵∠ABD =∠CDB∴ ∥ ( );(2)∵∠CAD =∠ACB∴ ∥ ( );2、如图6,已知∠1=∠A =∠C ,(1)∵∠1=∠A ,∴______∥_____( )(2)∵∠1=∠C ,∴______∥_____( )图6A DC B O图5三、学以致用1、如图7,若∠A =∠3,则______∥ ____ ; 若∠2=∠E , 则____∥ ______2、如图8,推理填空:(1)∵∠A =∠_______(已知),∴AC ∥ED ( );(2)∵∠2 =∠_______(已知),∴AC ∥ED ( );3、如图,已知,∠D =∠A ,∠B =∠FCB ,求证:ED ∥CF1 23AFCD B E图8E BA FDC。
5.2.2平行线的判定导学案

5.2.2 平行线的判定【学习目标】1.掌握平行线的判定,并能应用这些知识判断两条直线是否平行,2.培养初步的推理能力. 【学习过程】一、预习案还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、导学案探索一:请同学们仔细阅读课本P171~173页“平行线的判定”,你知道在画平行线这一过程中,三角板所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以) 判定方法1 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合对顶角的性质,我们可以得到: 判定方法2 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合邻补角的性质,我们可以得到: 判定方法3 几何语言表述为:∵ ∠___+∠___=180°∴ AB ∥CD思考;1.判定方法一怎样探索出来的?2. 怎样用判定方法一推出判定方法二?如图由∠1=∠2,怎样推出a ∥b ?写出推理过程:3. 怎样推出判定方法三?你有几种方法?写出推理过程:练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____. 2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)83625147FE DCBAC123 4 5DA Bc∴ ∥ ( ) (2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( ) (3)∵∠ =∠ (已知)∴AD ∥BC ( ) (4)∵∠5=∠ (已知)∴AB ∥CD ( )探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗? 结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行. 如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴练习二:1.如右图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2, 试说明BF ∥CE .三、展示案1.如图1所示,在下列条件中,不能判断L 1∥L 2的是().A .∠1=∠3B .∠2=∠3C .∠4+∠5=180°D .∠2+∠4=180°2.如图2所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系? 3.如图所示,已知∠OEB=130°,∠FOD=25°, OF 平分∠EOD ,试说明AB ∥CD .四、本节课你有哪些收获?1 2ab 3c图1图2。
人教版数学七年级下册 5.2.2 平行线的判定 导学案

人教版七年级数学下册导学案 第五章 相交线与平行线 5.2.2 平行线的判定【学习目标】1.正确理解平行线的三种判定方法;2.初步应用平行线的判定方法进行简单的推理和计算。
【课前预习】1.下列说法不正确的是( ) A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行2.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( ) A .垂直 B .平行 C .相交D .不能确定3.下列说法错误的是( )A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行4.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( ) A .只有①B .只有②C .①②都正确D .①②都不正确5.下列说法错误的是( ) A .对顶角一定相等B .在同一平面内,有且只有一条直线和已知直线垂直C .同位角相等,两直线平行D .如果两个角的和是90,那么称这两个角互为余角 6.下列命题中,是真命题的有( )①同位角相等;①对顶角相等;①同一平面内,如果直线l 1∥l 2,直线l 2∥l 3,那么l 1∥l 3;①同一平面内,如果直线l 1⊥l 2,直线l 2⊥l 3,那么l 1∥l 3. A .0个B .1个C .2个D .3个7.对于同一平面内的三条直线a ,b ,c ,给出下列5个论断:① //a b ; ② //b c ; ③ a b ⊥ ; ④ //a c ;⑤ a c ⊥ ;以其中两个论断作为题设,一个论断作为结论组成命题,下列命题不正确的是( ) A .若①②,则④B .若①②,则⑤C .若②④,则①D .若③⑤,则②8.过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( )A .B .C .D .9. 如图所示,已知直线a ,b ,c ,在下列条件中,能够判定a①b 的是( )A .①1=①2B .①2=①3C .①3=①4D .①2=①410.如图,下列判断正确的是:( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2,则AB ∥CDC .若∠A=∠3,则AD ∥BCD .若∠3+∠DAB=180° ,则AB ∥CD【学习探究】阅读课本,完成下列问题1、 经过直线外一点,有且________与这条直线平行.2、如果a ∥b ,b ∥c ,那么______,理由是平行于同一条直线的两条直线_____.3、如图1,已知四条直线AB 、AC 、DE 、FG 及所标示各角,请填空: ①∠1与∠2是直线_____和直线____被直线_____所截而成的______角; ②∠3与∠2是直线_____和直线____被直线_____所截而成的______角; ③∠5与∠6是直线_____和直线____被直线_____所截而成的______角; ④∠4与∠7是直线_____和直线____被直线_____所截而成的______角; ⑤∠8与∠2是直线_____和直线____被直线_____所截而成的______角.4、同一平面内,如果两条直线__________,那么这两条直线平行。
人教版七年级下册数学5.2.2 平行线的判定(导学案)

5.2 平行线及其判定杭信一中何逸冬5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线(板书课题).2.学习目标:(1)学会并记住平行线的判定方法1、2、3.(2)能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:(1)自学内容:课本P12至P13的内容.(2)自学时间:10分钟.(3)自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①a.观察P12“思考”中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,若∠1=∠2,则a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.b.若∠3=∠2,能得到直线a∥b吗?分析:若能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?c.由②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.b.若∠2+∠4=180°,能得到直线a∥b吗?分析:若能由∠2+∠4=180°转化为∠1=∠2(或∠3=∠2),那么由判定方法1(或判定方法2),就可得a∥b,你能写出推理过程吗?c.由②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学有困难的学生进行点拨引导.(2)生助生:小组相互交流学习,纠正认知偏差.4.强化:(1)判定方法1、2、3及其几何表述.(2)练习:课本P15“复习巩固”的第1、2题.1.自学指导:(1)自学内容:课本P14例题.(2)自学时间:4分钟.(3)自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.(4)自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两线平行.③如图2,BE是AB的延长线.a.由∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.b.由∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一部分,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑.②差异指导:对个别学习有困难或认知不足的学生进行点拨引导.(2)生助生:小组内学生相互交流,取长补短.4.强化:(1)判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,直线平行.③平行线定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.(2)练习:课本P14“练习”第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法和成效进行点评.()纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.(1)若∠1=∠2,则a∥b,理由是同位角相等,两直线平行.(2)若∠1=∠3,则a∥c,理由是内错角相等,两直线平行.(3)直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:(1)互相平行的直线有a∥b,c∥d;(2)互相垂直的直线有e⊥b,e⊥a.3.(10分)如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.(10分)如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.(20分)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用(20分)6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b(同位角相等,两直线平行).∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b(同旁内角互补,两直线平行).三、拓展延伸(10分)7.如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b(内错角相等,两直线平行).∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行).又∵a∥b,∴a∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
5.2.2《平行线的判定》导学案

5.2.2 平行线的判定 导学案【学习目标】1、掌握由角得平行线判定的三种方法;2、掌握由平行和垂直得平行线判定的方法;3、能运用所学过的平行线的判定方法,进行简单的推理和计算。
【自学指导】 2.如图,请填空:①∠1与∠2是直线 和 直线 被直线 所截而成的 角; ②∠3与∠2是直线 和 直线 被直线 所截而成的 角;③∠2与∠4是直线 和直线 被直线 所截而成的 角。
一、由角判定线平行:如图1所示,为我们利用直尺和三角板画平行线的过程简图,1、探究1:由三角尺前后的移动位置知,∠1和∠2是同位角,且相等,则画出两条平行线。
归纳1:两条直线被第三条直线所截,如果同位角 ,那么这两条直线 ; 简单地说:同位角 ,两直线 ; 几何语言:∵∠1=∠2(已知)∴AB ∥CD (____________________________)2、探究2:若∠1=∠3,能否推出AB ∥CD 吗? 理由如下:∵∠1=∠3(已知),∠2=∠3( ) ∴∠1=∠2( )∴AB ∥CD ( )归纳2:两条直线被第三条直线所截,如果内错角 ,那么这两条直线 ; 简单地说:内错角 ,两直线 ; 几何语言:∵∠1=∠3(已知)∴AB ∥CD (____________________________)3、探究3:若∠1+∠4=180°,能得出AB ∥CD 吗? 方法一∵∠1+∠4=180°(已知),∠2+∠4=180°( ) ∴∠1=∠2( )∴AB ∥CD ( ) 方法二∵∠1+∠4=180°(已知),∠3+∠4=180°( ) ∴∠1=∠3( )∴AB ∥CD ( )归纳3:两条直线被第三条直线所截,如果同旁内角 ,那么这两条直线 ;简单地说:同旁内角 ,两直线 ; 几何语言:∵∠1+∠4=180°(已知)∴AB ∥CD (____________________________)4321图1G HCDABE F【练习1】1、如图4所示,可以判定直线a ∥b 的条件有 (至少写三个); 2.如图5所示,下列条件不能判定a ∥b 的是( )A.∠1=∠2B. ∠1=∠3C. ∠1+∠4=180°D. ∠2+∠4=180° 3.如图6所示,直线a 、b 都与直线c 相交,下列条件①∠1=∠2; ②∠3=∠6;③∠4+∠7=180°④∠5=∠8,其中能判断a ∥b 的条件有 。
5.2.2-平行线的判定(1)--导学案

5.2.2平行线的判定(1)导学案学习目标:1.借助用直尺和三角板画平行线的过程,得出两直线平行的判定方法一“同位角相等,两直线平行”,进而推导出方法二“内错角相等,两直线平行”与方法三“同旁内角互补,两直线平行”。
2.理解掌握平行线的判定方法,并能运用它判定两直线的平行关系.3.培养识图能力,推理能力和有条理表达能力,发展空间观念。
学习重点:两直线平行的判定方法。
学习难点:运用判定方法来证明两直线的平行关系。
一、准备:[预习自学时请先用铅笔解答问题]1.如果a∥b ,b∥c ,那么______,理由是_______________________.2.如下图,已知四条直线AB、AC、DE、FG及所标示各角,请填空:①∠1与∠2是直线_____和直线____被直线_____所截而成的______角;②∠3与∠2是直线_____和直线____被直线_____所截而成的______角;③∠5与∠6是直线_____和直线____被直线_____所截而成的______角;④∠4与∠7是直线_____和直线____被直线_____所截而成的______角;⑤∠8与∠2是直线_____和直线____被直线_____所截而成的______角.3.仔细观察,下列图中有平行线吗?相信自己的眼睛吗?你该怎样说明这些直线是否平行呢?二、探究活动:1、思考·归纳①在实际生活中,都有哪些地方可以见到平行线?如: 铁轨、跑道、双杠、……如果这些直线不平行,后果怎样?[认识]判定两条直线是否平行,在实际生活中具有极其重要的应用价值。
②什么是平行线?答: [我们可以利用这个定义来判定两条直线是否平行!] ③还记得画平行线的方法吗?画画看[利用直尺和三角尺] 任意画右边直线的平行线:④在作平行线的过程中,两种工具一静一动,这其中的道理你能明白吗? 静的直尺是在固定一条直线; 动的三角尺能确保一对_________相等. (图中的三线八角形成的条件是什么?) [归纳]既然这就是作平行线的方法,那由 此作出来的就一定是平行线.因此,我们就得出一种判定平行线的方法:[判定1]两条直线被第三条直线所截,若同位角相等,则这两条直线平行. 简述为:_____________________________________ 2、例题·交流例1、如图,直线AB 与CD 被直线EF 所截, ∠1=50°, ∠2=50°.问:AB 与CD 平行吗? 证明:例2数学走近生活:三、初步训练:1.如右图,已知∠C=60°,则当∠ABE=________时,A B CDEF12CCE1 3 42 ABDFG可判定___∥___(理由是: ) 2.根据下图填空: ①例: ∵∠A=∠1∴AB ∥DC (同位角相等,两直线平行) ②∵∠2=∠4∴____∥____( 同位角相等,两直线平行 ) ③∵∠3=______∴____∥BC( ) ④∵∠A=______∴____∥EF( ) ⑤∵AG ∥EF,BC ∥EF∴____∥____ ( ) 3.在第2题图中, ∠A 与∠3是一对__________,其形成条件是( ). 如果知道∠A=∠3,也能判定AB ∥DC.证明过程如下: ∵∠1=∠3( ) ∠A=∠3(已知) ∴∠A=∠1(等量代换)∴AB ∥DC( )[归纳]由此我们可以得出两直线平行的判定方法2: 两条直线被第三条 直线所截,如果内错角相等,那么这两条直线平行. 简述为:______________________________________4.(与第3题类似地) 在第2题图中, ∠A 与∠4是一对_____________, 其形成条件是( ).如果知道∠A+∠4=180°,也能判定AB ∥DC.证明过程如下: ∵∠1+∠4=180°( ) ∠A+∠4=180°(已知) ∴∠A=∠1(等量代换)∴AB ∥DC( )[归纳]平行线的判定方法3: 两条直线被第三条直线所截,如果同旁内角 互补,那么这两条直线平行.简述为:_______________________________________ 四、提升平台: 1.如图,推理填空: ①∵∠1=∠2∴____∥____( ) ②∵∠A=∠3∴____∥____( ) ③∵∠A+∠ABC=180°∴____∥____( ) 2. 如图,已知∠1=030,∠B=060,AB ⊥AC. ①求证:AD ∥BC②由已知条件,你能证明AB ∥DC 吗?答:____________③添加一个条件:_________________,结合已知条件,求证:AB ∥DC. 五、学习小结: 本节课我们学习了: 六、教学后记 教后记:321DCBA 1DCBA(1)对本节课教学做个自我评价:(2)请记录下这节课你上得最精彩的地方:(3)请总结出这节课你认为有待改进地方:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定
班级_________姓名__________
一、成功目标
1.掌握由角得平行线判定的三种方法;
2.能运用所学过的平行线的判定方法,进行简单的推理和计算。
(重、难点)
二、成功自学
1.同一平面内两条直线的位置关系有几种_________与___________.
2.怎样过已知直线外一点画已知直线的平行线
(1)________(2)________(3)________(4)________
如图1所示,为我们利用直尺和三角板画平行线的过程简图,
在画图的过程中什么角保持不变_______________
归纳1:两条直线被第三条直线所截,如果同位角,那么这两条直线;
简单地说:同位角,两直线;
几何语言:∵∠1=∠2(已知)
∴AB∥CD
(____________________________)
3.如右图∵∠1=∠2,
∴_______∥________()。
∵∠2=∠3,
∴_______∥________()。
三、成功合作
1.(6分)如图,∠1=∠2=55°,∠3等于多少度直线AB,CD平行吗说明你的理由.
归纳2:两条直线被第三条直线所截,如果内错角,那么这两条直线;
简单地说:内错角,两直线;
几何语言:∵∠1=∠2(已知)
∴AB∥CD(____________________________)
2.(6分)如图,∠1=55°,∠2=125°,∠3等于多少度直线AB,CD 平行吗说明你的
理由.
归纳3:两条直线被第三条直线所截,如果同旁内角,那么这两条直线;
简单地说:同旁内角,两直线;
几何语言:∵∠1+∠2=180o(已知)
∴AB∥CD(____________________________)
3.(6分)如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,可得__________,理由是_________________________.
(2)∠A=∠3,可得__________,理由是_________________________.
(3)∠ABC+∠C=180°,可得________,理由是________________________.
4.(6分)已知:如图,a⊥c,b⊥c。
求证:a
∥b。
结论:在同一平面内,___________________________________
四、成功示学(勇敢的展示自己,相信自己一定可以!)
五、成功测学
1.(3分)如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF
2.(3分)如图⑧,判定AB∥EC的理由是()
A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.(3分)如图⑨,下列推理正确的是()
A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b
C.∵∠1=∠2,∴c∥d D.∵∠1=∠5,∴c∥d
4.(3分)如图1所示,若∠1=60°,∠2=60°,则AB_______CD.
图1 图2 图3 5.(3分)如图2所示,若∠1=∠2,则a∥_____.
图4 图5 图6
6.(3分)如图3所示,若∠2=∠3,则b______c.
7.(3分)如图3所示,若∠1=______,则a∥c.
8.(3分)如图4所示,若∠BEF+______=180°,则AB∥CD.
9.(3分)如图5所示,请你写一个适当的条件____________, •使AD∥BC.
10(3分)如图6,完成下列填空.
(1)∵∠1=∠5(已知)
∴a∥______()
(2)∵∠3=_______(已知)
∴a∥b()
(3)∵∠5+_______=180°(已知)
∴______∥_______()
11.(3分)如图7,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗
[解答]因为∠1+∠2=180°()
所以AB∥_______()
又因为∠1=∠3()
所以∠2+∠________=180°()
所以EF∥GH()
图7 图8 图9 12.(3分)如图8所示,若∠1=30°,∠2=80°,∠3=30°,∠4=70°,
若AB∥____.
13.(3分)如图9所示,若∠1=110°,∠2=70°,则a_______b.14.(6分)已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
15.(6分)已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD
六、成功思学
平行线的判定方法:
1、___________________________,两直线平行;
2、___________________________,两直线平行;
3、___________________________,两直线平行;
4、___________________________,两直线平行.。