教室自动感应照明控制系统的设计方案

合集下载

教室智能照明控制系统的设计

教室智能照明控制系统的设计

教室智能照明控制系统的设计1. 引言1.1 研究背景教室智能照明控制系统的设计是为了提高教室照明系统的能效和舒适性,满足教室不同时间段和不同光照条件下的照明需求。

如今,随着科技的发展和社会的进步,人们对照明系统的功能和性能要求也越来越高。

传统的照明系统存在着诸多问题,比如能源浪费、光照不均匀、操作不便等,这些问题迫切需要解决。

研究并设计一种智能照明控制系统是必要的。

教室是学生学习和教师教学的重要空间,良好的照明环境对学生的学习效果和教师的教学质量有着重要影响。

传统的照明系统在亮度和色温的调节上存在不足,难以满足不同学习和教学场景的需求。

需要一种智能化的照明系统,能够根据不同时间段和需求自动调节光照强度和色温,提高照明舒适度,提升学习和教学效果。

在这样的背景下,研究和设计教室智能照明控制系统具有重要的意义和价值。

通过合理设计智能化的照明系统,可以提高能源利用效率,改善教室照明质量,提升学生和教师的工作学习品质,推动教育事业的发展。

本研究旨在探讨教室智能照明控制系统的设计原理和实施方案,为教室照明系统的升级和改进提供新的思路和方法。

1.2 研究目的研究目的:本文旨在设计一种教室智能照明控制系统,通过合理的智能控制和感应技术,实现对教室照明的有效管理和节能优化。

具体目的包括:提高教室照明系统的智能化水平,使其能够实现自动化控制和智能调节;优化照明系统的能源利用效率,实现节能减排的目标;提高教室照明环境的舒适度和适用性,为教学和学习提供更好的场所条件。

通过本研究,旨在探索一种有效的教室照明控制系统设计方案,为提升教室照明系统的性能和效益提供技术支持和实践参考。

1.3 研究意义教室智能照明控制系统的设计对于提高教室的舒适度、节约能源、保护环境具有重要意义。

传统的照明系统存在能源浪费严重、操作不便等问题,而智能照明系统能够有效地解决这些问题,提高照明效果的同时实现能源的节约。

智能照明控制系统还可以根据不同的教室使用需求进行智能调节,提高教室的灵活性和便利性,提升教室的使用效率和舒适度。

教室自动感应照明控制系统的设计方案范本

教室自动感应照明控制系统的设计方案范本

教室自动感应照明控制系统的设计方案教室自动感应照明控制系统的设计摘要为了适应现代电子技术飞速发展的需要,更好地培养21世纪的应用型电子技术人才,在自动化技术日趋成熟的今天,照明电路的自动化控制已是随处可见的了。

可是要做到功能强可靠性高、价格低廉等一系列优点,这就是我们现在研究的课题了。

照明电路不但用在工业生产中而且已渗入到人们工作和生活的各个角落。

几乎是从小到生活照明,大到工业控制,照明电路都起到了举足轻重的作用。

自动感应照明控制系统有力地推动了各行业的技术改造和产品的更新换代,应用前景非常广阔。

当前,在各类学校教室的照明灯由于管理不善,经常是教室空无一人,却灯火通明,极大的浪费电源。

该设计题目是经过对当前市场上销售的同类产品的调查研究,找出现有产品的不足之处和为什么没有推广的原因,设计制作适合用户使用和方便使用的产品。

主要设计内容:人体感应检测系统设计、自动照明开关控制系统设计。

一、设计原理及方框图在光线亮时,节电开关呈关闭状态,灯不亮,夜间或光线较暗时,节电开关呈预备工作状态。

当有人经过该开关附近时,红外传感器检测到人体信号把节电开关启动,灯亮,当人离去时,延时40~50秒后节电开关自动关闭、灯灭。

图1是教室感应自动照明控制电路的原理方框图,由红外传感器、放大电路、倍压整流、光控电路、电子开关、延时和交流开关七部分电路组成。

图2.0教室感应自动照明控制电路的原理方框图二、原理图及其说明图2-1红外线传感器、光控智能开关原理图2.1原理说明电路原理:红外传感器是感应人体信号,VT1、R1、R3、C1组成放大电路。

为了获得较高的灵敏度,VT1 的β值选用大于100。

R3不宜过小,否则电路容易产生间歇振荡,C2、D1和D2、C3构成倍压整流电路。

R4、R5和光敏电阻D5组成光控电路。

有光照射在D5上时,阻值变小,对直流控制电压衰减很大。

VT2、VT3和R7、D3组成的电子开关截止,C4 内无电荷,单向可控硅MCR截止,灯泡不亮。

教室智慧照明系统设计方案

教室智慧照明系统设计方案

教室智慧照明系统设计方案设计方案:教室智慧照明系统一、项目背景如今,随着科技的不断发展,智能化已经渗透到各个领域。

教育领域也不例外,智慧教室成为了一个热门话题。

其中,智慧照明系统作为智慧教室中的重要组成部分,对提升教室环境舒适度、节约能源等方面具有重要意义。

本方案旨在设计一套智慧照明系统,提供智能化的教室照明解决方案。

二、系统设计方案1. 传感器布置在教室的合适位置布置光线传感器和人体感应传感器。

光线传感器通过感知周围环境的亮度,以自动调整照明的亮度。

人体感应传感器则通过感知教室内是否有人,以自动打开或关闭照明。

2. 照明方案为了提供更加舒适的照明效果,可以采用可调光的LED 灯作为照明源。

LED灯能够根据需要调整亮度,满足不同场景的需求。

通过与传感器相结合,系统可以自动调节照明的亮度,使教室内的光线始终保持在一个适宜的水平。

3. 预设场景根据教室的不同用途和需求,可以预设多种照明场景。

例如,上课场景、自习场景、演讲场景等。

每种场景的照明亮度、颜色等参数可以提前设定好,并通过智慧控制系统实现自动切换。

通过预设场景,可以减轻教师或学生的操作负担,提高教室照明的智能化水平。

4. 能耗管理智慧照明系统除了要满足舒适度等要求外,还应考虑能耗管理。

系统可以通过分析教室使用情况,预测未来一段时间的照明需求,并根据需求调整照明亮度。

当教室内无人时,系统可以自动关闭照明,以减少能源浪费。

另外,系统还可以提供能耗统计和报告,帮助学校进行能源管理和优化。

5. 远程控制为了便于管理和维护,系统可以提供远程控制功能。

通过手机APP或者网页,教师和工作人员可以远程控制教室照明系统,实时监控照明状态,调整照明亮度等。

同时,系统还可以提供故障报警功能,及时发现和解决故障。

三、方案优势1. 节省能源:通过智能调节照明亮度和自动关闭照明功能,减少照明时的能源浪费。

2. 提升舒适度:采用可调光的LED灯作为照明源,根据不同场景和需求提供舒适的照明效果。

教室灯光自动控制的设计与实现(精选5篇)

教室灯光自动控制的设计与实现(精选5篇)

教室灯光自动控制的设计与实现(精选5篇)第一篇:教室灯光自动控制的设计与实现教室灯光自动控制的设计与实现摘要:照明管理是教学楼管理的一个重要方面,为节约能源、实现智能化管理,提出了基于MCS-51单片机的教室灯光智能控制系统的设计思路,并在此基础上开发了该系统的硬件装置和相应软件。

该系统以STC89C52单片机作为控制装置的智能部件,采用热释电红外人体传感器集成模块检测人体的存在,根据教室开灯的条件,系统对人体的存在信号和环境光信号进行智能判断,完成对教室照明回路的智能控制。

关键词:人体、红外线、传感器、自动控制、热释电1.课题研究背景和意义随着社会发展,用电量增大,能源短缺已成为全世界所面临的问题,而此问题对于我国尤为严重。

随着高校扩招、教室扩建,教室照明的需求进一步增多,而教室管理不到位,会造成电能的巨大浪费,提高教室用电效率成为急需解决的问题。

2.教室灯光控制系统方案分析所研制的控制器以人体存在作为主要输入参数。

可以实现自动与手动控制兼容。

有人存在时,传感器通过采集人体红外信号,将信号发送给控制器,控制器自动打开电灯,感知人离开后延时一段时间关灯。

如果教室无人仍然需要灯光,可以打开强制开关,直到有人关掉强制开关。

图1教室灯光自动控制系统结构框图3.2 控制系统的主要硬件电路本系统的主控模块主要采用STC公司的89C52RC作为主控芯片,STC89C52的I/O端口与系统的其他外围器件接口的链接电路如图2所示。

其中具体包括在线编程模块电路、系统复位电路、系统供电电路、环境光采集电路、报警系统电路。

3.系统控制模块的硬件设计3.1系统控制模块的硬件构成系统控制单元以单片机主控模块为核心,其他外围电路主要包括:ISP下载线模块、系统供电模块、硬件时钟模块、环境光模块、热释电红外传感器模块、灯光驱动模块。

其结构框图如图1所示。

图2系统电路图3.3热释电红外传感器模块的工作原理热释电传感器在接收到人体红外辐射温度发生变化时就会失去平衡,向外释放电荷,后续电路经过检测处理后就会产生人体存在信号。

教室智能照明控制系统的设计

教室智能照明控制系统的设计

教室智能照明控制系统的设计一、引言随着科技的不断发展,智能化已经成为了现代社会发展的趋势。

智能控制系统作为现代人工智能领域的研究热点之一,已经广泛应用于各种领域,如工业自动化、建筑智能化等。

在教育领域中,智能控制系统也被广泛应用,例如教室智能照明控制系统。

教室智能照明控制系统不仅可以提高教室照明的效果,还可以节省能源,为教室环境提供更好的舒适度。

本文将针对教室智能照明控制系统进行设计讨论,并提出相关的解决方案。

二、教室智能照明控制系统的功能需求1. 照明自动调节功能:根据教室内的环境光线强度和人员活动情况,自动调节照明亮度,提供合适的照明效果。

2. 节能功能:通过智能控制技术,实现照明系统的节能管理,提高能源利用率。

3. 远程控制功能:支持远程控制,实现对照明设备的远程监测和控制。

4. 人体感应功能:通过人体感应技术,实现对教室内人员活动的感知,提供更智能的照明控制。

5. 安全保障功能:对照明设备进行状态监测,确保照明设备的正常运行,提高教室的安全性。

6. 用户友好性:系统操作简单,易于使用,满足教师和学生的实际需求。

三、教室智能照明控制系统的设计方案1. 传感器选型:选择合适的环境光传感器和人体感应传感器,用于感知教室内的环境光线强度和人员活动情况。

2. 控制器设计:设计智能控制器,集成传感器数据采集、照明控制决策和通信控制功能。

3. 互联网通信接口设计:设计系统与互联网通信的接口,支持远程监控和控制。

4. 照明设备选型:选择高效节能的LED照明设备,并设计合理的照明布局。

5. 软件开发:开发智能控制系统的相关软件,支持人机交互界面和数据分析功能。

6. 性能测试与验证:对系统进行性能测试和验证,确保系统设计方案的可行性和稳定性。

教室智能照明控制系统的设计和实施,对于提升教育教学环境质量,提高能源利用效率,实现智能化教学管理具有重要的意义。

希望本文的内容能够对相关人士提供一定的参考和帮助,为推动智能教育事业的发展贡献一份力量。

学生教室智慧照明系统设计方案

学生教室智慧照明系统设计方案

学生教室智慧照明系统设计方案智慧教室照明系统是一种将传统照明系统与智能控制技术相结合的创新设计。

它利用光感知、人体感知、温度感知等多种传感器技术和网络通信等技术手段,实现对教室照明的自动控制和智能调节,大大提高了照明效果和节能程度。

一、系统需求分析在设计学生教室智慧照明系统前,首先需要对系统需求进行分析。

主要包括以下几个方面:1. 照明效果要求:教室内需要保持适宜的照度水平,满足学生的学习和活动需求。

同时,根据不同的教学活动和时间段,可以调节照明亮度和色温,提供更为舒适的照明环境。

2. 能耗控制要求:教室照明系统需要具备节能功能,通过智能控制,根据教室内人员数量、光照情况和时间等参数来调节照明亮度,降低能耗。

3. 系统稳定性和可靠性要求:智慧照明系统需要具备稳定可靠的性能,能够长时间运行,不出现故障或影响照明效果。

4. 操作便捷性要求:智慧照明系统需要具备易于操作的特点,可以通过手机APP或远程控制器等方式对照明系统进行设置和调节。

二、系统架构设计基于上述需求分析,可以设计以下智慧照明系统的架构。

1. 传感器网络:系统通过安装多个光敏传感器、人体感应传感器和温度传感器等,实时感知教室内的光照强度、人员数量和温度等参数。

2. 智能控制器:通过智能控制器,将传感器采集到的数据进行处理和分析,根据预设的控制策略,对照明系统进行智能调节和控制。

3. 照明设备:系统采用LED照明灯具,具有调光和变色温功能,可以根据控制信号进行亮度和色温的调节,以实现不同的照明效果。

4. 远程控制界面:通过手机APP或远程控制器等方式,实现对智慧照明系统的远程控制和监控,方便用户进行操作和管理。

三、系统功能设计基于系统架构设计,可以设计以下系统功能。

1. 光照自动调节功能:系统根据感知到的光照强度,自动调节照明亮度,在光照较弱时提供足够的光照,保证学生的视觉舒适性。

2. 人感控制功能:系统感知到教室内有人进入时,根据人体感应传感器的信号,自动调整照明亮度和色温,提供适宜的照明环境。

教室智能照明控制系统的设计

教室智能照明控制系统的设计

教室智能照明控制系统的设计随着科技的不断发展,智能化已经渗透到了各个领域,其中智能建筑也成为了研究热点。

在智能建筑中,智能照明系统是其中一个重要的组成部分。

教室作为人们学习工作的场所,如何设计一个智能化的照明控制系统,让学生和老师们能够在舒适的环境中学习和工作,是当前亟待解决的问题。

本文将对教室智能照明控制系统的设计进行阐述,包括系统的结构设计、功能模块设计、使用场景分析等方面。

一、系统结构设计教室智能照明控制系统的结构设计主要包括三个部分:传感器、控制器和执行器。

传感器用于感知教室内的环境信息,包括光照、温度、湿度等参数;控制器用于接收传感器采集到的数据,并进行逻辑判断和控制指令的下发;执行器则是根据控制器的指令来控制灯光的亮度、颜色等参数。

整个系统通过传感器采集环境信息,控制器进行逻辑判断和指令下发,最终通过执行器来实现对照明设备的控制。

二、功能模块设计1. 传感器模块:传感器模块主要包括光照传感器、温度传感器、湿度传感器等,用于感知教室内的环境信息。

光照传感器可以感知光照强度,根据环境光照的强弱来控制灯光的亮度;温度传感器可以感知室内的温度,当温度过高或过低时可以调节灯光的色温来改善环境舒适度;湿度传感器则可以感知室内的湿度,根据湿度的变化来控制灯光的亮度和颜色。

2. 控制器模块:控制器模块主要是对传感器采集到的数据进行处理和分析,然后根据一定的逻辑判断来制定灯光的控制策略。

当光照强度低于一定阈值时,控制器会下发指令来调节灯光的亮度;当室内温度过高或过低时,控制器可以根据预设的温度范围来调节灯光的色温等。

控制器还可以通过与学生老师的手机连接,实现远程控制和定时控制等功能。

3. 执行器模块:执行器模块主要是根据控制器下发的指令来对灯光设备进行控制。

对于智能灯具,可以通过执行器模块实现灯光的调节、开关以及颜色的变化等功能。

三、使用场景分析1. 课堂教学场景:在课堂教学场景下,智能照明控制系统可以根据教室内的光照情况和学生老师的需求来自动调节灯光的亮度和色温,以提高学生们的学习效果和教师的教学效果。

教室智能照明控制系统的设计

教室智能照明控制系统的设计

教室智能照明控制系统的设计随着智能化技术的不断发展,教室智能照明控制系统成为了现代教育装备的重要组成部分。

本文将从系统的目标、设计方案、硬件设备和软件实现等方面进行详细介绍。

一、系统目标教室智能照明控制系统的目标是通过对照明系统进行自动化控制,实现能耗的优化、舒适度的提升和智能化管理。

具体包括以下方面:1. 能耗优化:系统需要能够对照明设备进行精准控制,只有在教室内有人时才能开启灯光,并且根据不同的时间段、季节、教室差异等进行智能调节,降低不必要的能耗。

2. 舒适度提升:通过人体感知照度、色温等参数,自动调整照明系统的亮度和色彩,使教室内的照明更加舒适。

3. 智能化管理:系统需要能够自动采集和分析照明设备的数据,为管理人员提供相关的报表和分析,实现教室照明数据的智能化管理。

二、设计方案1. 硬件选型在硬件选型方面,系统需要选择合适的传感器和控制器来实现照明设备的自动化控制。

具体选型如下:(1)光强传感器:用于检测教室内的照度变化,从而自动地调整灯光的亮度。

(3)红外传感器:用于检测教室内是否有人,从而决定是否开启灯光。

(4)控制器:负责对照明控制设备进行控制和调节。

2. 系统架构其中,硬件部分由光强传感器、温度传感器和红外传感器组成,通过物联网技术将数据传输至中间件服务,中间件服务对数据进行分析和处理,并通过控制器对照明设备进行智能控制。

3. 软件实现教室智能照明控制系统的软件实现主要包括以下模块:(1)数据采集模块:用于采集传感器数据,包括光强、温度和人体红外信号等。

(2)数据处理模块:对数据进行处理、分析和存储,并提供智能控制算法。

(3)控制模块:控制照明设备实现开关、色彩和亮度的自动调节,实现照明自动化控制。

(4)用户界面模块:提供图形化用户界面,方便用户对系统进行监控和管理。

三、系统优势1. 节能减排:通过实现能耗的优化,降低不必要的能耗,减少二氧化碳的排放。

4. 提高教学质量:提高教室的舒适度和氛围,为教学创造更好的环境条件,提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教室自动感应照明控制系统的设计摘要为了适应现代电子技术飞速发展的需要,更好地培养21世纪的应用型电子技术人才,在自动化技术日趋成熟的今天,照明电路的自动化控制已是随处可见的了。

但是要做到功能强可靠性高、价格低廉等一系列优点,这就是我们现在研究的课题了。

照明电路不仅用在工业生产中而且已渗入到人们工作和生活的各个角落。

几乎是从小到生活照明,大到工业控制,照明电路都起到了举足轻重的作用。

自动感应照明控制系统有力地推动了各行业的技术改造和产品的更新换代,应用前景非常广阔。

目前,在各类学校教室的照明灯由于管理不善,经常是教室空无一人,却灯火通明,极大的浪费电源。

该设计题目是通过对目前市场上销售的同类产品的调查研究,找出现有产品的不足之处和为什么没有推广的原因,设计制作适合用户使用和方便使用的产品。

主要设计内容:人体感应检测系统设计、自动照明开关控制系统设计。

设计原理及方框图一、在光线亮时,节电开关呈关闭状态,灯不亮,夜间或光线较暗时,节电开关呈预备工作状态。

当有人经过该开关附近时,红外传感器检测到人体信号把1 / 24节电开关启动,灯亮,当人离去时,延时40~50秒后节电开关自动关闭、灯灭。

图1是教室感应自动照明控制电路的原理方框图,由红外传感器、放大电路、倍压整流、光控电路、电子开关、延时和交流开关七部分电路组成。

图2.0教室感应自动照明控制电路的原理方框图二、原理图及其说明D4C3R951KR3DSCW1R747K220uFR120KVT320KR1051K GND D6-D9C2C1R22M1uF1uFD2D3BT红外线传感器R8VT1D1R4220V C4100KR5VT247uFC547K103uFD5R636K图2-1红外线传感器、光控智能开关原理图2 / 242.1原理说明电路原理:红外传感器是感应人体信号,VT1、R1、R3、C1组成放大电路。

为了获得较高的灵敏度,VT1的β值选用大于100。

R3不宜过小,否则电路容易产生间歇振荡,C2、D1和D2、C3构成倍压整流电路。

R4、R5和光敏电阻D5组成光控电路。

有光照射在D5上时,阻值变小,对直流控制电压衰减很大。

VT2、VT3和R7、D3组成的电子开关截止,C4内无电荷,单向可控硅MCR截止,灯泡不亮。

在MCR截止时,直流高压经R9、R10、D4降压后加到C3、CW1<稳压管)上端。

C3为滤波电容,CW1为稳压值12~15V的稳压二极管,保证C3上电压不超过15V直流电压。

当无光照射D5时,D5阻值很大,对直流控制电压衰减很小,VT2、VT3等组成的电子开关导通,D3 也导通,使C4充电。

R8、C5和单向可控制MCR、D6~D9组成延时与交流开关。

C4通过R8把直流触发电压加到MCR控制端,MCR导通,灯泡点亮。

灯泡发光时间长短由C4、R8的参数决定,按图中所给出的元器件数值<R8为22K),发光40~50秒左右后,MCR截止,灯熄灭。

C5为抗干扰电容,用于消除灯泡发光抖动现象。

2.2电路各部分介绍2.2.1红外线传感器热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。

现在,已得到越来越广泛的应用。

目前,一些书刊只简要介绍了被动式热释电人体红外线传感器的基本应用。

本文就主动式和被动式两方面的基本应用原理作大致介绍。

目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPON CERAMIC公司的SCA02-1、RS02D等。

虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。

利用红外线的物理性质来进行测量的传感器。

红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。

任何物质,只要它本身具有一定的温3 / 24度<高于绝对零度),都能辐射红外线。

红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。

红外线传感器包括光学系统、检测元件和转换电路。

光学系统按结构不同可分为透射式和反射式两类。

检测元件按工作原理可分为热敏检测元件和光电检测元件。

热敏元件应用最多的是热敏电阻。

热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。

光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。

红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。

例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗<见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。

HN911采用热释电红外控制模块的照明灯,它可以用于卫生间、储藏室、楼梯走廊等处,可做到人来灯亮,人走灯灭,并且还具有白天自动封锁功能。

HN911系列模块是采用新技术和新工艺,将高灵敏度的热释电红外传感器、放大器、信号处理及输出电路组装在一起制成模块式电路,它具有从信号接收至控制输出的全部功能。

在它的输出端接上晶体管放大电路或单稳态电路可以驱动继电器,接上光耦合电路可以驱动双向可控硅。

4 / 24图2-3 HN911模块的内部电路结构2.2.2单相倍压整流电路在一些需用高电压、小电流的地方,常常使用倍压整流电路。

倍压整流,可以把较低的交流电压,用耐压较低的整流二极管和电容器,“整”出一个较高的直流电压。

倍压整流电路一般按输出电压是输入电压的多少倍,分为二倍压、三倍压与多倍压整流电路。

图4-4是二倍压整流电路。

电路由变压器B、两个整流二极管D1、D2及两个电容器C1、C2组成。

5 / 24图2.4单相倍压整流电路其工作原理如下:e2正半周<上正下负)时,二极管D1导通,D2截止,电流经过D1 对C1充电,将电容Cl上的电压充到接近e2的峰值,并基本保持不变。

e2 为负半周=E与Cl上的电压Uc1<上负下正)时,二极管D2导通,Dl截止。

此时,2电源电压e2串联相加,电流经D2 对电容C2充电,充电电压Uc2=e2 峰值+2E上的电压就基本上是了。

它的值2E2≈2E。

如此反复充电,C21.22是变压器电级电压的二倍,所以叫做二倍压整流电路。

在实际电路中,负载上的电压Usc=2x1.2E2。

整流二极管D1和D2所承受Uc2=2EE,的最高反向电压均为。

电容器上的直流电压2E。

Uc1=222可以据此设计电路和选择元件2.2.3延时电路分析RC电路的过渡过程时,不一定只分析电容电压的变化,可能是任意支路电流或任意元件上的电压,所以一般用f(t>表示任意一种电量。

这里写出分析RC 电路任意电量的过渡过程的步骤:(1>计算换路前最后时刻t=0-时电容电压uc(0->的值。

分析电路时,要把电容看作开路,按直流电路的分析方法计算;(2>按换路定律uc(0+>=uc(0->,写出换路后的电容电压;(3>求电路中需要的f(0+>值。

注意使用换路后的电路,将uc(0+>作为直流电压源进行分析;6 / 24值:注意使用换路后的电路,电容看成开路用直流电路分析方f(∞>(4>求法;是从电容两端看进去的等效电阻,注意应将电压源短R求时间常数t:(5>=RC。

路、电流源开路,再进行电阻的串并联,然后计算t(6>用三要素公式求:的值来实现,它具有改变方延时电路的延迟时间可以通过改变RC所以RC便,制作简单的优点,因而广泛用于对延迟时间要求不是很高,很长的电路中。

光控电子开关电路的设计2.2.4光控电子开关起到日熄夜亮的控制作用,以节约用电。

2-5图光控电子开关原理图 2.2.5工作原理电路如图2-4所示,220V交流电通过灯泡H及整流全桥后XC5215-6BG225I,单7 / 24不能发H的电流≤2.2mA,灯泡向可控硅VS因无触发电流而阻断。

此时流过灯泡H,对三极管起保护作用。

6.8VV偏压不超过光。

电阻R1和稳压二极管DW使三极管VΩ,使三极管100K夜晚,亮度小于一定程度时,光敏二极管D呈现高阻状态≥是清发光。

RP的电压,使可控硅VS触发导通,灯泡H正向导通,发射极约有0.8V 晨或傍晚实现开关转换的亮度选择元件。

红外线传感器、光控智能开关的制作与调试2.2.6本电路按要求选择元器件,焊接正确,即可使用推广。

若灵敏度不够,可不够太小,应视具体情况而R1减小热释电红外线传感器串联的电阻R1,但,0.7uF1uF换成定。

适当减小R1后灵敏度仍不够时,可更换耦合电容C1,将2-3所示。

效果将很显著。

制作的如图板2-6红外线传感器、光控智能开关PCB图光控电子开关的安装与调试2.2.7串联,并让它正对着天幕或房子采光窗前较明亮安装时将它与受控电灯H阻值RP的空间,避免3M以内夜间灯光的直接照射。

调试宜傍晚时进行,调节2-5H的大小,使受控电灯在适当的亮度下始点亮。

制作的如图所示。

8 / 24PCB板图2-7光控电子开关的三、照明电路中实际中元件的选用及设计电路设计原理1、所16脚直插式封装。

其管脚排HN911是一款新型热释电红外探测采用双列示。

该传感器由于内部放大器可以将人体辐射保证了传感器的工作稳定性。

红外探测红外探测模工作原理HN911可在严寒或炎热等恶劣环附表为HN911HN911即有移动,,21脚输出高电平脚输动态时模块内部电路主要放大器、比较器、电~的微弱信号。

该信号经0.31mV、频率发热物体传感器接收到红外输出幅度约经信号处理电路处最后由延时输出电路输出用做驱放大器放由比较器比较,人体辐射和周当背景红外辐射增,HN911模块内放大器具有温度补探测器工作时强。

、2工作原理9 / 24采用HN911热释电红外控制模块的照明灯电路原理图如图3-1所示,电路中ICl 为HN911热释电红外传感控制模块,平时2脚输出高电平,当它探测到人体发出的红外光线时,其输出端2脚可输出脉冲宽度大于2s的负脉冲信号,并直接加至555时基集成电路IC3的触发端2脚。

热释电红外控制模块的照明灯电路原理图3-1采用HN911图)和<HN911L<HN911T)、微功耗型HN911系列模块共有3种型号,即通用型系列模块具有良好的抗干扰性能,尤其是抗电磁波性HN911<HN911D)。

低温型型)的低温下稳定地工型)到一3000 (D℃20<T型和L能十分优良,并可在一系列模块能在低温下稳定地工作,主要得益于它的温度补偿电路。

相关文档
最新文档