2021年高考数学一轮复习强化训练题汇总9(含解析)

合集下载

2021高考数学(新高考版)一轮复习考点考法精练:第九章 第三讲 椭 圆 Word版含解析

2021高考数学(新高考版)一轮复习考点考法精练:第九章 第三讲 椭 圆 Word版含解析

析姓名,年级:时间:析第三讲 椭 圆1。

[2020湖南岳阳入学调研考试]已知定点M (1,0)和椭圆x 29+y 23=1上两个动点P ,Q 满足MP ⊥MQ ,则MP⃗⃗⃗⃗⃗⃗ ·QP ⃗⃗⃗⃗⃗ 取得最小值时点P 的横坐标为 ( )A 。

12B 。

1 C.32 D.522。

[2020安徽省示范高中名校联考]已知椭圆C :x 2a 2+y2b 2=1(a 〉b >0),F 1,F 2分别为其左、右焦点,|F 1F 2|=2√2,B 为短轴的一个端点,三角形BF 1O (O 为坐标原点)的面积为√7,则椭圆的长轴长为( )A 。

4B 。

8C 。

1+√332D 。

1+√333。

[2020陕西省部分学校摸底检测]已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a 〉b >0)的左、右焦点,点P 是椭圆上位于第一象限的点,延长PF 2交椭圆于点Q ,若PF 1⊥PQ ,且|PF 1|=|PQ |,则椭圆的离心率为( )A.2—√2B.√3-√2C.√2-1D.√6−√34.[2020福建省三明市模拟]已知P 是椭圆x 225+y 29=1上一点,F 1,F 2分别为椭圆的左、右焦点,且∠F 1PF 2=60°,则△F 1PF 2面积为( )A 。

3√3 B.2√3 C.√3 D.√335.[2019唐山市高三摸底考试]已知椭圆C :x 2a 2+y 2b 2=1(a 〉b >0)和双曲线E :x 2-y 2=1有相同的焦点F 1,F 2,且椭圆C 与双曲线E 的离心率之积为1,P 为两曲线的一个交点,则△F 1PF 2为 ( )A.锐角三角形B.直角三角形 C 。

钝角三角形 D 。

不能确定6.[2020洛阳市第一次联考]已知椭圆C 1:x 2a 12+y 2b12=1(a 1>b 1〉0)与双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是曲线C 1与C 2的一个公共点,e 1,e 2分别是C 1和C 2的离心率,若PF 1⊥PF 2,则4e 12+e 22的最小值为 .7。

最新2021高三数学一轮强化训练含答案

最新2021高三数学一轮强化训练含答案

一 选择题(每题5分,共计50分)1、集合{}2,4,6M =的真子集的个数为( )A .6B .7C .8D .9 2、“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )。

A .充分必要条件B .充分而不必要条件C ..必要而不充分条件D .既不充分也不必要条件 3、已知10<<a ,3log 21log ,5log 21,3log 2log a a a a a z y x -==+=,则( )A. x>y>z B z>y>x C y>x>z D z>x>y4、下列函数图象中,正确的是( ).5、已知=+-=+ni m i n m ni i m是虚数单位,则是实数,,,其中11( ) (A)1+2i (B) 1-2i (C) 2+i(D)2-i6、设函数)(x f 定义如下表,数列}{n x 满足50=x ,且对任意自然数nD 7N ③如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交. ④若m αβ=,n ∥m ,且βα⊄⊄n n ,,则n ∥α且n ∥β. 其中正确命题的个数是A .4B .3C .2D .18、设椭圆)0(,12222>>=+b a b y a x 的离心率为21,右焦点为)0,(c F ,方程02=-+c bx ax 的两个实根分别为1x 和2x ,则点),(21x x P A 必在圆222=+y x 内 B 必在圆222=+y x 上C 必在圆222=+y x 外D 以上都有可能9、在电脑游戏中,“主角”的生命机会往往被预先设定。

如某枪战,“主角”被设置生命6次,每次生命承受射击8次(即被击中8次就失去一次生命机会),假设射击为单发射击,如图是为“主角”耗用生命机会的过程设计的一个程序框图,请问判断框内应该填( )A i<6B i<8C i>48D i<4810、一个盒子装有六张卡片,上面分别写着如下定义域为R 的函数:x x f =)(1,22)(x x f =,33)(x x f =, x x f sin )(4=,x x f cos )(5=2)(6=x f 。

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析
高考Байду номын сангаас复习课程--2021 年高 考数学第一轮总复习
强化练习题
目录
第 1 讲 集合与简易逻辑...........................................................................................................................- 1 第 2 讲 函数及其性质经典精讲 ...............................................................................................................- 2 第 3 讲 函数及其性质 2019 高考真题赏析 .............................................................................................- 3 第 4 讲 函数及其性质 2018 高考真题赏析 .............................................................................................- 4 第 5 讲 平面向量.......................................................................................................................................- 5 第 6 讲 三角函数与三角恒等变换经典精讲 ............................................................

2021年高三理科数学一轮复习题组层级快练91含答案

2021年高三理科数学一轮复习题组层级快练91含答案

2021年高三理科数学一轮复习题组层级快练91含答案1.直线⎩⎨⎧x =1+t sin70°,y =2+t cos70°(t 为参数)的倾斜角为( )A .70°B .20°C .160°D .110°答案 B解析 将直线参数方程化为标准形式:⎩⎨⎧x =1+t cos20°,y =2+t sin20°(t 为参数),则倾斜角为20°,故选B.2.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为( )A.23 B .-23C.32 D .-32答案 D3.下列参数方程与方程y 2=x 表示同一曲线的是( )A.⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数) B.⎩⎪⎨⎪⎧x =sin 2t ,y =sin t (t 为参数) C.⎩⎨⎧x =t ,y =|t |(t 为参数) D.⎩⎪⎨⎪⎧x =1-cos2t 1+cos2t ,y =tan t (t 为参数) 答案 D解析 考查四个选项:对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ; 对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ;对于C ,消去t 得方程为y 2=|x |,但要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos2t 1+cos2t =2sin 2t2cos 2t =tan 2t =y 2即符合y 2=x . 因此D 是正确的,故选D.4.与参数方程为⎩⎨⎧x =t ,y =21-t(t 为参数)等价的普通方程为( )A .x 2+y 24=1 B .x 2+y 24=1(0≤x ≤1) C .x 2+y 24=1(0≤y ≤2) D .x 2+y 24=1(0≤x ≤1,0≤y ≤2) 答案 D 解析x 2=t ,y 24=1-t =1-x 2,x 2+y 24=1,而t ≥0,0≤1-t ≤1,得0≤y ≤2. 5.参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)和极坐标方程ρ=-6cos θ所表示的图形分别是( )A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆答案 D解析 参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)的普通方程为x 24+y 2=1,表示椭圆.极坐标方程ρ=-6cos θ的直角坐标方程为(x +3)2+y 2=9,表示圆.6.参数方程⎩⎪⎨⎪⎧x =-3+2cos θ,y =4+2sin θ(θ为参数)表示的曲线上的点到坐标轴的最近距离为( )A .1B .2C .3D .4答案 A解析 参数方程⎩⎪⎨⎪⎧x =-3+2cos θ,y =4+2sin θ(θ为参数)表示的曲线的普通方程为(x +3)2+(y -4)2=4,这是圆心为(-3,4),半径为2的圆,故圆上的点到坐标轴的最近距离为1.7.已知直线l :⎩⎪⎨⎪⎧x =t ,y =t +1(t 为参数),圆C :ρ=2cos θ,则圆心C 到直线l 的距离是( )A .2 B. 3 C. 2 D .1答案 C解析 直线l :⎩⎪⎨⎪⎧x =t ,y =t +1(t 为参数)的普通方程为x -y +1=0,圆C :ρ=2cos θ的直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,则圆心C (1,0)到直线l 的距离d =|1-0+1|2= 2.8.(xx·安徽理)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2 D .2 2答案 D解析 由题意得直线l 的方程为x -y -4=0,圆C 的方程为(x -2)2+y 2=4.则圆心到直线的距离d =2,故弦长=2r 2-d 2=2 2.9.圆C :⎩⎨⎧x =1+2cos θ,y =2+2sin θ(θ为参数)的半径为______,若圆C 与直线x -y +m =0相切,则m =______.答案2,-1或3解析 由题意知,圆C 的普通方程为(x -1)2+(y -2)2=2,其半径r = 2.若圆C 与直线x -y +m =0相切,则|1-2+m |1+1=2,得|m -1|=2,故m =-1或3.10.(xx·重庆理)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.答案5解析 直线l 的普通方程为y =x +1,曲线C 的直角坐标方程为y 2=4x ,联立两方程,得⎩⎪⎨⎪⎧ y =x +1,y 2=4x ,解得⎩⎪⎨⎪⎧x =1,y =2.所以公共点为(1,2). 所以公共点的极径为ρ=22+1= 5.11.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________. 答案 2解析 方法一:由直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的参数方程,得(2+t )2+(-1-t )2=9,整理,得t 2+3t -2=0,方程有两个不相等的实数根,所以直线与曲线的交点个数有2个.方法二:将直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的参数方程分别化为直角坐标方程,得x +y -1=0,x 2+y 2=9.原点(圆心)到直线的距离为d =12<r =3, 所以直线与圆相交,交点个数为2.12.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数),则曲线C 上的点到直线2x -y+2=0的距离的最大值为________.答案45+55解析 将曲线C 的参数方程⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)化为直角坐标方程,得(x -1)2+y 2=1,这是圆心为(1,0),半径为1的圆.圆心到直线2x -y +2=0的距离为d =|2×1+2|22+(-1)2=455>r =1,故直线与圆相离,所以圆C 上的点到直线的距离的最大值为d +r =455+1=45+55.13.(xx·安徽合肥二检)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =-3t ,y =4+t(t为参数).以O 为极点,射线Ox 为极轴的极坐标系中,曲线C 2的方程为ρ=4sin θ,曲线C 1与C 2交于M ,N 两点,则线段MN 的长度为________.答案 2解析 由题意,C 1的参数方程⎩⎪⎨⎪⎧x =-3t ,y =4+t 转化为直角坐标方程为x +3y -43=0,C 2的极坐标方程ρ=4sin θ转化为直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=22,圆心(0,2)到直线x +3y -43=0的距离为d =|0+23-43|12+(3)2=3,所以|MN |=222-(3)2=2.14.(xx·福建理)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 答案 (1)l :2x -y -2a =0,C :x 2+y 2=16 (2)[-25,25]思路 (1)通过消参,直线是代入消去法,圆是利用平方关系便可求得直线和圆的普通方程.在(2)中,利用直线和圆的位置关系,得d ≤r ,从而求得a 的范围.解析 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.15.(xx·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.答案 8 2解析 将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得(2+22t )2=4(1-22t ).解得t 1=0,t 2=-8 2. 所以|AB |=|t 1-t 2|=8 2.16.在极坐标系中,已知点A (2,0)到直线l :ρsin(θ-π4)=m (m >0)的距离为3.(1)求实数m 值;(2)设P 是直线l 上的动点,Q 在线段OP 上,且满足|OP ||OQ |=1,求点Q 轨迹方程,并指出轨迹是什么图形.答案 (1)m =2 (2)(x +28)2+(y -28)2=116,轨迹是以(14,3π4)为圆心,14为半径的圆 解析 (1)以极点为原点,极轴为x 轴的正半轴,建立直角坐标系.则点A 的直角坐标为(2,0),直线l 的直角坐标方程为x -y +2m =0.由点A 到直线l 的距离为d =|2+2m |2=1+m =3,∴m =2.(2)由(1)得直线l 的方程为ρsin(θ-π4)=2,设P (ρ0,θ0),Q (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=1,θ=θ0⇒⎩⎪⎨⎪⎧ρ0=1ρ,θ0=θ.①因为点P (ρ0,θ0)在直线l 上,所以ρ0sin(θ0-π4)=2.②将①代入②得1ρsin(θ-π4)=2,则点Q 轨迹方程为ρ=12sin(θ-π4).化为直角坐标方程为(x+28)2+(y -28)2=116. 则点Q 的轨迹是以(14,3π4)为圆心,14为半径的圆.17.(xx·衡水调研卷)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+t cos α,y =t sin α(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ.(1)求曲线C 的参数方程;(2)当α=π4时,求直线l 与曲线C 交点的极坐标.答案 (1)C :⎩⎨⎧x =-1+2cos φ,y =1+2sin φ(φ为参数)(2)(2,π2),(2,π)解析 (1)由ρ=2sin θ-2cos θ,可得ρ2=2ρsin θ-2ρcos θ. 所以曲线C 的直角坐标方程为x 2+y 2=2y -2x , 标准方程为(x +1)2+(y -1)2=2.曲线C 的极坐标方程化为参数方程为⎩⎪⎨⎪⎧x =-1+2cos φ,y =1+2sin φ(φ为参数).(2)当α=π4时,直线l 的方程为⎩⎨⎧x =-2+22t ,y =22t ,化成普通方程为y =x +2.由⎩⎪⎨⎪⎧ x 2+y 2=2y -2x ,y =x +2,解得⎩⎪⎨⎪⎧ x =0,y =2或⎩⎪⎨⎪⎧x =-2,y =0. 所以直线l 与曲线C 交点的极坐标分别为(2,π2),(2,π).18.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,已知曲线C 1上的点M (2,3)对应的参数φ=π3,射线θ=π4与曲线C 2交于点D (2,π4).(1)求曲线C 1,C 2的普通方程;(2)已知A (ρ1,θ),B (ρ2,θ+π2)是曲线C 1上的两点,求1ρ21+1ρ22的值.答案 (1)C 1:x 216+y 24=1,C 2:(x -1)2+y 2=1(2)516解析 (1)将M (2,3)及对应的参数φ=π3代入⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),得⎩⎨⎧2=a cos π3,3=b sin π3,解得⎩⎪⎨⎪⎧a =4,b =2.∴曲线C 1的方程为x 216+y 24=1.设圆C 2的半径为r ,则圆C 2的方程为ρ=2r cos θ, 将点D (2,π4)代入得2=2r ·22,∴r =1.∴圆C 2的方程为(x -1)2+y 2=1.(2)将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 1:x 216+y 24=1得极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A (ρ1,θ),B (ρ2,θ+π2)代入,得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1, ∴1ρ21+1ρ22=(cos 2θ16+sin 2θ4)+(sin 2θ16+cos 2θ4)=516.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.答案 3解析 由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为x 29+y 24=1,所以其右顶点为(3,0).由题意知0=3-a ,解得a =3.40670 9EDE 點ct35758 8BAE 议 ?34950 8886 袆Q30485 7715 眕36120 8D18 贘b38799978F 鞏35843 8C03 调27190 6A36 樶30316 766C 癬。

2021高考理科数学(人教A版)一轮复习单元质检卷九解析几何

2021高考理科数学(人教A版)一轮复习单元质检卷九解析几何

单元质检卷九 解析几何(时间:100分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019山西芮城模拟,6)点P (2,3)到直线l :ax+y-2a=0的距离为d ,则d 的最大值为( )A.3B.4C.5D.72.(2019云南师范大学附中模拟,8)直线l 与双曲线x 2-y 22=1交于A ,B 两点,以AB 为直径的圆C 的方程为x 2+y 2+2x+4y+m=0,则m=( ) A.-3B.3C.5-2√2D.2√23.(2019湖南湖北八市十二校一调联考,8)已知抛物线C :y 2=2px (p>0)的焦点为F ,过点F 的直线l 与抛物线C 交于A 、B 两点,且直线l 与圆x 2-px+y 2-34p 2=0交于C 、D 两点.若|AB|=2|CD|,则直线l 的斜率为( )A.±√22 B.±√32C.±1D.±√24.(2019江西名校(临川一中、南昌二中)2019联考,7)阿波罗尼斯(约公元前262—190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k>0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P 满足|PA ||PB |=√2,当P 、A 、B 不共线时,三角形PAB 面积的最大值是( ) A.2√2B.√2C.2√23 D.√235.设F 1、F 2是双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点,A 为左顶点,点P 为双曲线C 右支上一点,|F 1F 2|=10,PF 2⊥F 1F 2,|PF 2|=163,O 为坐标原点,则OA⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ = ( )A.-293B.163C.15D.-156.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为()A.114B.5√54C.4120D.57.(2019山东青岛调研,11)已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1C.2D.48.(2019福建宁德质检,8)如图,点F是抛物线C:x2=4y的焦点,点A,B分别在抛物线C和圆x2+(y-1)2=4的实线部分上运动,且AB总是平行于y轴,则△AFB周长的取值范围是()A.(3,6)B.(4,6)C.(4,8)D.(6,8)9.(2019黑龙江齐齐哈尔市二模,9)已知椭圆E:x 22+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,过F1作垂直x轴的直线交椭圆E于A,B两点,点A在x轴上方.若|AB|=3,△ABF2的内切圆的面积为9π,则直线AF2的方程是()A.3x+2y-3=0B.2x+3y-2=0C.4x+3y-4=0D.3x+4y-3=010.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为()A.√2+12B.√2+1 C.√5-12D.√5-111.(2019四川南充三模,8)已知直线x+y=1与椭圆x 2a2+y 2b2=1(a>b>0)交于P ,Q 两点,且OP ⊥OQ (其中O 为坐标原点),若椭圆的离心率e 满足√33≤e ≤√22,则椭圆长轴的取值范围是( )A.[√5,√6]B.√52,√62C.54,32D.52,312.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3B.2√2C.√5D.2二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 过点P (3,2),且与x 轴的正半轴、y 轴的正半轴分别交于A ,B 两点,当△AOB 的面积取最小值时,直线l 的方程为 .14.(2019河北唐山摸底)已知直线l :kx-y-k+2=0与圆C :x 2+y 2-2y-7=0相交于A ,B 两点,则|AB|的最小值为 .15.已知抛物线C :y 2=2px (p>0)的焦点为F ,准线为l ,过点F 斜率为√3的直线l'与抛物线C 交于点M (M 在x 轴的上方),过M 作MN ⊥l 于点N ,连接NF 交抛物线C 于点Q ,则|NQ ||QF |= .16.(2019四川成都棠湖中学开学考试,16)已知F 是椭圆C :x 225+y 216=1的右焦点,P 是椭圆上一点,A 0,365,当△APF 周长最大时,该三角形的面积为 .三、解答题(本大题共5小题,共70分)17.(14分)(2019安徽滁州模拟,18)已知圆O :x 2+y 2=r 2(r>0)与直线3x-4y+15=0相切. (1)若直线l :y=-2x+5与圆O 交于M ,N 两点,求|MN|;(2)已知A (-9,0),B (-1,0),设P 为圆O 上任意一点,证明:|PA ||PB |为定值.18.(14分)(2019河南洛阳模拟,20)已知椭圆x 2a2+y2b2=1(a>b>0)的离心率e=√33,左、右焦点分别为F1,F2,且F2与抛物线y2=4x的焦点重合.(1)求椭圆的标准方程;(2)若过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,求|AC|+|BD|的最小值.19.(14分)(2019湖南益阳,20)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.20.(14分)(2019江西宜春模拟,20)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√32,点-√3,12在椭圆上,A,B分别为椭圆C的上、下顶点,点M(t,2)(t≠0).(1)求椭圆C的方程;(2)若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.21.(14分)(2019河北衡水模拟,20)已知椭圆C:x 22+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为1,点P在椭圆C上,且△PF1F2的面积的最大值为2√2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,若在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.参考答案单元质检卷九解析几何1.A直线方程即y=-a(x-2),据此可知直线恒过定点M(2,0),当直线l⊥PM时,d有最大值,结合两点之间距离公式可得d的最大值为√(2-2)2+(3-0)2=3.故选A.2.A 设A (x 1,y 1),B (x 2,y 2),根据圆的方程可知C (-1,-2),C 为AB 的中点,根据双曲线中点差法的结论k AB =b 2a 2×x 0y 0=21×-1-2=1,由点斜式可得直线AB 的方程为y=x-1,将直线AB 方程与双曲线方程联立{x 2-y22=1,y =x -1,解得{x =-3,y =-4,或{x =1,y =0,所以|AB|=4√2,由圆的直径|AB|=√D 2+E 2-4F =√22+42-4m =4√2,可解得m=-3,故选A .3.C 由题设可得x-p22+y 2=p 2,故圆心在焦点上,故CD=2p ,AB=4p ,设直线l 的方程为x=ty+p2,设A (x 1,y 1)B (x 2,y 2)代入y 2=2px (p>0)得y 2-2pty-p 2=0,所以y 1+y 2=2pt ,y 1y 2=-p 2,则AB=√(1+t 2)(4p 2t 2+4p 2)=2p (1+t 2)=4p ,即1+t 2=2,解得t=±1.故选C.4.A 以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0),B (1,0),设P (x ,y ),∵|PA ||PB |=√2,∴√(x+1)2+y 2√(x -1)+y 2=√2,两边平方并整理得x 2+y 2-6x+1=0,即(x-3)2+y 2=8,当点P 到AB (x 轴)的距离最大时,三角形PAB 的面积最大,此时面积为12×2×2√2=2√2,故选A .5.D 由题得{a 2+b 2=25,b2a=163,∴a=3,b=4.所以双曲线的方程为x 29−y 216=1,所以点P 的坐标为5,163或5,-163,所以OA ⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗ =(-3,0)·5,±163=-15.故选D.6.C 圆的内接四边形对角互补,因为x 轴与y 轴垂直,所以2x+y-4=0与x+ky-3=0垂直.所以2×1+1×k=0,解得k=-2,直线2x+y-4=0与坐标轴的交点为(2,0),(0,4),x-2y-3=0与坐标轴的交点为0,-32,(3,0),两直线的交点纵坐标为-25.所以四边形的面积为12×3×32−12×1×25=4120,故选C.7.C ∵M ,N 分别是PQ ,PF 的中点,∴MN ∥FQ ,且PQ ∥x 轴,∵∠NRF=60°,∴∠FQP=60°,由抛物线定义知,|PQ|=|PF|,∴△FQP 为正三角形,则FM ⊥PQ ⇒QM=p=2,正三角形边长为4,PQ=4,FN=12PF=2,又可得△FRN 为正三角形,∴FR=2,故选C.8.B 抛物线x 2=4y 的焦点为(0,1),准线方程为y=-1,圆(y-1)2+x 2=4的圆心为(0,1),与抛物线的焦点重合,且半径r=2,∴|FB|=2,|AF|=y A +1,|AB|=y B -y A ,∴三角形ABF 的周长=2+y A +1+y B -y A =y B +3,∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选B . 9.D 设内切圆半径为r ,则πr 2=9π16,∴r=34,∵F 1(-c ,0),∴内切圆圆心为-c+34,0,由|AB|=3知A -c ,32,又F 2(c ,0),所以AF 2方程为3x+4cy-3c=0,由内切圆圆心到直线AF 2距离为r ,即|3(-c+34)-3c|√3+(4c )=34,得c=1,所以AF 2方程为3x+4y-3=0,故选D .10.B 过点P 作准线的垂线,垂足为N ,则由抛物线的定义可得|PN|=|PB|.∵|PA|=m|PB|, ∴|PA|=m|PN|.∴1m =|PN ||PA |. 设直线PA 的倾斜角为α,则sin α=1m .当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切.设直线PA 的方程为y=kx-1,代入x 2=4y ,可得x 2=4(kx-1),即x 2-4kx+4=0,∴Δ=16k 2-16=0,∴k=±1, ∴P (2,1)或P (-2,1).∴双曲线的实轴长为|PA|-|PB|=2(√2-1), ∴双曲线的离心率为√2-1=√2+1. 故选B .11.A 联立{x +y =1,x 2a 2+y 2b2=1,得(a 2+b 2)x 2-2a 2x+a 2-a 2b 2=0,设P (x 1,y 1),Q (x 2,y 2),∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0,化为a 2+b 2>1. 则x 1+x 2=2a 2a 2+b2,x 1x 2=a 2-a 2b 2a 2+b2.∵OP ⊥OQ ,∴OP ⃗⃗⃗⃗⃗ ·OQ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(x 1-1)(x 2-1)=2x 1x 2-(x 1+x 2)+1=0, ∴2×a 2-a 2b 2a 2+b2−2a 2a 2+b2+1=0.化简得a 2+b 2=2a 2b 2.∴b2=a 22a 2-1.∵椭圆的离心率e 满足√33≤e ≤√22,∴13≤e 2≤12, ∴13≤a 2-b 2a 2≤12,13≤1-12a 2-1≤12,化为5≤4a 2≤6,解得√5≤2a ≤√6.满足Δ>0.∴椭圆长轴的取值范围是[√5,√6].故选A .12.A 建立如图所示的平面直角坐标系,则A (0,1),B (0,0),D (2,1).设P (x ,y ),圆C 的半径为r ,由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=√5=2√55,即圆的方程是(x-2)2+y 2=45.易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0). 由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +λAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P (x ,y )在圆(x-2)2+y 2=45上,所以圆心C 到直线12x-y+1-z=0的距离d ≤r , 即√14+1≤2√55,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3,故选A .13.2x+3y-12=0 方法1:易知直线l 的斜率k 存在且k<0,则直线l 的方程为y-2=k (x-3)(k<0),则A 3-2k ,0,B (0,2-3k ),所以S △AOB =12(2-3k )3-2k =1212+(-9k )+4-k ≥1212+2√(-9k )·4-k =12×(12+2×6)=12,当且仅当-9k=4-k ,即k=-23时等号成立.所以当k=-23时,△AOB 的面积最小,此时直线l 的方程为y-2=-23(x-3),即2x+3y-12=0.方法2:设直线l的方程为xa+yb=1(a>0,b>0),将点P(3,2)代入得3a+2b=1≥2√6ab,即ab≥24,当且仅当3a =2b,即a=6,b=4时等号成立,又S△AOB=12ab,所以当a=6,b=4时△AOB的面积最小,此时直线l的方程为x6+y4=1,即2x+3y-12=0.14.2√6kx-y-k+2=0,化为y-2=k(x-1),直线过定点E(1,2),E(1,2)在圆x2+y2-2y-7=0内,当E 是AB中点时,|AB|最小,由x2+y2-2y-7=0得x2+(y-1)2=8,圆心C(0,1),半径2√2,|AB|=2√8-|EC|2=2√8-2=2√6,故答案为2√6.15.2由抛物线定义可得MF=MN,又斜率为√3的直线l'倾斜角为π3,MN⊥l,所以∠NMF=π3,即三角形MNF为正三角形,因此NF倾斜角为2π3,由{y2=2px,y=-√3(x-p2),解得x=p6或x=3p2(舍),即x Q=p6,|NQ||QF|=p6-(-p2)p2-p6=2.16.1445由x225+y216=1得右焦点F(3,0),左焦点F'(-3,0),△APF周长|AF|+|AP|+|PF|=|AF|+|AP|+2a-|PF'|≤10+(|AF|+|AF'|),当A,P,F'共线时△APF周长最大,此时直线AF'方程为x-3+y365=1,与x225+y216=1联立,解得y P=-125,可得S△APF=12|FF'|(y A-y P)=12×6×365+125=1445,故答案为1445.17.(1)解由题意知,圆心O到直线3x-4y+15=0的距离d=√9+16=3, ∵圆O与直线相切,∴r=d=3,∴圆O方程为x2+y2=9.圆心O到直线l:y=-2x+5的距离d1=√4+1=√5,∴|MN|=2√9-d12=4.(2)证明 设P (x 0,y 0),则x 02+y 02=9,∴|PA |=√(x +9)2+y 2√(x 0+1)+y 0=√x 2+18x 0+81+y 2√x 0+2x 0+1+y 0=√18x 0+902x 0+10=3,即|PA ||PB |为定值3.18.解 (1)抛物线y 2=4x 的焦点为(1,0),所以c=1,又因为e=c a=1a=√33,所以a=√3,所以b2=2,所以椭圆的标准方程为x 23+y 22=1.(2)(i)当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y=k (x+1),代入椭圆方程x 23+y 22=1,并化简得(3k 2+2)x 2+6k 2x+3k 2-6=0. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k23k 2+2,x 1x 2=3k 2-63k 2+2,|BD|=2·|x 1-x 2|=√(1+k 2)·[(x 1+x 2)2-4x 1x 2]=4√3(k 2+1)3k 2+2.易知AC 的斜率为-1k ,所以|AC|=4√3(1k 2+1)3×1k2+2=4√3(k 2+1)2k 2+3.所以|AC|+|BD|=4√3(k 2+1)13k 2+2+12k 2+3=20√3(k 2+1)2(3k 2+2)(2k 2+3)≥20√3(k 2+1)2[(3k 2+2)+(2k 2+3)2]2 =20√3(k 2+1)225(k 2+1)24=16√35.当k 2=1,即k=±1时,上式取等号,故|AC|+|BD|的最小值为16√35. (ii)当直线BD 的斜率不存在或等于零时,易得|AC|+|BD|=10√3>16√3. 综上,|AC|+|BD|的最小值为16√35.19.解 (1)由抛物线的定义可知,|MF|=m+p2=2,①又M (2,m )在抛物线上,所以2pm=4,② 由①②联立解得p=2,m=1, 所以抛物线C 的方程为x 2=4y.(2)①当x 0=0,即点P 为原点时,易知点Q 在直线y=0上;②当x 0≠0,即点P 不在原点时, 由(1)得,x 2=4y ,则y'=12x ,所以在点P 处的切线的斜率为12x 0,所以在点P 处的切线l 0的方程为y-y 0=12x 0(x-x 0),又x 02=4y 0,所以y=12x 0x-y 0.又过点F 与切线l 0垂直的方程为y-1=-2x 0x ,联立方程{y =12x 0x -y 0,y -1=-2x 0x ,消去x ,得y=-14(y-1)x 02-y 0.(*)因为x 02=4y 0,所以(*)可化为y=-yy 0,即(y 0+1)y=0, 由y 0>0,可知y=0,即垂足Q 必在x 轴上. 所以点Q 必在直线y=0上, 综上,点Q 必在直线y=0上.20.(1)解 由题意知{ ca =√32,32+14b 2=1,a 2=b 2+c 2,解得{a =2,b =1,c =√3,所以椭圆C 的方程为x 24+y 2=1. (2)证明 易知A (0,1),B (0,-1),则直线MA 的方程为y=1x+1,直线MB 的方程为y=3x-1.联立{y =1t x +1,x 24+y 2=1,得4t 2+1x 2+8t x=0,于是x P =-8t t 2+4,y P =t 2-4t 2+4, 同理可得x Q =24t t 2+36,y Q =36-t 2t 2+36,又由点M (t ,2)(t ≠0)及椭圆的对称性可知定点在y 轴上,设为N (0,n ),则直线PN 的斜率k 1=t 2-4t 2+4-n -8t t 2+4,直线QN 的斜率k 2=36-t 2t 2+36-n 24t t 2+36,令k 1=k 2,则t 2-4t 2+4-n -8tt 2+4=36-t 2t 2+36-n 24t t 2+36,化简得t 2-4-n (t 2+4)-8t=36-t 2-n (t 2+36)24t,解得n=12,所以直线PQ 过定点0,12.21.解 (1)由已知得{ c a =13,12×2c×b =2√2,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1,∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E (x 0,y 0),点G (m ,0),使得|GM|=|GN|, 则GE ⊥MN. 由{y =kx +2,x 29+y 28=1,消y 得(8+9k 2)x 2+36kx-36=0,由Δ>0,得k ∈R .∴x 1+x 2=-36k 9k 2+8,∴x 0=-18k9k 2+8,y 0=kx 0+2=169k 2+8.∵GE ⊥MN ,∴k GE =-1k ,即169k 2+8-0-18k 9k 2+8-m =-1k , ∴m=-2k 9k 2+8=-29k+8k. 当k>0时,9k+8k ≥2√9×8=12√2当且仅当9k=8k ,即k=2√23时,取等号,∴-√212≤m<0;当k<0时,9k+8k ≤-12√2当且仅当9k=8k ,即k=-2√23时,取等号,∴0<m ≤√212,∴点G 的横坐标的取值范围为-√212,0∪0,√212.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.

2021届高考一轮复习理科数学综合检测题(全国卷)附答案解析

2021届高考一轮复习理科数学综合检测题(全国卷)附答案解析

2021届高考一轮复习综合检测一(全国卷)数 学(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2-xx >0,B ={x |x ≥1},则A ∩B 等于( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}2.(2019·湖南省桃江县第一中学模拟)复平面内表示复数z =6+2i2-i 的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.(2019·四川省成都市外国语学校期中)函数f (x )=log121x +1的图象大致是( )4.如图,在△OAB 中, P 为线段AB 上的一点, OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =145.若m =log 312,n =7-0.1,p =log 425,则m ,n ,p 的大小关系为( )A .m >p >nB .p >n >mC .p >m >nD .n >p >m6.阅读如图所示的程序框图,运行相应的程序,则输出的S 的值为( )A .15B .37C .83D .1777.在公比为q 的正项等比数列{a n }中,a 4=1,则当2a 2+a 6取得最小值时,log 2q 等于( ) A.14 B .-14 C.18 D .-188.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为( )A.332πB.33π2C.322πD.3π29.如图,长方体ABCD —A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°,那么异面直线AD 1与DC 1所成角的余弦值是( )A.28B.38C.24D.3410.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,且a sin 2B +b sin A =0,若a +c =2,则边b 的最小值为( ) A. 2 B .3 3 C .2 3 D.311.已知直线l 的倾斜角为45°,直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右两支分别交于M ,N 两点,且MF 1,NF 2都垂直于x 轴(其中F 1,F 2分别为双曲线C 的左、右焦点),则该双曲线的离心率为( ) A. 3 B. 5 C.5-1 D.5+1212.(2020·四川省遂宁市射洪县射洪中学月考)已知函数f (x )=x ln x +ax +3,g (x )=x 3-x 2,若∀x 1,x 2∈⎣⎡⎦⎤13,2,f (x 1)-g (x 2)≥0,则实数a 的取值范围为( ) A .[4,+∞) B .[3,+∞) C .[2,+∞) D .[1,+∞)第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (a )=-1成立的a 的值是________.14.(2x +x )4的展开式中x 3的系数是________.15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为________. 16.已知函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝⎛⎭⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)设b n =(-1)n a n ,求数列{b n }前2 020项的和.18.(12分)如图,在五边形ABSCD中,四边形ABCD为长方形,△SBC为边长为2的正三角形,将△SBC沿BC折起,使得点S在平面ABCD上的射影恰好在AD上.(1)当AB=2时,证明:平面SAB⊥平面SCD;(2)若AB=1,求平面SCD与平面SBC所成二面角的余弦值的绝对值.19.(12分)某工厂欲购买软件服务,有如下两种方案:方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.(1)设日收费为y元,每天软件服务的次数为x,试写出两种方案中y与x的函数关系式;(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.20.(12分)(2019·甘青宁联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,焦距为2 3.(1)求C 的方程;(2)若斜率为-12的直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点.证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.21.(12分)已知函数f (x )=ln x ,g (x )=x -1.(1)当k 为何值时,直线y =g (x )是曲线y =kf (x )的切线; (2)若不等式g (x )≥af (x )在[1,e]上恒成立,求a 的取值范围.请在第22~23题中任选一题作答.22.(10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6cos θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(2,1),求|P A |+|PB |的最小值.23.(10分)设函数f (x )=|2x -a |+|x +a |(a >0). (1)当a =1时,求f (x )的最小值;(2)若关于x 的不等式f (x )<5x +a 在x ∈[1,2]上有解,求实数a 的取值范围.解析附后答案精析1.C [由集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2-xx >0,可知A ={x |0<x <2},因为B ={x |x ≥1},所以A ∩B ={}x |1≤x <2,故选C.] 2.A [∵z =6+2i 2-i =(6+2i )(2+i )(2-i )(2+i )=10+10i5=2+2i ,∴z 在复平面内对应的点(2,2)在第一象限.]3.D [函数定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1x +1>0,即{x |x >-1},所以排除A ,B 选项;因为f (x )=log 12x为单调递减函数,f (x )=1x +1在[-1,+∞)时为单调递减函数,由复合函数单调性可知f (x )=log 121x +1为单调递增函数,所以排除C 选项.综上可知,D 为正确选项.]4.A [由题可知OP →=OB →+BP →, 又BP →=2P A →,所以OP →=OB →+23B A →=OB →+23(OA →-OB →)=23O A →+13 OB →,所以x =23,y =13,故选A.]5.B [log 312∈(-1,0),7-0.1∈(0,1),log 425=log 25∈(2,3),故p >n >m .]6.B [执行程序,可得S =0,i =1,不符合,返回循环;S =2×0+1=1,i =3,不符合,返回循环; S =2×1+3=5,i =5,不符合,返回循环; S =2×5+5=15,i =7,不符合,返回循环; S =2×15+7=37,i =9,符合,输出S =37. 故选B.]7.A [2a 2+a 6≥22a 2a 6=22a 24=22,当且仅当q 4=2时取等号,所以log 2q =log 2214=14,故选A.]8.A [设圆的半径为r ,则圆的面积S 圆=πr 2,正六边形的面积S正六边形=6×12×r 2×sin60°=332r 2,所以向圆中随机投掷一个点,该点落在正六边形内的概率P =S 正六边形S 圆=332r 2πr 2=332π,故选A.]9.C [由长方体∠DAD 1=45°,∠CDC 1=30°, 设AD =DD 1=1,CD = 3.连接BC 1,BD .由AD 1∥BC 1,所以异面直线AD 1与DC 1所成的角等于∠BC 1D . 在△BDC 1中,BC 1=2,BD =2,C 1D =2, 由余弦定理可得cos ∠BC 1D =C 1D 2+BC 21-BD22C 1D ·BC 1=22+2-222×2×2=24,所以异面直线AD 1与DC 1所成角的余弦值是24.] 10.D [根据a sin 2B +b sin A =0,由正弦定理可得sin A sin 2B +sin B sin A =0⇒cos B =-12,∵0<B <π,∴B =2π3, A +C =π3.由余弦定理可得b 2=a 2+c 2-2ac ·cos B =a 2+c 2+ac =(a +c )2-ac =4-ac . ∵a +c =2≥2ac ,当且仅当a =c =1时取等号, ∴ac ≤1 .∴b 2=4-ac ≥3, 即b ≥ 3. 故边b 的最小值为 3.]11.D [∵直线l 与双曲线的左、右两支分别交于M ,N 两点,且MF 1,NF 2都垂直于x 轴, ∴根据双曲线的对称性,设点M (-c ,-y ),N (c ,y )(y >0),则c 2a 2-y 2b 2=1,即|y |=c 2-a 2a ,且|MF 1|=|NF 2|=|y |, 又∵直线l 的倾斜角为45°, ∴直线l 过坐标原点,|y |=c , ∴ c 2-a 2a =c ,整理得c 2-ac -a 2=0,即e 2-e -1=0,解方程得e =5+12,e =1-52(舍).] 12.D [由题意知,对于∀x 1,x 2∈⎣⎡⎦⎤13,2,f (x 1)-g (x 2)≥0,可得f (x )在⎣⎡⎦⎤13,2上的最小值不小于g (x )在⎣⎡⎦⎤13,2上的最大值, 由g (x )=x 3-x 2,则g ′(x )=3x 2-2x =3x ⎝⎛⎭⎫x -23, 可得当x ∈⎣⎡⎭⎫13,23时,g ′(x )<0,g (x )单调递减,当x ∈⎝⎛⎦⎤23,2时,g ′(x )>0,g (x )单调递增,又由g ⎝⎛⎭⎫13=-227,g (2)=4, 即g (x )在区间⎣⎡⎦⎤13,2上的最大值为4, 所以f (x )=x ln x +ax +3≥4在⎣⎡⎦⎤13,2上恒成立, 即a ≥x -x 2ln x 在⎣⎡⎦⎤13,2上恒成立, 令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤13,2, 则h ′(x )=1-2x ln x -x ,令p (x )=1-2x ln x -x ,则p ′(x )=-3-2ln x , 当x ∈⎣⎡⎦⎤13,2时,p ′(x )<0,函数p (x )单调递减, 即h ′(x )在⎣⎡⎦⎤13,2上单调递减,又由h ′(1)=0,所以h ′(x )在⎣⎡⎭⎫13,1上大于0,在(1,2]上小于0, 所以h (x )在⎣⎡⎭⎫13,1上单调递增,在(1,2]上单调递减, 所以h (x )在⎣⎡⎦⎤13,2上的最大值为h (1)=1,所以a ≥1.] 13.-4或2解析 f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0, f (a )=-1,当a ≤0时,f (a )=12a +1=-1,解得a =-4,当a >0 时,f (a )=-(a -1)2=-1,解得a =2. 14.24解析 (2x +x )4的展开式的通项公式为T k +1=C k 4(2x )4-k (x )k =C k 424-k x 4-k 2,令4-k 2=3,解得k =2,故x 3的系数为C 2422=24.15.8π解析 作出圆柱与其外接球的轴截面如图,设圆柱的底面圆半径为r ,则BC =2r ,所以轴截面的面积为S 正方形ABCD =(2r )2=4,解得r =1,因此,该圆柱的外接球的半径 R =BD2=22+222=2,所以球的表面积为S =4π(2)2=8π. 16.π3解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2,又对任意的x ,都使得f (x )≥f ⎝⎛⎭⎫π3,所以2π3+φ=π+2k π,k ∈Z ,即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝⎛⎭⎫2x +π3, 令2k π≤2x +π3≤π+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎡⎦⎤0,π3上单调递减, 故a 的最大值是π3.17.解 (1)设等差数列{a n }的公差为d (d ≠0),则⎩⎪⎨⎪⎧a 1=25,a 211=a 1·a 13,即⎩⎪⎨⎪⎧a 1=25,(a 1+10d )2=a 1(a 1+12d ), 解得⎩⎪⎨⎪⎧a 1=25,d =-2,∴{a n }的通项公式为a n =27-2n (n ∈N *). (2){b n }的前2 020项的和S 2 020=b 1+b 2+b 3+b 4+…+b 2 019+b 2 020=(a 2-a 1)+(a 4-a 3)+…+(a 2 018-a 2 017)+ (a 2 020-a 2 019)=(-2)×2 0202=-2 020.18.(1)证明 作SO ⊥AD ,垂足为O ,依题意得SO ⊥平面ABCD , ∴SO ⊥AB ,SO ⊥CD ,又AB ⊥AD ,SO ∩AD =O ,SO ,AD ⊂平面SAD , ∴AB ⊥平面SAD ,∴AB ⊥SA ,AB ⊥SD .利用勾股定理得SA =SB 2-AB 2=4-2=2, 同理可得SD = 2.在△SAD 中,AD =2,SA =SD =2,SA 2+SD 2=AD 2, ∴SA ⊥SD ,又SA ∩AB =A ,SA ,AB ⊂平面SAB ,∴SD ⊥平面SAB , 又SD ⊂平面SCD ,∴平面SAB ⊥平面SCD .(2)解 连接BO ,CO ,∵SB =SC ,∴Rt △SOB ≌Rt △SOC , ∴BO =CO ,又四边形ABCD 为长方形, ∴Rt △AOB ≌Rt △DOC ,∴OA =OD .取BC 中点为E ,连接OE ,得OE ∥AB ,连接SE , ∴SE =3,其中OE =1,OA =OD =1,OS =3-12=2,由以上证明可知OS ,OE ,AD 互相垂直,不妨以直线OA ,OE ,OS 为x ,y ,z 轴建立空间直角坐标系.∴O (0,0,0),D (-1,0,0),C (-1,1,0),S (0,0,2),B (1,1,0), ∴DC →=(0,1,0),SC →=(-1,1,-2), BC →=(-2,0,0),设m =(x 1,y 1,z 1)是平面SCD 的法向量, 则有⎩⎪⎨⎪⎧m ·DC →=0,m ·SC →=0,即⎩⎨⎧y 1=0,-x 1+y 1-2z 1=0,令z 1=1得m =(-2,0,1),设n =(x 2,y 2,z 2)是平面SBC 的法向量, 则有⎩⎪⎨⎪⎧n ·BC →=0,n ·SC →=0,即⎩⎨⎧-2x 2=0,-x 2+y 2-2z 2=0,令z 1=1得n =(0,2,1). 则|cos 〈m ,n 〉|=|m ·n ||m ||n |=13×3=13, 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13.19.解 (1)由题可知,方案一中的日收费y 与x 的函数关系式为 y =10x +60,x ∈N ,方案二中的日收费y 与x 的函数关系式为y =⎩⎪⎨⎪⎧200,x ≤15,x ∈N ,20x -100,x >15,x ∈N . (2)设方案一中的日收费为X ,由条形图可得X 的分布列为所以E (X )=190×0.1+200×0.4+210×0.1+220×0.2+230×0.2=210. 方案二中的日收费为Y ,由条形图可得Y 的分布列为E (Y )=200×0.6+220×0.2+240×0.2=212. 所以从节约成本的角度考虑,选择方案一.20.(1)解 由题意可得⎩⎪⎨⎪⎧c a =32,2c =23,解得⎩⎨⎧a =2,c =3,又b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明 设直线l 的方程为y =-12x +m ,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2(m 2-1)=0,则Δ=4m 2-8(m 2-1)=4(2-m 2)>0, 且x 1+x 2=2m >0,x 1x 2=2(m 2-1)>0, 故y 1y 2=⎝⎛⎭⎫-12x 1+m ⎝⎛⎭⎫-12x 2+m =14x 1x 2-12m (x 1+x 2)+m 2=m 2-12,k OP k OQ =y 1y 2x 1x 2=m 2-122(m 2-1)=14=k 2PQ,即直线OP ,PQ ,OQ 的斜率依次成等比数列.21.解 (1)令n (x )=kf (x )=k ln x ,n ′(x )=kx ,设切点为(x 0,y 0),则kx 0=1,x 0-1=k ln x 0,则ln k +1k=1.令F (x )=ln x +1x ,F ′(x )=1x -1x 2=x -1x2,则函数y =F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且F (1)=1,所以k =1. (2)令h (x )=af (x )-g (x )=a ln x -x +1, 则h ′(x )=a x -12x =2a -x 2x ,①当a ≤0时,h ′(x )<0,所以函数h (x )在[1,e]上单调递减, 所以h (x )≤h (1)=0,所以a ≤0满足题意. ②当a >0时,令h ′(x )=0,得x =4a 2, 所以当x ∈(0,4a 2)时,h ′(x )>0, 当x ∈(4a 2,+∞)时,h ′(x )<0.所以函数h (x )在(0,4a 2)上单调递增,在(4a 2,+∞)上单调递减. (ⅰ)当4a 2≥e ,即a ≥e2时,h (x )在[1,e]上单调递增, 所以h (x )≤h (e)=a -e +1≤0, 所以a ≤e -1,此时无解.(ⅱ)当1<4a 2<e ,即12<a <e2时,函数h (x )在(1,4a 2)上单调递增,在(4a 2,e)上单调递减.所以h (x )≤h (4a 2)=a ln(4a 2)-2a +1=2a ln(2a )-2a +1≤0. 设m (x )=2x ln(2x )-2x +1⎝⎛⎭⎫12<x <e2,则m ′(x )=2ln(2x )>0,所以m (x )在⎝⎛⎭⎫12,e2上单调递增,m (x )>m ⎝⎛⎭⎫12=0,不满足题意.(ⅲ)当0<4a 2≤1,即0<a ≤12时,h (x )在[1,e]上单调递减,所以h (x )≤h (1)=0,所以0<a ≤12满足题意.综上所述,a 的取值范围为⎝⎛⎦⎤-∞,12.22.解 (1)由ρ=6cos θ得ρ2=6ρcos θ,化为直角坐标方程为x 2+y 2=6x ,即(x -3)2+y 2=9. (2)将直线l 的参数方程代入圆C 的直角坐标方程, 得t 2+2(sin α-cos α)t -7=0. 由Δ=4(sin α-cos α)2+4×7>0, 故可设t 1,t 2是上述方程的两根, 所以t 1+t 2=2(cos α-sin α),t 1t 2=-7, 又由直线过点(2,1),故结合参数的几何意义得|P A |+|PB |=|t 1|+|t 2|=|t 1-t 2|=4(sin α-cos α)2+28=32-4sin 2α≥27,当sin 2α=1时取等号.所以|P A |+|PB |的最小值为27.23.解 (1)当a =1时,f (x )=|2x -1|+|x +1|=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x -12+|x +1|≥0+⎪⎪⎪⎪⎝⎛⎭⎫x -12-(x +1)=32, 当且仅当x =12时取等号.故f (x )的最小值为12.(2)当x ∈[1,2]时,f (x )<5x+a ,则|2x -a |+x +a <5x +a ,即|a -2x |<5x -x ,即3x -5x <a <x +5x,因为x ∈[1,2]时,3x -5x 的最小值为-2,x +5x 的最大值为6,所以-2<a <6,又因为a >0,所以0<a <6. 所以a 的取值范围为(0,6).。

2021年高考数学一轮复习 题组层级快练9(含解析)

2021年高考数学一轮复习 题组层级快练9(含解析)

2021年高考数学一轮复习 题组层级快练9(含解析)1.下列函数中值域为正实数的是( )A .y =-5xB .y =(13)1-xC .y =12x-1D .y =3|x |答案 B解析 ∵1-x ∈R ,y =(13)x的值域是正实数,∴y =(13)1-x的值域是正实数.2.已知f (x )=2x +2-x,若f (a )=3,则f (2a )等于( ) A .5 B .7 C .9 D .11答案 B解析 ∵f (x )=2x +2-x ,f (a )=3,∴2a +2-a=3. ∴f (2a )=22a+2-2a=(2a +2-a )2-2=9-2=7.3.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是( ) A .1<|a |<2 B .|a |<1 C .|a |> 2 D .|a |< 2答案 C4.(xx·成都二诊)若函数f (x )=(a +1e x-1)cos x 是奇函数,则常数a 的值等于( ) A .-1 B .1 C .-12D.12答案 D5.(xx·唐山一中模拟)函数y =(12)x+1的图像关于直线y =x 对称的图像大致是( )答案 A解析 函数y =(12)x+1的图像如图所示,关于y =x 对称的图像大致为A 选项对应图像.6.若函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定答案 A解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 7.函数f (x )=3·4x -2x在x ∈[0,+∞)上的最小值是( ) A .-112B .0C .2D .10答案 C解析 设t =2x,∵x ∈[0,+∞),∴t ≥1. ∵y =3t 2-t (t ≥1)的最小值为2, ∴函数f (x )的最小值为2.8.(xx·山东师大附中)集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x+1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R答案 B9.在同一个坐标系中画出函数y =a x,y =sin ax 的部分图像,其中a >0且a ≠1,则下列所给图像中可能正确的是( )答案 D解析 若a >1,则y =a x 是增函数,且y =sin ax 的周期T =2πa<2π;若0<a <1,则y =a x是减函数,且y =sin ax 的周期T =2πa>2π.10.(xx·四川绵阳一诊)计算:23×31.5×612=________. 答案 6解析 原式=2×312×(32)13×1216=2×312×313×2-13×316×213=2×312+13+16×2-13+13=6.11.若指数函数f (x )=a x在[1,2]上的最大值与最小值的差为a2,则a =________.答案 12或32解析 当a >1时,y =a x 是增函数,∴a 2-a =a 2,∴a =32.当0<a <1时,y =a x 是减函数,∴a -a 2=a 2,∴a =12.12.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 答案 m <n解析 由于0<a <1,所以f (x )是减函数,再由f (m )>f (n )知m <n . 13.若函数y =2-x +1+m 的图像不经过第一象限,则实数m 的取值范围是________.答案 m ≤-214.若0<a <1,0<b <1,且a log b (x -3)<1,则实数x 的取值范围是________. 答案 (3,4)解析 ∵log b (x -3)>0,∴0<x -3<1,∴3<x <4. 15.(xx·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧132x -4, x ≥2,134-2x, x <2.∴单调递减区间为[2,+∞).16.是否存在实数a ,使函数y =a 2x+2a x-1(a >0且a ≠1)在[-1,1]上的最大值是14? 答案 a =3或a =13解析 令t =a x,则y =t 2+2t -1. (1)当a >1时,∵x ∈[-1,1], ∴a x∈[1a ,a ],即t ∈[1a,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a).∴当t =a 时,y max =(a +1)2-2=14. ∴a =3或a =-5.∵a >1,∴a =3. (2)当0<a <1时,t ∈[a ,1a].∵y =(t +1)2-2在[a ,1a]上是增函数,∴y max =(1a+1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13.综上,a =3或a =13.17.(xx·山东济南期末)已知函数f (x )=4x+m2x 是奇函数.(1)求实数m 的值; (2)设g (x )=2x +1-a ,若函数f (x )与g (x )的图像至少有一个公共点,求实数a 的取值范围.答案 (1)m =-1 (2)[2,+∞)解析 (1)由函数f (x )是奇函数可知f (0)=1+m =0,解得m =-1.(2)函数f (x )与g (x )的图像至少有一个公共点,即方程4x-12x =2x +1-a 至少有一个实根,即方程4x -a ·2x+1=0至少有一个实根.令t =2x>0,则方程t 2-at +1=0至少有一个正根. 方法一:由于a =t +1t≥2,∴a 的取值范围为[2,+∞).方法二:令h (t )=t 2-at +1,由于h (0)=1>0,∴只需⎩⎪⎨⎪⎧Δ≥0,a2>0,解得a ≥2.∴a 的取值范围为[2,+∞).18.(xx·烟台上学期期末)已知函数f (x )=2x +k ·2-x,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x成立,求实数k 的取值范围. 答案 (1)k =-1 (2)(0,+∞)解析 (1)∵f (x )=2x +k ·2-x 是奇函数,∴f (-x )=-f (x ),x ∈R ,即2-x +k ·2x =-(2x +k ·2-x).∴(1+k )+(k +1)·22x=0对一切x ∈R 恒成立,∴k =-1.(2)∵x ∈[0,+∞),均有f (x )>2-x,即2x +k ·2-x >2-x 成立,∴1-k <22x 对x ≥0恒成立,∴1-k <(22x)min .∵y =22x在[0,+∞)上单调递增,∴(22x )min =1,∴k >0.∴实数k 的取值范围是(0,+∞).1.在如图中曲线是指数函数y =a x,已知a 的取值为2,43,310,15,则相应于C 1,C 2,C 3,C 4的a 依次为( )A.43,2,15,310 B.2,43,310,15C.310,15,2,43D.15,310,43, 2 答案 A2.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞)答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可.37960 9448 鑈36259 8DA3 趣w28753 7051 灑}N358128BE4 诤33580 832C 茬\25012 61B4 憴34026 84EA 蓪38407 9607 阇40277 9D55 鵕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 12 页阶段复习检测(九) 复数、算法初步、统计与统计案例(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法C [因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.]2.复数z =i -2-i2(i 为虚数单位),z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限A [因为z =i-2-i 2=i4+4i -1=i3+4i =i 3-4i 25=425+325i ,所以z 在复平面内所对应的点⎝ ⎛⎭⎪⎫425, 325在第一象限.] 3.以下四个命题,其中正确的是( )①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y 平均增加0.2个单位;第 2 页 共 12 页 ④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.A .①④B .②④C .①③D .②③D [由系统抽样知识知①是系统抽样,故①错误;由线性相关知识知②③正确;由独立性检验知k 越大,“X 与Y 有关系”的把握程度越大,故④错误.]4.(2016·全国卷Ⅰ)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B . 2C .3D .2B [由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧ x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2.]5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和区间[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45D[由频率分布直方图的知识得一等品的频率为0.06×5=0.3,三等品的频率为0.02×5+0.03×5=0.25,所以二等品的频率为1-(0.3+0.25)=0.45. ]6.(2018·广东肇庆三模)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是( )A.63 B.64C.65 D.66A[由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63. ] 7.(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的S=( )A.7 B.12C.17 D.34C[由框图可知,输入x=2,n=2,a=2,S=2,k=1,不满足条件;a=2,S=4+2=6,k=2,不满足条件;a=5,S=12+5=17,k=3,满足条件,输出S=17.]8.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为第3 页共12 页第 4 页 共 12 页91.现场作的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:89|7 7 4 0 1 0 x 9 1 则7个剩余分数的方差为( ) A .1169B .367C .36D .677B [由题意知去掉一个最高分和一个最低分后,所剩数据为:87,94,90,91,90,90+x,91,∴这组数据的平均数是90+-3+4+0+1+0+x +17=91,得x =4.由方差公式得s 2=17[(-4)2+32+(-1)2+02+(-1)2+32+02]=367.]9.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:优秀 非优秀 总计 A 班 14 6 20 B 班7 13 20 总计211940(1)统计量:K 2=n ad -bc2a +bc +da +cb +d(n =a +b +c +d ).(2)独立性检验的临界值表:P (K 2≥k 0) 0.050 0.010 k 03.8416.635第 5 页 共 12 页则下列说法正确的是( )A .有99%的把握认为环保知识测试成绩与专业有关B .有99%的把握认为环保知识测试成绩与专业无关C .有95%的把握认为环保知识测试成绩与专业有关D .有95%的把握认为环保知识测试成绩与专业无关 C [因为K 2=40×14×13-7×6220×20×21×19≈4.912,3.841<K 2<6.635,所以有95%的把握认为环保知识测试成绩与专业有关.]10.(2016·全国卷Ⅰ)执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5xC [输入x =0,y =1,n =1,则x =0,y =1,不满足x 2+y 2≥36,故n =2; 则x =12,y =2,不满足x 2+y 2≥36,故n =3;则x =32,y =6,满足x 2+y 2≥36,所以y =4x .]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 11.设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =__________.第 6 页 共 12 页-1 [(1+i)(a +i)=a +i +a i +i 2=(a -1)+(a +1)i ,由复数对应点在实轴上得a +1=0,解得a =-1.]12.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理 种子未处理合计 得病 32 101 133 不得病 61 213 274 合计93314407根据以上数据,则种子经过处理与是否生病__________(填“有”或“无”)关. 无 [在假设无关的情况下,根据题意K 2=n ad -bc2a +bc +da +cb +d≈0.16,可以得到无关的概率大于50%,所以种子经过处理跟是否生病有关的概率小于50%,所以可以认为种子经过处理与是否生病无关.]13.执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是__________.s ≤1112 [由程序框图,k 的值依次为0,2,4,6,8,因此s =12+14+16=1112(此时k =6)还必须计算一次,因此可填s ≤1112.]第 7 页 共 12 页14.某企业为了增强自身竞争力,计划对职工进行技术培训,以提高产品的质量.为了解某车间对技术培训的态度与性别的关系,对该车间所有职工进行了问卷调查,利用2×2列联表计算得K 2≈3.918,经查对临界值表知P (K 2≥3.841)≈0.05.由此,三位领导得出以下判断:p :有95%的把握认为“对技术培训的态度与性别有关”; q :没有95%的把握认为“对技术培训的态度与性别有关”; r :有5%的把握认为“对技术培训的态度与性别有关”.则下列结论中,正确结论的序号是__________.(把你认为正确的命题序号都填上) ①p ∧(綈q );②(綈p )∨q ;③(綈p )∧(綈q );④p ∨r .①④ [由题意,得K 2≈3.918,P (K 2≥3.841)≈0.05,所以只有p 的判断正确,即有95%的把握认为“对技术培训的态度与性别有关”.由真值表知①④为真命题.]三、解答题(解答应写出文字说明,证明过程或演算步骤)15.(12分) 某中学为了更好地开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟法庭”“街舞”“动漫”“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表:(1)求a ,b ,c (2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.解 (1)由分层抽样知识和表可知抽取比例为530=16,故a=4,b=24,c=2.(2)(枚举法)设“动漫”社团的4人分别为:A1,A2,A3,A4;“话剧”社团的2人分别为:B1,B2.则从中任选2人的所有基本事件为:(A1,A2),(A1,A3),(A1,A4),(A2,A3),(A2,A4),(A3,A4),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15个.其中2人分别来自这两个社团的基本事件为:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8个.由古典概型得,这2人分别来自这两个社团的概率P=815.16.(12分)(2019·湖南衡阳期末)2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.(1)求a的值;(2);第8 页共12 页第 9 页共 12 页(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率. 解 (1)由直方图可知,乙品牌产品使用寿命小于200小时的频数为30+a ,故频率为30+a300, 由意可得30+a 300=310,解得a =60.(2)甲品牌产品寿命小于200小时的频率为20+60300=415,用频率估计概率,∴甲品牌产品寿命小于200小时的概率为415. (3)根据抽样结果,寿命大于200小时的产品有220+210=430个,其中乙品牌产品是210个,∴在样本中,寿命大于200小时的产品是乙品牌的频率为210430=2143,用频率估计概率2143,∴已使用了200小时的该产品是乙品牌的概率为2143.17.(12分)(2019·山西太原模拟)篮球运动员甲在最近6场NBA 比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污渍,导致这两个数字无法辨认,但统计员记得除掉污渍2处的数字不影响整体中位数,且这六个数据的平均值为17.(1)求污渍1,2处的数字;(2)篮球运动员乙在最近6场NBA 的比赛中所得分数为8,12,16,18,20,28.试分别以各自6场比赛得分的平均数与方差来分析这两名篮球运动员的发挥水平.解 (1)设污渍1,2处的数字分别为x ,y ,第 10 页 共 12 页由于除掉2处的数字后剩余5个数据的中位数为10+x 或15,故污渍1处的数字为5, 所以x -甲=8+13+30+24+20+y 6=17,则污渍2处的数字为7.(2)甲的得分的平均数为x -甲=17,甲的得分的方差为s 2甲=[(8-17)2+(13-17)2+(15-17)2+(15-17)2+(24-17)2+(27-17)2]=254,乙的得分的平均数为x -乙=8+12+16+18+20+286=17.乙的得分的方差为s 2乙=[(8-17)2+(12-17)2+(16-17)2+(18-17)2+(20-17)2+(28-17)2]=245,由于x -甲=x -x 乙,s 2甲>s 2乙, 所以两人的平均水平相当,但是乙的得分波动更小,发挥更稳定,故乙发挥水平更好. 18. (14分)(2018·山东德州模拟)某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.第 11 页 共 12 页 k 02.7063.8416.6357.879附:K 2=n ad -bc2a +bc +da +cb +d.解 (1)300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生 女生 总计 每周平均体育运动时间不超过4小时 45 30 75 每周平均体育运动时间超过4小时165 60 225 总计21090300K 2=30045×60-165×302210×90×75×225=10021≈4.762>3.841,所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.第12 页共12 页。

相关文档
最新文档