多元统计分析之因子分析70页PPT
合集下载
因子分析 PPT课件

同时假定随机向量 X 满足以下模型: X 1 a11F1 a12 F2 a1m Fm 1 X a F a F a F 2 12 1 22 2 2m m 2 X p a p1 F1 a p 2 F2 a pm Fm P 则称模型(3.1)为正交因子模型。
设 X ( X1 , X 2 ,
E( F ) 0 , Cov( F ) I m (即 F 的各分量方差为 1,且互不相关) 。又设 (1, 2 , , p ) 与 F 互不相关,且
2 E ( ) 0 , Cov( ) diag(12 ,2 , 2 , p )。
之因子分析
SPSS软件
• 因子分析(Factor Analysis)是多元统计 分析中处理降维问题的一种重要方法。变 量的共线性很多是都对分析结果具有显著 的影响。所谓降维,就是独钓共线性,剩 下的,或者合并的都是线性无关的,或者 正交的,或者垂直的。
一、什么是主成分分析和因子分析?
• 主成分分析(Principal Components Analysis)也是多元统计分析中简化数据 结构(降维问题)的一种重要方法。简化 数据结构是指将某些较复杂的数据结构通 过变量变换等方法使相互依赖的变量变成 互不相关的;或把高维空间的数据投影到 低维空间,使问题得到简化而损失的信息 市的实证 设施建设情况。
案例1
• 中国统计年鉴,2005,各地区城市市政设施数据。 变量有: • City—城市名称; • X1—年末实有道路长度(公里); • X2—年末实有道路面积(万平方公里); • X3—城市桥梁(座); • X4—城市排水管道长度(公里); • X5—城市污水日处理能力(万立方米); • X6—城市路灯(盏);
《多元统计分析》课件

数据预处理和清洗
1
数据清洗
解决缺失值、异常值和重复数据问题。
2
标准化处理
对数据进行标准化、归一化和正态化处理。
3
变量选择
学习如何选择影响结果的重要变量。
描述性统计分析
1 中心趋势分析
运用平均值、中位数和众数等指标揭示数据的集中情况。
2 离散程度分析
探索数据的离散程度,如标准差和方差。
3 分布形态分析
识别数据分布的形态,如正态分布和偏态分布。
相关分析
线性相关
学习如何评估变量之间的 线性关系。
非线性相关
探索变量之间的非线性关 系,如曲线和曲面拟合。
相关系数
了解相关系数的计算方法 及其解释。
统计显著性检验
1
假设检验
学习如何根据样本数据推断总体参数。
2
置信区间
了解如何估计总体参数的范围。
3
显著性水平
确定显著性水平及其对推断的影响。
回归分析
线性回归
构建线性回归模型来预测因变量。
回归诊断
评估回归模型用。
多元方差分析
单因素设计
比较多个组之间的差异。
多重比较
确定组之间的具体差异。
二因素设计
考虑两个自变量对因变量的 影响。
《多元统计分析》PPT课件
探索多元统计分析的定义、概念和应用。从数据预处理到分析模型选择,帮 助解决实际问题。了解多元统计软件和未来发展方向。
数据结构和类型
结构
探索多元数据的各种结 构,包括矩阵、向量和 表格。
类型
了解多元数据的分类, 如连续型、离散型、定 类型和定序型。
示例
使用实际案例来展示多 元数据的结构和类型。
多元统计分析 第8章(因子分析)

.
.
.
.. .
X5
0.63 0.49 0.19 0.29 1.00
.
.
.. .
X6
0.40 0.52 0.36 0.46 0.34 1.00
.
.. .
X7
0.28 0.31 0.73 0.27 0.17 0.32 1.00
.. .
X8
0.20 0.36 0.24 0.39 0.23 0.33 0.24 1.00 . .
用这m个不可观测的相互独立的公因 子 F1, F2, ,Fm (也称潜因子)和一
个特殊 i来描述原始可测的相关变量
(科目成绩) x1 , x2 , , x p , 并解释分析学 生的学习能力.
11
教育测量中的项目反应理论模型:
Pj ( ) exp aj ( bj ) 1 exp aj ( bj )
2 1
,
,
2 p
)
(特 殊 因 子 间 不 相 关)
cov(F , ) 0(公 共 因 子 与 特 殊 因 子 间不 相 关)
19
其中:
x x1 x2 x p 是 可 观 测 的 随 机 向 量 ,
F (F1 F2 Fm )(m p)是 不 可 观 测 的 随 机 向 量 ,F1 F2 Fm 一 般 对x 每 一 个 分 量xi 都 有 作 用 , 所 以 称 为x 的公 共 因 子, 而
24
二、正交因子模型中各个量的统计意义 1. 因子载荷的统计意义 2. 变量共同度的统计意义 3. 公因子Fi的方差贡献的统计意义
25
1. 因子载荷的统计意义
若
var(
x
i
)
1,
则x
实用统计方法——第二讲 因子分析 PPT课件

因子分析
Factor Analysis
回顾:主成分分析的任务
• 将彼此相关的指标变量转化为彼此不相关的指 标变量;
• 将个数较多的指标变量转化为个数较少的指标
变量。
• 将意义单一的指标变量转化为意义综合的指标
变量。
主成分分析的基本原理
寻找一个适当的线性变换: • 将彼此相关的变量转变为彼此不相关的新变量;
因子分析的基本思想
根据变量间相关性的大小把变量分组, 使得同组内的变量之间的相关性(共性) 较高,并用一个因子来代表这个组的变 量,而不同组的变量相关性较低(个 性)。
因子分析可分为两种:
探索性因子分析(exploratory factor analysis) 确定性因子分析(confirmatory factor analysis)
潜在因子之间的关系,具有有效的实际意义,
因此需要进行统计检验。
第二节 探索性因子分析的基本原理
【例1】表1给出了三个指标 之间的相关系数,其中, x 1 是孩子的数学成绩,x 2 是孩子的语文成绩,x 3 是 孩子的英语成绩。求影响 表1 指标的相关系数
或支配这三个成绩指标变
量的潜在因子。
令ξ是影响这三个成绩指标变量的潜在因子。
变量的可测性
可测变量(measured variable):可以直接观察或测
量而得到的变量。 潜在变量(latent variable):不能或不易直接观测得 到的变量。这种变量往往是根据某种理论假设的, 所以也称为理论变量(theoretical variable)。
例如,在企业形象或品牌形象的研究中,消 费者可以通过一个有24个指标构成的评价体 系,评价百货商场的24个方面的优劣。 但消费者主要关心的是三个方面,即商店的 环境、商店的服务和商品的价格。因子分析 方法可以通过24个变量,找出反映商店环境、 商店服务水平和商品价格的三个潜在的因子, 对商店进行综合评价。
Factor Analysis
回顾:主成分分析的任务
• 将彼此相关的指标变量转化为彼此不相关的指 标变量;
• 将个数较多的指标变量转化为个数较少的指标
变量。
• 将意义单一的指标变量转化为意义综合的指标
变量。
主成分分析的基本原理
寻找一个适当的线性变换: • 将彼此相关的变量转变为彼此不相关的新变量;
因子分析的基本思想
根据变量间相关性的大小把变量分组, 使得同组内的变量之间的相关性(共性) 较高,并用一个因子来代表这个组的变 量,而不同组的变量相关性较低(个 性)。
因子分析可分为两种:
探索性因子分析(exploratory factor analysis) 确定性因子分析(confirmatory factor analysis)
潜在因子之间的关系,具有有效的实际意义,
因此需要进行统计检验。
第二节 探索性因子分析的基本原理
【例1】表1给出了三个指标 之间的相关系数,其中, x 1 是孩子的数学成绩,x 2 是孩子的语文成绩,x 3 是 孩子的英语成绩。求影响 表1 指标的相关系数
或支配这三个成绩指标变
量的潜在因子。
令ξ是影响这三个成绩指标变量的潜在因子。
变量的可测性
可测变量(measured variable):可以直接观察或测
量而得到的变量。 潜在变量(latent variable):不能或不易直接观测得 到的变量。这种变量往往是根据某种理论假设的, 所以也称为理论变量(theoretical variable)。
例如,在企业形象或品牌形象的研究中,消 费者可以通过一个有24个指标构成的评价体 系,评价百货商场的24个方面的优劣。 但消费者主要关心的是三个方面,即商店的 环境、商店的服务和商品的价格。因子分析 方法可以通过24个变量,找出反映商店环境、 商店服务水平和商品价格的三个潜在的因子, 对商店进行综合评价。
因子分析PPT课件

3. 公共因子的方差贡献:是某公共因子对所有原变量载荷的平方和, 它
反映该公共因子对所有原始总变异的解释能力,等于因子载荷矩阵中某 一列载荷的平方和。一个因子的方差贡献越大,说明该因子就越重要。
2024/6/2
15
★ 确定公因子数目的准则
1)因素的特征值(Eigenvalues)大于或等于1;
2)因素必须符合陡阶检验(Screen Test),陡阶检
仅仅是为了化简、浓缩数据,则采用正交旋转(保持
直角90度,不允许公因子相关)。如果研究的目的是
为了得到理论上有意义的研究结果,则采用斜交旋转。
(不呈90度,允许公因子相关;有证据表明公因子之
间是相关的才用)
旋转之后,特征值发生变化,但共同度不变
2024/6/2
18
第六步:单击Scores按纽,弹出对话框
输出旋转后的 因子载荷矩阵
2024/6/2
输出载荷散点图17
★ 因子旋转
为了更好地解释因子分析解的结果,常常需要将
因子载荷转换为比较容易解释的形式(相当于相机的
调焦,使看得更清楚;一般会使各因子对应的载荷尽
可能地向0和1两极分化)。
常用的方法有正交旋转(varimax procedure)
和斜交旋转(oblique rotation),如果研究的目的
2024/6/2
1
二、因子分析思想与方法的由来
● 英国统计学家Scott 1961年对英国157个 城镇发展水平进行调查时,原始测量的变量有57 个,而通过因子分析发现,只需要用5个新的综 合变量(它们是原始变量的线性组合),就可以 解释95%的原始信息。
● 美国统计学家Stone在1947年研究国民经
多元统计分析——基于R 语言 PPT课件-因子分析

6.2 因子载荷的求解
6.2.3 极大似然法
假定公共因子F和特殊因子ε服从正态分布,则能够得到因子载荷和特殊
因子方差的极大似然估计。设, , … , 为来自正态总体(, )的随
极
大
似
然
法
机样本,其中Σ=AA'+Σε。 从似然函数的理论知:
(, )=
()/ ||/
6.2.1 主成分法
由主成分法很容易得出由Y到X的转换Hale Waihona Puke 系为:主成分
法
1 = 11 1 + 12 2 + ⋯ + 1
2 = 21 1 + 22 2 + ⋯ + 2
⋮
3 = 1 1 + 2 2 + ⋯ +
对上面每一等式只保留前m个主成分而把后面的部分用代替,
式中,为标准化后的第i门科目的考试成绩,均值为0,方差为1;, , … , 是彼此独立的
公共因子,都满足均值为0,方差为1;为特殊因子,与每一个公共因子均不相关且均值为
0; ,,…,为对第i门科目考试成绩的因子载荷。对该模型,有
() = + + ⋯ + + () =
独立这个限制,因而可能达到更为简洁的形式,其实际意义也更容易解释。
6.2 因子载荷的求解
6.2.5 因子得分
在因子模型中,公共因子的个数少于原始变量的个数,且公共因子是不可观测的隐变量,
载荷矩阵A不可逆,因而不能直接求得公共因子用原始变量表示的精确线性组合。解
决该问题的一种方法是建立如下以公共因子为因变量、原始变量为自变量的回归方
6.2 因子载荷的求解
多元统计分析 喀什师范学院笔记 第八章 因子分析ppt课件

最新版整理ppt
32
最新版整理ppt
22
联系:因子分析数学模型的特殊因子方 差为0的时候,就形成特殊形式的因子分 析,即主成分分析。两种方法均可在 SPSS FOR WINDOWS的因子分析过程 FACTOR中实现,但用FACTOR过程实现 主成分分析时,产生的因子载荷矩阵表,
不能直接依据表的数据,写出各主成分
与原变量的线性组合,需对各主成分上
特殊因子ε,则指一个假设的抽象的变量, 它只能用来解释一个原始的变量,与其 它变量完全无关,各特殊因子之间以及特 殊因子与所有公共因子之间都是互相独 立的。它表示变量X不能被公共因子解释 的部分。
最新版整理ppt
9
因子载荷
模型中各公共因子的系数aij称为因子载 荷,是连接观测变量和公共因子之间的 纽带,其统计意义就是第i个变量与第j个 公共因子的相关系数,即表示变量xi依赖 公共因子Fj的分量,反映了第i个变量在 第j个公共因子上的相对重要性。|aij|≤1, aij的绝对值越大,表明xi与Fj的相依程度 越大。
最新版整理ppt
11
公共因子对原变量的贡献
因子载荷矩阵中各列元素的平方和,叫 做公共因子Fj对x的贡献,它反映每个公 共因子对数据的解释能力,是衡量公共 因子相对重要性的指标。此值越大,表 明公共因子Fj对x的影响和作用越大,计 算出所有的指标,按其大小排序,就可 以提炼出最有影响的公共因子。
最新版整理ppt
计算因子载荷阵可以从样本的协方差阵出发, 也可以从样本相关阵出发。
公共因子与变量个数一样多,且特殊因子方差 为0时,因子载荷阵的第j列应该是ej与相应特 征值平方根的乘积,而ej恰是第j个主成分的系 数,故而得名主成分法。
最新版整理ppt
第7章 多元统计分析之因子分析

•我们有时也用方差贡献率来衡量公共 因子的相对重要性
g j Fj的方差贡献率 p
2
j 1,2,, m
也是衡量公共因子相对重要性的另一指标。 另外,任意两个变量Xk与Xl的协方差等于 因子载荷阵中第k行与第l列对应元素乘积之和。
r ( X k , X l ) ak1al1 ak 2 al 2 ... akmalm akiali
第七章 因子分析
• • • • • • • 第一节 因子分析的概念 第二节 因子分析的数学模型 第三节 因子载荷矩阵的求解 第四节 因子旋转 第五节 因子得分 第六节 实例分析 推荐阅读
第一节 因子分析的概念
• 因子分析是主成分分析的推广和发展,它是多 元统计分析中降维的一种方法。因子分析是研究 相关阵或协方差阵的内部依赖关系,它将多个变 量综合为少数几个因子,以再现原始变量与因子 之间的相关关系,同时根据不同因子还可以对变 量进行分类。 • 因子分析概念起源于20世纪初Karl Pearson 和 Charles Spearmen等学者为定义和测验智力所作 的统计分析。目前因子分析在心理学、社会学、 教育学、经济学等学科都取得了成功的应用。
2、因子载荷阵的统计意义与性质
• 为了便于对因子分析计算结果进行解释,将 因子分析模型中各个量的统计意义加以说明 是十分必要的。假设模型中各个变量以及公 共因子、特殊因子都已经是标准化(均值为0, 方差为1)的变量。
1)因子载荷aij的统计意义 已知模型
X i ai1F1 ai 2 F2 aimFm i , i 1,2,, p
第二节 因子分析的数学模型
• 1、正交因子模型 • 1)R型因子分析模型 • R型因子分析中的公共因子是不可直接观 测但又客观存在的共同影响因素,每一 个变量都可以表示成公共因子的线性函 数和特殊因子之和。即 X i ai1F1 ai 2 F2 aimFm i , i 1,2,, p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析之因子分析
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联