带电粒子在磁场中的临界极值问题
带电粒子在磁场中的运动(临界、极值、磁聚焦、扩散)_图文

A.
B.
2R
2R
O
O
B
M 2R R N
M R 2R
N
C.
2R D.
O
RM
O
M 2R
2R N M 2R
2R N
ON
……以速率 v 沿纸面各个方向由小孔O射入磁场
B
M
2R 2R
O
O
2R R
R 2R
A.
B.
ON
O
2R
2R
C.
2R
R
O
2R
2R
D.
例2、如图,质量为m、带电量为+q 的粒子以速度v 从O点
。
a y v0 M B
r 2R Or N
O
bx
二、磁聚焦和磁扩散原理
1、条件:圆形磁场区域半径与粒子轨道半径相等 2、特点:磁聚焦和次扩散具有可逆性
磁场区域半径 R 与运动半径 r 相等
C
B
r
四边形ABCD为菱形
R
D
AB//CD
Hale Waihona Puke A因为AB边竖直,则CD边竖直
从C点水平射出
磁扩散现象
一点发散成平行
沿y 轴正方向射入磁感应强度为 B 的圆形匀强磁场区域, 磁场方向垂直纸面向外,粒子飞出磁场区域后,从 b 处 穿过x轴,速度方向与 x 轴正方向的夹角为30º,不计重力 ,试求圆形匀强磁场区域的最小面积;
y o
y O2
x
A
v
p
60° 60° 30° b
O
O1
30°
v
x
以运动轨迹对应的弦长为直径的圆面积最小
带电粒子在磁场中的运动(临界、极值、磁聚 焦、扩散)_图文.ppt
专题八 带电粒子在有界磁场中的临界极值问题讲解

方法二 旋转圆法
粒子速度大小不变,方向改变,则 r=mqBv大小不变,但轨迹 的圆心位置变化,相当于圆心在绕着入射点滚动(如图所示).
例 2 (2015·四川理综)(多选)如图所示,S 处有一电子源,可
向纸面内任意方向发射电子,平板 MN 垂直于纸面,在纸面内的 长度 L=9.1 cm,中点 O 与 S 间的距离 d=4.55 cm,MN 与直线 SO 的夹角为 θ,板所在平面有电子源的一侧区域有方向垂直于 纸面向外的匀强磁场,磁感应强度 B=2.0×10-4T.电子质量 m= 9.1×10-31 kg,电荷量 e=-1.6×10-19C,不计电子重力.电子 源发射速度 v=1.6×106 m/s 的一个电子,该电子打在板上可能 位置的区域的长度为 l,则( )
B.从 ac 边中点射出的粒子,在磁场中的运动时间为 2πm 3qB
C.从 ac 边射出的粒子的最大速度值为23qmBL D.bc 边界上只有长度为 L 的区域可能有粒 子射出
[解析] 带电粒子在磁场中运动的时间是看圆心角的大小, 而不是看弧的长短,A 项错误;作出带电粒子在磁场中偏转的示 意图,从 ac 边上射出的粒子,所对的圆心角都是 120°,所以在 磁场中运动的时间为 t=13T=23πqmB,B 项正确;从 ac 边射出的最 大速度粒子的弧线与 bc 相切,如图所示,半径为 L,由 R=mqBv⇒ v=qBmR=qmBL,C 项错误;如图所示,在 bc 边上只有 Db=L 长 度区域内有粒子射出,D 项正确,选 B、D 项.
例1 (多选)如图所示,在直角三角形 abc 中,有垂直纸面的匀强
磁场,磁感应强度为 B.在 a 点有一个粒子发射源,可以沿 ab 方向源 源不断地发出速率不同,电荷量为q(q>0)、质量为 m 的同种粒子.已 知∠a=60°,ab=L,不计粒子的重力,下列说法正确的是( )
带电粒子在磁场中运动临界极值多解问题

极值临界问题1、如图所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则()A.右边界:-4cm<y<4cm有粒子射出B.右边界:y>4cm和y<-4cm有粒子射出C.左边界:y>8cm有粒子射出D.左边界:0<y<8cm有粒子射出2、如图所示,磁感应强度大小B=0.15T、方向垂直纸面向里的匀强磁场分布在半径R=0.10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的A点。
置于原点的粒子源可沿x轴正方向射出速度V0=3.0×106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1.0×108C/kg。
现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离?3、[2013·南昌二模]如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的正三角形,A、B、C为三角形的顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=3qBL4m从AB边上某点P既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则( )A.|PB|<2+34L B.|PB|<1+34LC.|QB|≤34L D.|QB|≤12LO4、如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一等腰直角三角形(边界上有磁场),ACD 为三角形的三个顶点,AC=AD=L 。
今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度=v CD 边上的某点P 既垂直于CD 边又垂直于磁场的方向射入,然后从AD 边上某点Q 射出,则有: ( )A.DP B.DP C .2DQ 3L ≤ D.DQ ≤ 5、如图所示,中轴线PQ 将矩形区域MNDC 分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B 。
带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。
越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。
刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。
5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。
带电粒子在磁场运动的临界与极值问题(无答案)

微专题带电粒子在磁场运动的临界与极值问题一、一条思路:做轨迹找圆心求半径求时间二、两种动态圆:1、旋转动态圆:只改变入射速度方向---动态圆的圆心在以入射点为圆心的圆上2、膨胀动态圆:只改变入射速度大小----动态圆都相切,圆心在一条直线上三、三种常见轨迹(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)四、三类极值问题的求法:1.区域的长度的极值问题2.时间的极值问题3.面积的极值问题例1.如图,在一水平放置的平板MN 上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域,不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的 ()变式1、若把上题的匀强磁场区域改为宽度为d 的双边界磁场,2R>d>R ,试通过作图求出AB 板上可能被粒子打中的区域的长度。
变式2、若把匀强磁场区域改为一个的圆形,且圆的半径r 与粒子运动的半径R相等,试通过作图证明各个粒子从区域射出时速度方向是平行的。
变式3、如图,若只有左半边有带电粒子射入,要让粒子最后平行射出区域,求磁场区域的最小面积。
M NBOOO C. D. A.B.变式4、若磁场区域改为一个的圆形,且圆的半径r 是粒子运动的半径R的一半,求粒子在磁场中运动的最长时间。
例2、如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O 方向垂直磁场射入一速度方向跟ad 边夹角θ=300 、大小为v 0的带电粒子,已知粒子质量为m 、电量为q ,ab 边足够长,ad 边长为L ,粒子的重力不计。
求:⑴.粒子能从ab 边上射出磁场的v 0大小范围。
⑵.如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间。
9、磁场专题点点清9、 带电粒子在磁场中运动的临界与极值问题

磁场专题 带电粒子在磁场中运动的临界与极值1.临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.带电体进入有界磁场区域,一般存在临界问题,处理的方法是寻找临界状态,画出临界轨迹:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零. (2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切. 临界问题的一般解题模式为: (1)找出临界状态及临界条件; (2)总结临界点的规律; (3)解出临界量; (4)分析临界量列出公式. 2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析(一般涉及相切,最大弦长和最小弦长).例题1、(2011·浙江·20)利用如图13所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( BC )A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用q v B =m v 2r知r =m v qB ,能射出的粒子满足L 2≤r ≤L +3d 2,因此对应射出粒子的最大速度v max =qBr max m =qB (3d +L )2m,选项B 正确.v min =qBr min m =qBL 2m ,Δv =v max -v min =3qBd2m,由此式可判定选项C 正确,选项D 错误.例题2、 如图12所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中的区域的长度s ; (3)粒子在磁场中运动的最长时间t m .解析 (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示,CH =QC =L 故半径r 1=L又因为q v 1B =m v 21r 1 且qU m =12m v 21 所以U m =qB 2L 22m.(2)设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中: sin 45°=r 2L -r 2解得r 2=(2-1)L 即KC =r 2=(2-1)L所以CD 板上可能被粒子打中的区域的长度s =HK ,即s =r 1-r 2=(2-2)L .(3)打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m =T 2=πmBq.答案 (1)qB 2L 22m (2)(2-2)L (3)πmBq例题3、如图6所示,在铅板AB 上有一个放射源S ,可向各个方向射出速率v=2.04×107m/s的β射线.CD 为荧光屏(足够大),AB 、CD 间距d=10cm ,其中存在磁感应强度B=6.0×10-4T的匀强磁场,方向垂直纸面向里.已知β粒子的荷质比e/m=1.7×1011C/kg ,试求这时在竖直方向上能观察到荧光屏亮斑区的长度.解析 粒子进入匀强磁场后,满足qv 0B=m ,则 R==0.2m由于β粒子可向各个方向射出,容易看出向上方射出的β粒子及向右方射出的β粒子打在荧光屏上的位置P 、Q 之间即为亮斑区,这是求解本题之关键.由图7知PO=OQ ,故在竖直方向上能观察到荧光屏亮斑区的长度为 PQ=2PO=2=0.2≈0.35m .例题4、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab 的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求ab 上被粒子打中的区域的长度.答案详解 解:粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有①由此得 代入数值得可见,.因朝不同方向发射的粒子的圆轨迹都过S,由此可以知道,某一圆轨迹在图中N 左侧与ab 相切,则此切点就是粒子能打中的左侧最远点.为定出点的位置,可作平行于ab 的直线cd,cd 到ab 的距离为R,以S 为圆心,R 为半径,作弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为②再考虑N 的右侧.任何粒子在运动中离S 的距离不可能超过2R,以2R 为半径、S 为圆心作圆,交ab 于N右侧的点,此即右侧能打到的最远点.由图中几何关系得 ③ 所求长度为 ④代入数值得ab 上被粒子打中的区域的长度.解析:带电粒子在磁场中做匀速圆周运动,由洛仑兹力充当向心力可求得粒子的半径,则根据几何关系可求得ab 上被打中的区域的长度.例题6、如图所示一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。
磁场中的临界和极值问题

得 v qBd
m(1 sin )
y
o
y
x o
一束带电的粒子以初速度v进入匀强磁场,若初速度 大小 相 同,方向 不同,则所有粒子运动的轨道半径 相同 ,但不同粒子的圆
心位置不同。其共同规律是:
所有粒子的圆心都在 以射入点为圆心、半径等于入射 粒子轨迹半径 的圆上。 我们将这样的一组圆称为“转动圆”。
带电粒子在有界匀强磁场中 运动的临界和极值问题
1.带电粒子在匀强磁场中做匀速圆周运动的半径公式
r mv qB
2.带电粒子在匀强磁场中做匀速圆周运动的周期公式
T 2 m
qB
3.求带电粒子在匀强磁场中做匀速圆周运动时间的公式
t T m 2 qB
带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)
2、转动圆 速度 大小不变,速度方向 发生变化,圆的大小 不 变,绕 射入点转动。
如图,磁感应强度为B的匀强磁场垂直于 纸面向里,PQ
为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
现从点O以同一速率将相同的带负电粒子向纸面内各个不
同的方向射出,它们均做半径为r的匀速圆周运动,求带
电粒子打在边界PQ上的范围(粒子的重力不计)。
y
v0
O
x
解1: 电子由O点射入第Ⅰ象限做匀速
y
圆周运动
ev0
B
m
v02 r
r= mv0 eB
所有电子的轨迹圆半径相等,且均过 v0
O点。这些轨迹圆的圆心都在以O为圆 O 心,半径为r的且位于第Ⅳ象限的四分 之一圆周上,如图所示。
O1
x
O2
O3
带电粒子在匀强磁场中运动的临界极值问题(解析版)

带电粒子在匀强磁场中运动的临界极值问题由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.1.临界条件的挖掘(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长(或弦长)越长,圆心角越大(前提条件是劣弧),则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,轨迹圆心角越大,运动时间越长。
(4)当运动轨迹圆半径大于圆形磁场半径时,则以磁场直径的两端点为入射点和出射点的轨迹对应的偏转角最大。
2.不同边界磁场中临界条件的分析(1)平行边界:常见的临界情景和几何关系如图所示。
(2)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(3)三角形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
3. 审题技巧许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.【典例1】如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点。
一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场。
现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,下列说法中正确的是( )A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场B .若该带电粒子在磁场中经历的时间是23t 0,则它一定从ad 边射出磁场C .若该带电粒子在磁场中经历的时间是54t 0,则它一定从bc 边射出磁场D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 【答案】 AC 【解析】 如图所示,【典例2】放置在坐标原点O 的粒子源,可以向第二象限内放射出质量为m 、电荷量为q 的带正电粒子,带电粒子的速率均为v ,方向均在纸面内,如图8-2-14所示.若在某区域内存在垂直于xOy 平面的匀强磁场(垂直纸面向外),磁感应强度大小为B ,则这些粒子都能在穿过磁场区后垂直射到垂直于x 轴放置的挡板PQ 上,求:(1)挡板PQ 的最小长度; (2)磁场区域的最小面积. 【答案】 (1)mv Bq (2)⎝⎛⎭⎫π2+1m 2v 2q 2B2【解析】 (1)设粒子在磁场中运动的半径为R ,由牛顿第二定律得qvB =mv 2R ,即R =mvBq【跟踪短训】1. 在xOy 平面上以O 为圆心、半径为r 的圆形区域内,存在磁感应强度为B 的匀强磁场,磁场方向垂直于xOy 平面.一个质量为m 、电荷量为q 的带电粒子,从原点O 以初速度v 沿y 轴正方向开始运动,经时间t 后经过x 轴上的P 点,此时速度与x 轴正方向成θ角,如图8-2-24所示.不计重力的影响,则下列关系一定成立的是( ).A .若r <2mv qB ,则0°<θ<90° B .若r ≥2mv qB ,则t ≥πmqBC .若t =πm qB ,则r =2mv qBD .若r =2mv qB ,则t =πmqB【答案】 AD【解析】 带电粒子在磁场中从O 点沿y 轴正方向开始运动,圆心一定在垂直于速度的方向上,即在x 轴上,轨道半径R =mv qB .当r ≥2mvqB 时,P 点在磁场内,粒子不能射出磁场区,所以垂直于x 轴过P 点,θ最大且为90°,运动时间为半个周期,即t =πm qB ;当r <2mvqB 时,粒子在到达P 点之前射出圆形磁场区,速度偏转角φ在大于0°、小于180°范围内,如图所示,能过x 轴的粒子的速度偏转角φ>90°,所以过x 轴时0°<θ<90°,A 对、B 错;同理,若t =πmqB ,则r ≥2mv qB ,若r =2mv qB ,则t 等于πm qB,C 错、D 对. 2. 如图所示,磁感应强度大小为B =0.15 T 、方向垂直纸面向里的匀强磁场分布在半径为R =0.10 m 的圆形区域内,圆的左端跟y 轴相切于直角坐标系原点O ,右端跟很大的荧光屏MN 相切于x 轴上的A 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m).2.偏角的极值问题例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷qm=1×108 C/kg,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角.3.时间的极值问题例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
重力忽略不计。
《带电粒子在磁场运动的临界与极值》反馈训练1. 一个质子和一个α粒子沿垂直于磁感线方向从同一点射入一个匀强磁场中,若它们在磁场中的运动轨迹是重合的,如图1所示, 则它们在磁场中 ( ) A .运动的时间相等 B .加速度的大小相等 C .速度的大小相等 D .动能的大小相等2. 如图3所示,在垂直纸面向里的匀强磁场的边界上,有两个电荷量绝对值相同、质量相同的正、负粒子(不计重力),从A 点以相同的速度先后射入磁场中,入射方向与边界成θ角,则正、负粒子在磁场中( )A .运动时间相同B .运动轨迹的半径相同C .重新回到边界时速度大小和方向相同D .重新回到边界时与A 点的距离相等3.如图4所示,一个质量为m 、电荷量为+q 的带电粒子,不计重力,在a 点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线 abcd 运动,ab 、bc 、cd 都是半径为R 的圆弧.粒子在每段圆弧 上运动的时间都为t .规定垂直纸面向外的磁感应强度方向为 正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B 随x 变化的 关系可能是图中的 ( )4. 如图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向自A 点射入磁场,分别从AC 边上的P 、Q 两点射出,则 ( ) A .从P 射出的粒子速度大B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长5.如图所示,宽l=1cm 的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O 点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm ,则( ) A .右边界:-3cm <y <3cm 有粒子射出 B .右边界:y >3cm 和y <-3cm 有粒子射出 C .左边界:y >6cm 有粒子射出 D .左边界:0<y <6cm 有粒子射出6.如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射人磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子能经过区域,其中R=mv/qB .哪个图是正确的( )计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间.11.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B 1=0.40 T ,方向垂直纸面向里,电场强度E =2.0×105V/m ,PQ 为板间中线.紧靠平行板右侧边缘xOy 坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B 2=0.25 T ,磁场边界AO 和y 轴的夹角∠AOy =45°.一束带电荷量q =8.0×10-19C 的正离子从P点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y 轴上坐标为(0,0.2 m)的Q 点垂直y 轴射入磁场区,离子通过x 轴时的速度方向与x 轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大? (2)离子的质量应在什么范围内?(3)现只改变AOy 区域内磁场的磁感应强度大小,使离子都不能打到x 轴上,磁感应强度大小B 2′应满足什么条件?12.如图所示,M 、N 为中心开有小孔的平行板电容器的两极板,相距为D ,其右侧有一边长为2a 的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M 、N 之间加上电压U 后,M 板电势高于N 板电势.现有一带正电的粒子,质量为m ,电荷量为q ,其重力和初× × × × × × × × × × × × a b c d θO v 0速度均忽略不计,粒子从极板M的中央小孔s1处射入电容器,穿过小孔s2后从距三角形A 点a3的P处垂直AB方向进入磁场,试求:(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件带电粒子在磁场中运动的多解问题带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多解,多解形成原因一般包含下述几个方面.1.带电粒子电性不确定受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正、负粒子在磁场中运动轨迹不同,导致多解.如图5所示,带电粒子以速率v 垂直进入匀强磁场,若带正电,其轨迹为a ,若带负电,其轨迹为b .2.磁场方向不确定形成多解磁感应强度是矢量,如果题述条件只给出磁感应强度大小,而未说明磁感应强度方向,则应考虑因磁场方向不确定而导致的多解.如图6所示,带正电粒子以速率v 垂直进入匀强磁场,若B 垂直纸面向里,其轨迹为a ,若B 垂直纸面向外,其轨迹为b .图5 图6 图7 图83.临界状态不惟一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射面边界反向飞出,如图7所示,于是形成了多解. 4.运动的往复性形成多解带电粒子在部分是电场,部分是磁场的空间运动时,运动往往具有往复性,从而形成多解.如图8所示.典例剖析1.带电粒子性质的不确定形成多解例1 如图所示,直线边界MN 上方有垂直纸面向里的匀强磁场,磁感应强度为B ,磁场区域足够大.今有一质量为m ,带电荷量为q 的带电粒子,从边界MN 上某点垂直磁场方向射入,射入时的速度大小为v ,方向与边界MN 的夹角为θ,求带电粒子在磁场中的运动时间.2.磁场方向不确定形成多解 例2 某电子以固定的正点电荷为圆心在匀强磁场中沿逆时针方向做匀速圆周运动,磁场方向垂直于它的运动平面,电子所受正点电荷的电场力是洛伦兹力的3倍.若电子电荷量为e 、质量为m ,磁感应强度为B ,不计重力,则电子运动的角速度可能是 ( )A.4BemB.3Be mC.2Be mD.Be m3.运动方向不确定形成多解例3 如图所示,绝缘摆线长为L ,摆球带正电(电荷量为q ,质量为m )悬于O 点,当它在磁感应强度为B 的匀强磁场中来回摆动经过最低点C 时速率为v ,则摆线的拉力为多大?4.运动的往复性形成多解例4如图11所示,在NOQ范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ范围内有垂直于纸面向外的匀强磁场Ⅱ,M、O、N在一条直线上,∠MOQ=60°,这两个区域磁场的磁感应强度大小均为B.离子源中的离子带电荷量为+q,质量为m,通过小孔O1进入两板间电压为U的加速电场区域(可认为初速度为零),离子经电场加速后由小孔O2射出,再从O点进入磁场区域Ⅰ,此时速度方向沿纸面垂直于磁场边界MN,不计离子的重力.(1)若加速电场两板间电压U=U0,求离子进入磁场后做圆周运动的半径R0;(2)在OQ上有一点P,P点到O点距离为L,若离子能通过P点,求加速电压U和从O 点到P点的运动时间.。