指对幂函数知识点总结

合集下载

指数对数幂函数知识点总结

指数对数幂函数知识点总结

指数对数幂函数知识点总结篇一:指数、对数、幂函数知识点指数、对数、幂函数知识归纳知识要点梳理的次方根的定义:一般地,如果;当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.叫做根式,叫做根指数,叫做被开方数.;,那么叫做的次方根,其中2.n次方根的性质: (1)当为奇数时,;(2)当为偶数时,3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3)知点二:指数函数及其性质 1.指数函数概念:一般地,函数变量,函数的定义域为.叫做指数函数,其中是自1.(2022·北京理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,那么f(x)= ( )2.〔2022·上海高考文科·T8〕方程3.〔2022·湖南高考理科·T16〕设函数f(x)?ax?bx?cx,其中c?a?0,c?b?0.9x的实数解为 . ?1?3x3?1且a=b?,〔1〕记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长,那么(a,b,c)?M所对应的f(x)的零点的取值集合为____.〔2〕假设a,b,c是?ABC的三条边长,那么以下结论正确的选项是. 〔写出所有正确结论的序号〕①?x????,1?,f?x??0;②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③假设?ABC为钝角三角形,那么?x??1,2?,使f?x??0.知识点三:对数与对数运算 1.对数的定义(1)假设叫做底数,叫做真数.,那么叫做以为底的对数,记作,(2)负数和零没有对数.(3)对数式与指数式的互化:2.几个重要的对数恒等式:,,..3.常用对数与自然对数:常用对数:,即;自然对数:,即(其中…).①加法:,那么②减法:③数乘:④⑤⑥换底公式:一般地,函数数的定义域.叫做对数函数,其中是自变量,函2.对数函数性质:4.〔2022·广东高考理科·T2〕函数f(x)?的定义域是〔〕 x?1A.(?1,??) B.[?1,??) C.(?1,1)(1,??) D.[?1,1)(1,??)5.〔2022·陕西高考文科·T3〕设a, b, c均为不等于1的正实数, 那么以下等式中恒成立的是 ( ) A.logab·logcb?logcaB. logab?logca?logcb篇二:指数_对数_幂函数必备知识点几种特殊的函数知识点一:指数及指数幂的运算的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)意义:;注意:0的正分数指数幂等于0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.知识点三:对数与对数运算(1)假设,那么叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.,,.常用对数:,即;自然对数:,即(其中…).如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点五:反函数设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(1)原函数与反函数的图象关于直线对称.(2)函数的定义域、值域分别是其反函数的值域、定义域.(3)假设在原函数的图象上,那么在反函数的图象上.(4)一般地,函数要有反函数那么它必须为单调函数.(1)确定反函数的定义域,即原函数的值域;(2)从原函数式中反解出;(3)将改写成,并注明反函数的定义域.知识点六:幂函数形如的函数,叫做幂函数,其中为常数.(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,那么幂函数的图象过原点,并且在上为增函数.如果,那么幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),假设为奇数为奇数时,那么是奇函数,假设为奇数为偶数时,那么是偶函数,假设为偶数为奇数时,那么是非奇非偶函数.(5)图象特征:幂函数,当时,假设,其图象在直线下方,假设,其图象在直线上方,当时,假设,其图象在直线上方,假设,其图象在直线下方.篇三:指数对数幂函数知识点汇总知识点一:根式、指数幂的运算1、根式的概念:假设x?a,那么x叫做a的次方根, n?1,n?Nn???〔1〕当n为奇数时,正数的n次方根为正,负数的n次方根为负,记作na;〔2〕当n为偶数时,正数的n次方根有两个〔互为相反数〕,记作〔3〕负数没有偶次方根,0的任何次方根都是0. 2、n次方根的性质:〔1〕n?an为奇数. ?a;〔2???|a|n为偶数3、分数指数幂的意义:〔1〕a?;〔2〕amnm?n?1amn?a?0,m,n?N?,n?1?.注意:0的正指数幂等于0,负指数幂没有意义. 4、指数幂的运算性质:?a?0,b?0,r,s?R?rrs)ras?a? (1a;(2)a??s?ars; (3)?ab??arbrr知识点二:对数与对数运算b1、指数式与对数式的互化:a?N?logaN?b(a?0,a?1,N?0)2、几个重要的对数恒等式〔1〕负数和0没有对数;〔2〕loga1?0〔a?1〕〔3〕logaa?1〔a?a〕;〔4〕对数恒等式:a3、对数的运算性质〔1〕loga(MN)?logaM?logaN;〔2〕logan1logaN?NM?logaM-logaN; NlogmN;logma〔3〕logaM?nlogaM(n?R);〔4〕换底公式:logaN?〔5〕logab?logba?1 ;〔6〕logab?logbc?logac ;〔7〕logab?logbc?logcd?logad ;〔8〕logambn?nlogab;m知识点四:对数函数及其性质x注:指数函数y?a与对数函数y?logax互为反函数〔1〕互为反函数的两函数图象关于y?x对称,即(a,b)在原函数图象上,那么(b,a)在其反函数图象上;〔2〕互为反函数的两函数在各自的定义域上单调性相同。

指、对、幂函数知识点

指、对、幂函数知识点

(1指、对、幂函数知识点)指数函数轴对称 比较指数式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论;3. 当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较(2)对数函数(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.(3)幂函数=叫做幂函数,其中x为自变量,α是常数.一般地,函数y xα幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称); 幂函数是奇函数时,图象分布在第一、三象限(图象关于原点对称); 幂函数是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性: 当qpα=(其中,p q 互质,p 和q Z ∈), 若p 为奇数q 为奇数时,则q py x =是奇函数; 若p 为奇数q 为偶数时,则q py x =是偶函数; 若p 为偶数q 为奇数时,则qp y x =是非奇非偶函数.幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:当0>α时,幂函数y x α=有下列性质:(1)图象都通过点(0,0),(1,1); (2)在第一象限内都是增函数;(3)在第一象限内,α>1时,图象是“抛物线”型的;α<<01时,图象是“眉毛”型的; (4)在第一象限内,过点(1,1)后,图象向右上方无限伸展。

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。

指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。

在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。

一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。

指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。

指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。

2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。

3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。

4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。

1. 对数函数的图像是一条左开右闭的单调增函数。

2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。

4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。

三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。

幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。

幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。

四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。

在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。

指对幂函数知识点

指对幂函数知识点

指对幂函数知识点一、什么是幂函数?幂函数是指形如f(x) = a^x(其中a为常数且大于0)的函数。

在幂函数中,x为自变量,a为底数,a^x为底数a的x次幂。

幂函数在数学中具有广泛的应用,特别是在科学和工程领域中。

二、幂函数的图像特点1. 当底数a为正数时:- 当0 < a < 1时,幂函数的图像在过原点的y轴上方逐渐趋近于y 轴正半轴;- 当a > 1时,幂函数的图像在过原点的y轴上方逐渐趋近于y轴负半轴。

2. 当底数a为负数时:- 当0 < a < 1时,幂函数的图像在过原点的y轴下方逐渐趋近于y 轴负半轴;- 当a > 1时,幂函数的图像在过原点的y轴下方逐渐趋近于y轴正半轴。

3. 当底数a等于1时,幂函数的图像为一条水平直线,即f(x) = 1。

4. 当x趋近于正无穷大时,幂函数的图像在过原点的x轴右方逐渐趋近于y轴正半轴。

5. 当x趋近于负无穷大时,幂函数的图像在过原点的x轴右方逐渐趋近于y轴负半轴。

三、幂函数的性质1. 定义域:幂函数的定义域为实数集R。

2. 值域:当底数a大于1时,幂函数的值域为大于0的实数集R+;当底数a在0和1之间时,幂函数的值域为小于1的正实数集(0, 1);当底数a小于0时,幂函数的值域为负实数集R-。

3. 奇偶性:当底数a为正数时,幂函数为奇函数;当底数a为负数时,幂函数为偶函数。

4. 单调性:当底数a大于1时,幂函数在整个定义域上递增;当底数a在0和1之间时,幂函数在整个定义域上递减。

5. 渐近线:底数a大于1时,幂函数的图像没有水平渐近线,却有一条斜渐近线y=0;底数a在0和1之间时,幂函数的图像也没有水平渐近线,但有一条横轴(x轴)为斜渐近线;底数a为负数时,幂函数的图像既没有水平渐近线,也没有斜渐近线。

四、幂函数的应用1. 在人口增长模型中,幂函数经常被用来描述人口随时间的变化趋势。

2. 在金融领域中,幂函数可以用来描述复利计算中的本金增长情况。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

指、对、幂函数

指、对、幂函数

专题:指、对、幂函数一、知识点总结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。

指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。

性质:见表2对数运算公式1、x N N a a x=⇔=log ; 2、a aNa =log . 3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =. 5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a . 6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .二、课前热身1. 计算:33(lg 2)3lg 2lg5(lg5)++=_______________2. 若函数f (x )=a |x -2|(a >0,a ≠1)满足f (1)=13,则f (x )的单调递减区间是________3. 设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是_______________4. 方程|3x-1|=k 有两解,则k 的范围为________5. 设1a >,函数log a y x =在区间[,2]a a 上的最大值与最小值之差为12,则a =________ 6. 若函数f (x )=xa -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________7. 已知12,x x-+=则1122x x-+=8. 设)0(2)log (2>=x x f x ,则=)log (232f三、典例分析 例1:计算:(1)11203217(0.027)()(2)1)79----+-;(2)132123321().40.1()a b --- (3)2lg 225lg 5.02161.1230++-+-;(4)2log 43774lg 25lg 327log +++【变式演练】(1)已知1>>b a 且310log log =+a b b a ,求a b lob b a log -的值。

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇第1篇示例:指数对数幂函数是高等数学中重要、常用的一类函数。

它们是解决数学问题和建立数学模型中不可或缺的工具。

在学习指数对数幂函数的知识时,需要掌握函数的定义、性质、图像、导数等方面的内容。

本文将对指数对数幂函数进行系统总结,以便读者更好地理解和掌握这一知识点。

一、指数函数指数函数是形如y = a^x(其中a>0且a≠1)的函数,其中a称为底数,x称为指数。

指数函数的图像通常是一个以底为a的指数曲线,其特点是随着x的增大,y值迅速增大。

指数函数的性质有:1.当底数a>1时,函数y = a^x是递增函数;当0 0时,函数y = a^x是减函数。

2.指数函数的定义域是所有实数,值域是所有大于0的实数。

3.指数函数的图像通常是通过点(0,1) 并且随着x的增大发生指数增长。

4.指数函数满足f(x) * f(y) = f(x+y)。

5.指数函数的反函数是对数函数,即y = loga(x)。

3.对数函数的图像是一个S形曲线,随着x的增大,y值逐渐增大。

5.对数函数的导数为1/x*ln(a)。

三、幂函数幂函数是形如y = x^a(其中a为常数)的函数,其特点是x的次方为a。

幂函数的性质有:3.幂函数的特殊情况之一是y = x^2,即二次函数,其图像是一个开口向上的抛物线。

第2篇示例:指数对数幂函数是数学中常见的一类函数,主要包括指数函数、对数函数和幂函数。

在数学中,这些函数在图像、性质和应用等方面都有着重要的作用。

本文将从定义、性质和应用三个方面对指数对数幂函数进行总结。

一、指数函数指数函数的一般形式为f(x) = a^x,其中a为底数且a>0且a≠1,x为指数。

指数函数的定义域为实数集R,值域为正实数集R+。

指数函数的图像呈指数增长或指数衰减的特点,当底数a>1时为指数增长;当底数0<a<1时为指数衰减。

指数函数的特点包括:单调性、奇偶性、零点、渐近线等。

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理一、幂函数1.定义:幂函数是形如f(x)=x^n的函数,其中n为常数,x为自变量,n可以是整数、分数或实数。

2.性质:-当n为正偶数时,幂函数是单调递增函数,图像呈现开口向上的抛物线形状。

-当n为正奇数时,幂函数是单调递增函数,图像呈现开口向上的直线形状。

-当n为负偶数时,幂函数是单调递减函数,图像呈现开口向下的抛物线形状。

-当n为负奇数时,幂函数是单调递减函数,图像呈现开口向下的直线形状。

-当n=0时,幂函数f(x)=x^0恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-幂函数常用于描述成比例关系,如面积和边长的关系、体积和边长的关系等。

-幂函数还用于经济学、物理学、化学等学科中的一些数学模型。

二、指数函数1.定义:指数函数是形如f(x)=a^x的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-指数函数的值域为正实数,图像始终位于y轴的上方。

-当a>1时,指数函数是单调递增函数,图像呈现开口向上的曲线形状。

-当0<a<1时,指数函数是单调递减函数,图像呈现开口向下的曲线形状。

-当a=1时,指数函数f(x)=1^x恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-指数函数常用于描述指数增长或指数衰减的情况,如人口增长、放射性物质衰变等。

-指数函数还用于描述复利、投资和经济增长等问题。

三、对数函数1. 定义:对数函数是形如f(x)=loga(x)的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-对数函数的定义域为正实数,值域为实数。

-对数函数的图像呈现开口向右的曲线形状。

-对数函数关于直线y=x对称。

-对数函数的导数为1/x。

3.应用:-对数函数常用于解决指数方程和指数不等式,将复杂的指数问题转化为相对简单的对数问题。

-对数函数还广泛应用于科学、工程、经济等领域的数据处理和模型建立。

综上所述,幂函数、指数函数和对数函数是高中数学中的重要函数类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〖2.1〗指数函数
[2.1.1】指数与指数幂的运算
(1) 根式的概念
① 如果x " = aa R, x • R, n 1 ,且n N .,那么x 叫做a 的n 次方 根.当
n 是奇数时,a 的n 次方根用符号:a 表示;当n 是偶数时, 正数a
的正的n 次方根用符号 蔦表示,负的n 次方根用符号一蔦 表示;0的n 次方根是0 ;负数a 没有n 次方根.
② 式子蔦叫做根式,这里n 叫做根指数,a 叫做被开方数.当
n 为奇数时,a 为任意实数;当n 为偶数时,a_0 .
③根式的性质:(n .a)n
=a ;当口为奇数时,n -a n =a ;当n 为偶
(2) 分数指数幂的概念
m
① 正数的正分数指数幂的意义是:
a 下「n /(a 0, m, n ・N ,且
n 1). 0
的正分数指数幂等于0.
② 正数的负分数指数幂的意义是:
a n
=([)n
(丄)m
(a 〉0,m,门邛十且nn1) . 0
的负分数指数幂没有
a , a
意义. 注意口诀:底数取倒数,指数取相反数.
(3) 分数指数幂的运算性质
① a r
a $ = a
r s
(a 0,r, s R)
③(ab)r
=a r b r
(a 0,b 0,r R)
【2.1.2】指数函数及其性质
数时,
Wa
(a —0) (a :
②(a r
)s
= a rs
(a 0,r,s R)
(4)指数函数
〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义
①若a・N(a 0,且a=1),贝卩x叫做以a为底N的对数,记作x=log a N,其中a叫做底数,N叫做真数.
② 负数和零没有对数.
③ 对数式与指数式的互化:X =log a N := a X = N(a 0, a = 1,N 0). (2) 几个重要的对数恒等式
Iog a 1=0, log a a=1,
log a a b
二b .
(3) 常用对数与自然对数
常用对
lg N ,即log 10 N ;自然对数:ln N ,即log e N (其中
e =2.71828…).
(4)对数的运算性质
如果a .0,a=1,M 0, N 0,那么
l oN g l 一
g
b>且
b0=
l oa g
【222】对数函数及其性质
(5) 对数函数
①加法:I O a 射
Ia3g
a
l ⑷N)
②减法:
3一
INg
》。

g
③数乘:nlog a M -log a M n
(n R) ④ a
log a N
=N
⑤ log a
bM —
b
log a
M(b Z n R)
⑥换底公式:
(6)反函数的概念
设函数y二f(x)的定义域为A,值域为C,从式子y二f(x)中解出x,得式子x「(y).如果对于y在C中的任何一个值,通过式子x」(y),x在A 中都有唯一确定的值和它对应,那么式子x^ -'-(y)表示x是y的函数,函数x hF(y)叫做函数y = f(x)的反函数,记作x二f」(y),习惯上改写成y二f '(X).
(7)反函数的求法
①确定反函数的定义域,即原函数的值域;②从原函数式
y =f(x)中反解出x = f」(y);
③将x = f」(y)改写成八f」(x),并注明反函数的定义域.
(8)反函数的性质
①原函数y = f(x)与反函数y = f」(x)的图象关于直线y = x对称.
②函数八f(X)的定义域、值域分别是其反函数八f-1(x)的值域、定义域.
③若P(a,b)在原函数y=f(x)的图象上,贝y p'(b,a)在反函数y =f J(x)的图象
上.
④一般地,函数y = f(x)要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义
一般地,函数y=x>叫做幂函数,其中x为自变量,:是常数.
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.
②过定点:所有的幂函数在(0「:)都有定义,并且图象都通过点
(1,1)•
③单调性:如果:「0,则幂函数的图象过原点,并且在[0,;)上为增函数.如果:「:0,则幂函数的图象在(0,;)上为减函数,在第一象限内,图象无限接近X轴与y轴.
④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函
数.当a =9 (其中p,q互质,p和q^Z ),若p为奇数
P
q _q
q为奇数时,则y二X p是奇函数,若p为奇数q为偶数时,则y二x p
q
是偶函数,若p为偶数q为奇数时,则y二是非奇非偶函数.
⑤图象特征:幂函数y = x:x • (0, •::),当:…1时,若0 :::
x ::: 1,其图象在直线y=x下方,若XA1,其图象在直线y = x上方,当a <1时,若0vx<1,其图象在直线y=x上方,若XA1,其图象在直线y=x下方.。

相关文档
最新文档