数据库 关系运算(关系代数)

合集下载

关系代数表达式总结-数据库

关系代数表达式总结-数据库

关系代数表达式总结一、并例1 求选修了课程号为1或2的课程的学生学号。

分析:可以先求出选修了课程号为1的课程的学生学号,再求出选修了课程号为2的课程的学生学号,最后使用并运算的方法求出选修课程号为1或2的课程的学生学号。

本例也可以使用或条件来表示。

πSno(σCno=’1’(SC))∪πSno(σCno=’2’(SC)) 或πSno(σCno=’1’∨Cno=’2’(SC))二、交例2 检索至少选修课程号为2和3的课程的学生学号。

分析:方法一:只涉及到一个表,但不能直接用∧(为什么?)特别注意,本例不能写为:πSno(σCno=’2’∧Cno=’3’(SC))因为选择运算为行运算,在同一行中Cno不可能既为2,又为3。

第一步:转换(SC×SC)笛卡尔积将垂直的条件展开为水平的条件。

选修课程号为2和3的学生:σ1=4∧2=’2’∧5=’3’(SC×SC)最后取出学生的学号:π1(σ1=4∧2=’2’∧5=’3’(SC×SC))方法二:πSno(σCno=’2’(SC))∩πSno(σCno=’3’(SC))三、差例3 将学生信息(‘95001’,’李勇’,‘男’,20,‘CS’)从Student表删除。

分析:可以将这行数据看成由一个元组构成的表,将Student表与该表进行差运算。

因此,该删除操作可表示为:Student-{‘95001’,’李勇’,‘男’,20,‘CS’}注意:但是当查询涉及到否定或全部值时,上述形式就不能表达了,就要用到差操作或除操作。

例4 求没有选修课程号为2的课程的学生学号。

分析:可以认为是在全部学号中去掉选修课程号为2的课程的学生学号,就得出没有选修课程号为2的学生学号。

由于在并、交、差运算中,参加运算的关系要求是兼容的,故应当先投影,再进行差运算。

πSno(Student)- πSno(σCno=’2’(SC))特别注意,本题不能写为:πSno(σCno≠’2’(SC))。

第四章 数据库设计基础——关系运算

第四章 数据库设计基础——关系运算

3. 交(Intersection) )
R和S
具有相同的目n 相应的属性取自同一个域
R∩S
仍为n目关系,由既属于R又属于S的元组组成 R∩S = { t|t ∈ R∧t ∈S } R∩S = R –(R-S)
An Introduction to Database System
交 (续) 续
An Introduction to Database System
(c)
An Introduction to Database System
1. 选择(Selection) 选择( )
1) 选择又称为限制(Restriction) 2) 选择运算符的含义 在关系R中选择满足给定条件的诸元组 σF(R) = {t|t∈R∧F(t)= '真'} F:选择条件,是一个逻辑表达式,基本形式为:
学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC
Student
学号 Sno 200215121 200215122 200215123 200215125 姓名 Sname 李勇 刘晨 王敏 张立 性别 Ssex 男 女 女 男 (a) 年龄 Sage 20 19 18 19 所在系 Sdept CS IS MA IS
An Introduction to Database System
(b)
专门的关系运算(续 专门的关系运算 续)
SC
学号 Sno 200215121 200215121 200215121 200215122 200215122 课程号 Cno 1 2 3 2 3 成绩 Grade 92 85 88 90 80
200215121 200215121 200215122 200215122

数据库关系运算

数据库关系运算
同的属性名, 但必须出自相同的域集。 R÷S定义形式为: R÷S=πX(R)-πX((πX(R)×S)-R)
第3章 关系运算及关系系统
除法的性质:
(1) R÷S的结果属性是由属于R但不属于S的所有属性
构成的。
(2) R÷S的任一元组都是R中某元组的一部分。 (3) R(X,Y)÷S(Y,Z)≡R(X,Y)÷πY(S)
或构造临时关系T={P2,P4}, 再求
πE#, P#(EP)÷T
第3章 关系运算及关系系统
⑧ 检索参与全部项目职工姓名。
πEN(((πE#, P#(EP))÷πP#(P)) πE#, P#(EP)÷πP#(σE#=′E3′(EP)) E)
⑨ 检索参与项目包含职工E3参与项目的职工号,
或参与项目不包含职工E3所参与项目的职工号及姓名。
第3章 关系运算及关系系统
R÷S=πX(R)-πX((πX(R)×S)-R)
(4) R÷S的计算过程如下:
① T=πX(R);
② W=(T×S)-R;
③ V=πX(W);
④ R÷S=T-V。
【例3.3】 给定关系R和S, 求R÷S。
第3章 关系运算及关系系统
图3.5 除法操作举例
第3章 关系运算及关系系统
然连接。 为了保留更多信息, 还有外连接、 半连接、 外部并-----扩充的关系代数运算。
第3章 关系运算及关系系统
1. 外连接(Outer join) 两个关系 R和 S 作自然连接时, 两个关系
公共属性上值不相等的元组无法进入连接后的
新关系, 造成R和S中部分元组值被舍弃。 有时希望这些该舍弃的元组继续保留在新关系 中-----外连接。
图3.7
S
SC运算结果

数据库关系代数运算例题

数据库关系代数运算例题

数据库关系代数运算例题摘要:1.关系代数简介2.数据库关系代数运算例题详解a.并运算b.交运算c.差运算d.笛卡尔积运算e.投影运算f.选择运算g.连接运算3.总结与展望正文:一、关系代数简介关系代数是一种对关系数据库进行操作的数学理论。

它利用基本的集合运算和关系运算对关系数据库中的数据进行查询、插入、更新和删除等操作。

关系代数的基本运算包括并、交、差、笛卡尔积、投影、选择和连接等。

二、数据库关系代数运算例题详解1.并运算例题1:给定关系R和S,求R并S的结果。

解:设R={1, 2, 3, 4}, S={3, 4, 5, 6},则R并S={1, 2, 3, 4, 5, 6}。

2.交运算例题2:给定关系R和S,求R交S的结果。

解:设R={1, 2, 3, 4}, S={3, 4, 5, 6},则R交S={3, 4}。

3.差运算例题3:给定关系R和S,求R差S的结果。

解:设R={1, 2, 3, 4}, S={3, 4, 5, 6},则R差S={1, 2}。

4.笛卡尔积运算例题4:给定关系R和S,求R与S的笛卡尔积。

解:设R={1, 2}, S={a, b},则R与S的笛卡尔积为{(1, a),(1, b),(2, a),(2, b)}。

5.投影运算例题5:给定关系T,求T中属性A的投影。

解:设T={(1, 2, 3),(2, 3, 4),(3, 4, 5)},则T中属性A的投影为{(1,3),(2,3),(3,5)}。

6.选择运算例题6:给定关系T,求满足条件“属性B大于2”的选择结果。

解:设T={(1, 2, 3),(2, 3, 4),(3, 4, 5)},则满足条件“属性B大于2”的选择结果为{(2,3,4),(3,4,5)}。

7.连接运算例题7:给定关系R和S,求R与S的连接结果。

解:设R={(1, 2),(3, 4)},S={(2, 3),(4, 5)},则R与S的连接结果为{(1,2,3),(3,4,5)}。

关系数据库关系代数运算

关系数据库关系代数运算
组关系演算和域关系演算两类
• 是一种抽象的查询语言
SQL
• 介于关系代数和关系演算之间 • 集DDL、DML和DCL一身的关系数据语言
2.2 关系数据结构的形式化定义
关系模型建立在集合代数基础上,从集合论角度讨论 关系的形式化定义
定义1:域(Domain)-形式化表示为D
• 一组具有相同数据类型的值的集合,如整数、实数等。定义
张三 女
802
李四 男
803
王五 男
804
赵六 女
805
钱七 男
01
19
01
20
01
20
02
20
02
19
专业号 01 02 03
专业名 信息 数学 计算机
关系间的引用
例2 学生、课程、学生与课程之间的多对多联系
学生(学号,姓名,性别,专业号,年龄) 课程(课程号,课程名,学分) 选修(学号,课程号,成绩)
外码说明
关系R和S不一定是不同的关系 目标关系S的主码Ks 和参照关系的外码F必
须定义在同一个(或一组)域上 关于取名
外码并不一定要与相应的主码同名 当外码与相应的主码属于不同关系时,往往取
相同的名字,以便于识别
参照完整性举例
例1:学生实体与专业实体间的关系: 外码 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
04
90
04
88
关系间的引用
例3 学生实体及其内部的领导联系(一对多)
学生(学号,姓名,性别,专业号,年龄,班长)
学号
801 802 803 804 805
姓名
张三 李四 王五 赵六 钱七
性别
女 男 男 女 男

数据库关系代数运算例题

数据库关系代数运算例题

数据库关系代数运算例题
下面是一个关系代数运算的例题:
已知有两个关系表格R和S,分别包含以下字段:
R(A, B, C)
S(C, D)
问题1: 求R和S的笛卡尔积。

解答1: 笛卡尔积可以利用关系代数的乘积运算来表示。

乘积运算使用 ×符号表示,即 R × S。

问题2: 求R和S的并集。

解答2: 并集可以利用关系代数的并运算来表示。

并运算使用∪符号表示,即 R ∪ S。

问题3: 求R和S的交集。

解答3: 交集可以利用关系代数的交运算来表示。

交运算使用∩ 符号表示,即R ∩ S。

问题4: 求R和S的差集。

解答4: 差集可以利用关系代数的差运算来表示。

差运算使用 - 符号表示,即 R - S。

问题5: 求R关于字段A的投影。

解答5: 投影可以利用关系代数的投影运算来表示。

投影运算使用π 符号表示,即π(A)(R)。

问题6: 求R关于字段A的选择条件为A=1的选择。

解答6: 选择可以利用关系代数的选择运算来表示。

选择运算使用σ 符号表示,即σ(A=1)(R)。

问题7: 求R和S的连接条件为R.C=S.C的自然连接。

解答7: 自然连接可以利用关系代数的连接运算来表示。

连接运算使用⨝符号表示,并在连接条件上加上等式。

即 R ⨝(R.C=S.C) S。

第三章-关系代数与关系运算

第三章-关系代数与关系运算

第三章关系代数与关系运算关系数据语言有三类:1.关系代数语言2.关系演算语言(元组关系演算语言、域关系演算语言)3.具有关系代数和关系演算双重特点的语言如SQL一.关系代数关系代数:一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式。

用对关系的运算来表达查询。

运算:将一定的运算符作用于一定的运算对象上,得到预期的运算结果运算三要素:运算符、运算对象、运算结果关系代数的运算对象和结果都是:关系关系代数运算符(四类):集合运算符、专门的关系运算符、算术比较符和逻辑运算符集合运算符:并(U)、差(—)、交(∩)传统的集合运算符——从关系的“水平“方向即行的角度来进行专门的关系运算符:广义笛卡尔积(ⅹ)、选择(σ)、投影(π)、连接、除专门关系运算符不仅涉及行而且涉及列比较运算符:>、<、=、≥、≤、≠逻辑运算符:¬∧∨用来辅助专门的关系运算符二.传统的集合运算符传统集合运算符是二目运算符设关系R和S具有相同的目n(即n个属性),且相应的属性取自同一个域1.并(Union)记作:RUS={t|t∈R∨t∈S}结果仍是n目关系,由属于R或S的元组组成。

例:(a)(b)2.差关系R与S的差记作:R-S={t|t∈R∧t∈S} 结果仍是n目,由属于R而不属于S的所有元组组成。

如图E3.交关系R与S的交记作:R∩S = { t | t∈R∧t∈S }结果仍是n目,由即属于R又属于S的所有元组组成。

如图D 可以用差来表示R∩S=R-(R-S)4.广义笛卡尔积两个分别为n目和m目的关系R和S的广义笛卡尔积是一个(m+n)列的元组的集合。

元组的前n列是关系R的一个元组,后m列是关系S的一个元组。

若R有k1个元组,S有k2个元组,那么关系R与S的广义笛卡尔积有k1 x k2个元组,记作R×S = { t r t s | t r∈R∧t s∈S } 结果是m+n目如图例总结:集合运算符主要研究的是元组,即对表中的行进行研究、操作。

数据库关系代数运算例题

数据库关系代数运算例题

数据库关系代数运算例题(原创版)目录1.数据库关系代数概念2.关系代数运算分类3.关系代数运算例题a.并运算b.交运算c.差运算d.笛卡尔积e.投影运算f.选择运算g.连接运算h.自然连接正文一、数据库关系代数概念数据库关系代数是一种操作数据库中关系的数学方法,它可以在关系数据库中进行数据查询和数据处理。

关系代数基于数学集合代数概念,将数据库中的表看作是关系,通过对关系的操作实现对数据的操作。

二、关系代数运算分类关系代数运算主要分为以下几类:1.并运算:对两个关系进行并操作,返回一个新关系,包含属于任意一个关系的元组。

2.交运算:对两个关系进行交操作,返回一个新关系,包含既属于第一个关系又属于第二个关系的元组。

3.差运算:对两个关系进行差操作,返回一个新关系,包含属于第一个关系但不属于第二个关系的元组。

4.笛卡尔积:对两个关系进行笛卡尔积操作,返回一个新关系,包含所有可能的元组组合。

5.投影运算:对一个关系进行投影操作,返回一个新关系,包含原关系中的部分属性列。

6.选择运算:对一个关系进行选择操作,返回一个新关系,包含满足给定条件的元组。

7.连接运算:对两个关系进行连接操作,返回一个新关系,包含满足连接条件的元组。

8.自然连接:对两个关系进行自然连接操作,返回一个新关系,包含满足自然连接条件的元组。

三、关系代数运算例题1.并运算例题:设有学生表(学号,姓名,性别)和课程表(课程号,课程名),求所有学生的信息。

解答:使用并运算,将学生表和课程表进行并操作,得到一个新关系,包含所有学生的信息以及课程信息。

2.交运算例题:设有学生表(学号,姓名,性别)和成绩表(学号,成绩),求学生的姓名和成绩。

解答:使用交运算,将学生表和成绩表进行交操作,得到一个新关系,包含学生的姓名和成绩。

设有学生表(学号,姓名,性别)和课程表(课程号,课程名),求学生的信息,但不包括选修“数据库原理”课程的学生。

解答:使用差运算,将学生表和课程表进行差操作,得到一个新关系,包含不属于选修“数据库原理”课程的学生的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
BC
b2 c2 b3 c2 b2 c1 b2 c2 b3 c2 b2 c1 b2 c2 b3 c2 b2 c1
关系代数
• 概述 • 传统的集合运算 • 专门的关系运算
.
专门的关系运算
• 选择 • 投影 • 连接 •除
.
1. 选择(Selection)
• 1) 选择又称为限制(Restriction) • 2) 选择运算符的含义
第六讲 关系代数理论
关系数据库模型(3)
.
关系数据库
1. 关系数据模型概述 2. 关系数据模型的结构 3. 关系数据模型的完整性规则 4. 关系代数 5. 关系演算
.
关系模型
1. 关系数据模型的数据结构 2. 关系数据模型的操纵(运算) 3. 关系数据模型的完整性约束
.
关系数据操作
• 关系数据模型的操作
.
含义 运算符 含义
集 ∪并
比 > 大于
合 -差
较 ≥ 大于等于
运 算

∩ ×


广义笛 卡尔积
算 符
< 小于

小于等于 等于
= 不等于
.

概述(续)
表 关系代数运算符(续)
运算符 含义 运算符 含义
专门的 关系
运算符
σ 选择 π 投影
连接
÷除
逻辑运 非 算符 ∧ 与
– 在关系R中选择满足给定条件的诸元组 σF(R) = {t|tR∧F(t)= '真'}
– F:选择条件,是一个逻辑表达式,基本形式为: [( ] X1θY1 [ )][φ [( ] X2θY2 [ )]]…
• θ:比较运算符(>,≥,<,≤,=或<>) • X1,Y1等:属性名、常量、简单函数;属性名也可以用它
R-S
.
ABC a1 b1 c1
3. 交(Intersection)
• R和S
– 具有相同的目n – 相应的属性取自同一个域
• R∩S
– 仍为n目关系,由既属于R又属于S的元组组 成 R∩S = { t|t R∧t S } R∩S = R .–(R-S)
交 (续)
ABC
R a1 b1 c1 a1 b2 c2 a2 b2 c1 ABC
• R∪S
– 仍为n目关系,由属于R或属于S的元组组成 R∪S = { t|t R∨t S }
.
并(续)
ABC
R a1 b1 c1 a1 b2 c2 a2 b2 c1 ABC
S a1 b2 c2 a1 b3 c2
ABC R∪S a1 b1 c1
a1 b2 c2 a1 b3 c2 a2 b2 c1
a2 b2 c1 .
2. 差(Difference)
• R和S
– 具有相同的目n – 相应的属性取自同一个域
•R-S
– 仍为n目关系,由属于R而不属于S的所有元组 组成
R -S = { t|tR∧tS }
.
差(续)
ABC R a1 b1 c1
a1 b2 c2 a2 b2 c1 ABC S a1 b2 c2 a1 b3 c2 a2 b2 c1
.
概述(续)
2.关系代数运算的三个要素
运算对象:关系 运算结果:关系 运算符:四类
.
概述(续)
– 集合运算符
• 将关系看成元组的集合 • 运算是从关系的“水平”方向即行的角度来进行
– 专门的关系运算符
• 不仅涉及行而且涉及列
– 算术比较符
• 辅助专门的关系运算符进行操作
– 逻辑运算符
• 辅助专门的关系运算符进行操作
S a1 b2 c2
ABC
R ∩ S a1 b2 c2 a2 b2 c1
a1 b3 c2
a2 b2 c1 .
4. 广义笛卡尔积(Extended Cartesian Product)
•R
– n目关系,k1个元组
•S
– m目关系,k2个元组
• R×S
– 列:(n+m)列的元组的集合
• 元组的前n列是关系R的一个元组 • 后m列是关系S的一个元组
– 行:k1×k2个元组
• R×S = {tr ts |tr R. ∧ tsS }
广义笛卡尔积 (续)
ABC R a1 b1 c1
a1 b2 c2 a2 b2 c1
ABC S a1 b2 c2
a1 b3 c2 a2 b2 c1
A B CA
a1 b1 c1 a1 a1 b1 c1 a1 a1 b1 c1 a2 R × S a1 b2 c2 a1 a1 b2 c2 a1 a1 b2 c2 a2 a2 b2 c1 a1 a2 b2 c1 a1 a2 b2 c1 a2
– 查询
• 选择、投影、连接、除、并、交、差
– 数据更新
• 插入、删除、修改
.
关系代数
• 概述 • 传统的集合运算 • 专门的关系运算
.
概述
1. 关系代数 2. 运算的三要素 3. 关系代数运算的三个要素 4. 关系代数运算的分类 5. 表示记号
.
概述
1.关系代数 一种抽象的查询语言
用对关系的运算来表达查询
Zx={t[Z]|t R,t[X]=x} 它表示R中属性组X上值为x的诸元组在Z上分量的集合。
.
关系代数
• 概述 • 传统的集合运算 • 专门的关系运算
.
传统的集合运算
•并 •差 •交 • 广义笛卡尔积
.
1. 并(Union)
• R和S
– 具有相同的目n(即两个关系都有n个属性) – 相应的属性取自同一个域
.
概述(续)
(2) A,t[A], A
若A={Ai1,Ai2,…,Aik},其中Ai1,Ai2,…,Aik 是A1,A2,…,An中的一部分,则A称为属性列或 域列。t[A]=(t[Ai1],t[Ai2],…,t[Aik])表示元组t在 属性列A上诸分量的集合。A则表示{A1,A2,…, An}中去掉{Ai1,Ai2,…,Aik}后剩余的属性组。
∨或
.
概述(续)
4.关系代数运算的分类
传统的集合运算
并、差、交、广义笛卡尔积
专门的关系运算
选择、投影、连接、除
.
概述(续)
5.表示记号
(1) R,tR,t[Ai] 设关系模式为R(A1,A2,…,An) 它的一个关系设为R。tR表示t是R的一个元组t[Ai]
则表示元组t中相应于属性Ai的一个分量
.
概述(续)
– (3) tr ts R为n目关系,S为m目关系。tr R,tsS, tr ts称为元组的连接。它是一个n + m列的元 组,前n个分量为R中的一个n元组,后m个 分量为S中的一个m元组。
.
概述(续)
– 4)象集Zx
给定一个关系R(X,Z),X和Z为属性组。当t[X]=x时, x在R中的象集(Images Set)为:
相关文档
最新文档