单核苷酸多态性(SNP)实验

合集下载

单核苷酸多态性(SNP)的研究进展

单核苷酸多态性(SNP)的研究进展
(. 1 东北农 业大学 生命科学学院 , 黑龙江哈尔滨 10 3 2 黑龙 江省农业科 学院博士后工作站 , 50 0;. 黑龙江哈尔 滨 108 3 黑龙江省农 业科学 院耕 50 6;. 作栽培研究所 , 黑龙江哈尔滨 10 8 ;. 5 0 6 4 黑龙江省农业科学院生物技术研究所 , 黑龙江哈尔滨 10 8 5 06)
利用 u / i m colt rae 读 取 , v Vs irpa ed r e 从而 以数 据 的形式 对变
是普遍存 在于生 物基 因组 中的一 种新 型分 子标 记 。该标 记 主 要是 指 在 基 因组 水平 上 由单 个 核 苷 酸 的 变异 而 引起 的 D A序列多态性变 化 , 体是 指在 D A序 列 中的单 个碱 基 N 具 N
wa s d t td igen ce t e muainc u e y teDNA e u n ewi oy r hs c a e tte lv lo e o . T i a e t su e o su y a sn l u loi tto a s db h d s q e c t p lmop im h ng sa h e e fg n me h hsp p ra-
摘要 单核 苷酸 多态性 ( i l N c od o m rh m, P 是 广泛存在 于生物基 因组 中的一 种新型分子 标记 , Sn e ul t e l o i S ) g ei P y p s N 主要是指 在基 因组 水平 上研 究由单个核苷 酸的 变异 而引起的 D A序 列 多态性 变化 的一种技术 。该研 究总结近年 来广为科研人 员所广 泛应 用的 S P技 术及 其 N N 原理 , 以期 为更好地使 用现有技 术和开发 新技 术奠 定理论基础 。 关键词 单核 苷酸 多态, S P ; 基 变异 ; } N )碱 生( 进展 中图分 类号 S 8 文献标识码 A 18 文章编 号 0 1 6 1 (0 2 2 —175— 2 57— 6 1 2 1 ) 1 0 5 0

疾病相关基因SNP的分析与验证

疾病相关基因SNP的分析与验证

疾病相关基因SNP的分析与验证随着技术的不断发展,生物信息学研究也日渐深入。

其中,SNP(单核苷酸多态性)成为研究生物学、药理学和医学中最重要的基因变异类型之一。

SNP分析已经成为了检测疾病和药物代谢的重要方法,而在研究人类遗传学和疾病相关基因中,SNP的应用更是不可或缺。

1. SNP的概念和分类SNP,即单个核苷酸的变异,也被称为基因突变或是基因多态性。

SNP是由单个碱基的变异所引起,通常在全基因组中有约1%的概率。

SNP被广泛应用于评估个体对疾病的易感性、药物代谢和肿瘤发生等领域。

SNP按照其在基因组中的位置分类,可分为外显子SNP、内含子SNP和调控SNP。

外显子SNP指的是存在于基因的外显子区域,可以直接影响蛋白质序列的结构和功能;内含子SNP存在于外显子和调节区域之间,通常对基因功能的影响较小;调控SNP存在于基因调节区域,可以影响基因的转录和表达,进而影响基因的功能。

2. SNP的分析SNP的分析通常包括三个步骤:SNP检测、基因型鉴定和统计分析。

其中SNP 检测是最为关键的一步,目前主要的检测技术有PCR-RFLP法、MassARRAY、SNP-PCR等。

在SNP检测的基础上,需要对检测结果进行基因型鉴定。

常见的基因型鉴定方法有PCR引物延伸分析、限制性片段长度多态性分析、基因芯片以及测序等。

最后,需要进行统计分析。

在统计分析中,最常用的是卡方检验和连锁不平衡分析。

卡方检验被广泛应用于检测基因型频率和疾病之间的关联性,而连锁不平衡分析则可以确定SNP之间的互连性。

3. SNP的验证SNP验证是保证SNP检测结果准确可靠的重要步骤。

SNP验证通常包括三个方面:测序验证、多样性验证和遗传流行病学验证。

测序验证是指通过测序对SNP检测结果进行验证。

这种验证方式直接检测SNP并确定其具体的位置和变异。

然而,测序验证的成本较高,时间较长,因此不适合高通量的SNP检测。

多样性验证是指将SNP检测结果与其他不同个体的SNP检测结果进行比较,以此确认SNP检测结果的可靠性。

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)1 适用范围本标准为检验实验室进行药物靶点基因的检测提供技术指导。

本标准适用的样本包括:全血标本、石蜡包埋组织、干血片、口腔拭子、唾液等。

2 规范性引用文件下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

药物代谢酶和药物作用靶点基因检测技术指南(试行),(2015年国家卫生和计划生育委员会医政医管局国卫医医护便函〔2015〕240号)个体化医学检测微阵列基因芯片技术规范(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)感染性疾病相关个体化医学分子检测技术指南(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)农业部1782号公告-12-2012 转基因生物及其产品食用安全检测蛋白质氨基酸序列飞行时间质谱分析方法卫生部办公厅关于印发《医疗机构临床基因扩增检验实验室管理办法》的通知(卫办医政发〔2010〕194号)3、术语和定义3.1 rs和ss体系SNP由美国国立生物技术信息中心(national center for biotechnologyinformation,NCBI)建立、dbSNP数据库制定的SNP命名体系,rs体系的SNP代表已获得官方认可和推荐的参考SNP(reference SNP),ss体系的SNP代表用户新递交但尚未得到认可的SNP(submitted SNP)。

3.2 单核苷酸多态性(SNP)是指由单个核苷酸-A、T、C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。

3.3 等位基因(allele)一般是指位于一对同源染色体相同位置上控制某一性状的不同形态的一对基因。

若成对的等位基因中两个成员完全相同,则该个体对此性状来说是纯合子。

SNP分析原理方法及其应用

SNP分析原理方法及其应用

SNP分析原理方法及其应用SNP(Single Nucleotide Polymorphism,单核苷酸多态性)是指在基因组中的一些位置上,不同个体之间存在的碱基差异,是常见的遗传变异形式之一、SNP分析是研究SNP在基因与表型之间关联性的方法,用于揭示SNP与遗传疾病、药物反应性等的关系。

本文将介绍SNP分析的原理、方法以及其应用。

一、SNP分析原理1.SNP检测技术:SNP检测技术包括基于DNA芯片的方法、测序技术、实时荧光PCR等。

其中,高通量测序技术是最常用的SNP检测方法,可以同时检测数千个SNP位点。

2.数据分析与统计学方法:通过SNP检测技术获得的数据可以分为基因型数据(AA、AB、BB等)和等位基因频率数据(A频率、B频率等)。

统计学方法常用的有卡方检验、线性回归、逻辑回归等,用于研究SNP与表型之间的关联性。

二、SNP分析方法1.关联分析:关联分析是研究SNP与表型之间关联性的基本方法。

常用的关联分析方法包括单基因型分析、单SNP分析、基因组关联分析(GWAS)等。

单基因型分析主要是比较单个SNP的基因型在表型不同组之间的差异;单SNP分析是研究单个SNP是否与表型相关;GWAS是通过分析数万个SNP与表型之间的关系来找到与表型相关的SNP。

2. 基因型预测:基因型预测是根据已有的SNP数据,通过统计模型来预测个体的基因型。

常用的基因型预测方法有HapMap、PLINK等。

3. 功能注释:功能注释是研究SNP位点的生物学功能,揭示SNP与基因功能、表达水平之间的关系。

常用的功能注释工具有Ensembl、RegulomeDB等。

三、SNP分析应用1.遗传疾病研究:SNP与遗传疾病之间存在着密切的关系。

通过SNP分析可以发现与遗传疾病相关的SNP位点,进一步揭示疾病发生的机制,为疾病的诊断、治疗提供依据。

2.药物反应性研究:个体对药物的反应性往往存在较大差异,这与个体的遗传背景密切相关。

SNP单核苷酸多态性检测技术

SNP单核苷酸多态性检测技术

1定义:单核苷酸多态性( single nucleotide polymorphism,SNP),主若是指在基因组水平上由单个核苷酸的变异所惹起的 DNA 序列多态性。

它是人类可遗传的变异中最常有的一种。

占全部已知多态性的 90%以上。

SNP 在人类基因组中宽泛存在,平均每 500~1000 个碱基对中就有1 个,预计其总数可达 300 万个甚至更多。

SNP 所表现的多态性只波及到单个碱基的变异,这类变异可由单个碱基的变换(transition)或颠换(transversion)所惹起,也可由碱基的插入或缺失所致。

但平时所说的 SNP 其实不包括后两种情况。

单核苷酸多态性( SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。

所谓变换是指同型碱基之间的变换 ,如嘌呤与嘌呤 ( G2A) 、嘧啶与嘧啶( T2C) 间的取代 ;所谓颠换是指发生在嘌呤与嘧啶 (A2T 、A2C 、C2G、G2T) 之间的取代。

从理论上来看每一个 SNP 位点都能够有 4 种不同的变异形式,但实质上发生的只有两种,即变换和颠换,两者之比为 2:1。

SNP 在 CG 序列上出现最为频频,而且多是C 变换为 T ,原因是 CG 中的 C 常为甲基化的,自觉地脱氨后即成为胸腺嘧啶。

一般而言, SNP 是指变异频率大于 1 %的单核苷酸变异。

在人类基因组中大体每 1000 个碱基就有一个 SNP ,人类基因组上的 SNP 总量大体是 3 ×106个。

依照排列组合原理 ,SNP 一共能够有 6 种取代情况,即 A/ G、 A/ T 、A/ C 、C/ G、C/ T 和 G/ T ,但事实上 ,变换的发生频率占多数 ,而且是 C2T 变换为主 ,其原因是 Cp G 的 C 是甲基化的 ,简单自觉脱氨基形成胸腺嘧啶T , Cp G 也所以变为突变热点。

理论上讲,SNP 既可能是二等位多态性,也可能是3 个或4 个等位多态性,但实质上,后两者特别少见,几乎能够忽略。

snp鉴定流程

snp鉴定流程

SNP(单核苷酸多态性)鉴定是研究基因变异和关联分析的重要方法。

SNP鉴定流程主要包括以下几个步骤:
1. 样本收集与DNA提取:从生物体(如血液、组织、细胞等)中提取DNA。

2. 基因组DNA定量:使用spectrophotometer(分光光度计)或其他相关设备,对提取的DNA进行定量,确保实验过程中的DNA浓度一致。

3. 基因组DNA酶切:根据实验需求,选择合适的酶切酶,对DNA进行酶切。

酶切后的DNA片段长度分布均匀,便于后续实验操作。

4. 连接酶切片段与荧光标记的适配子:将酶切后的DNA片段与荧光标记的适配子连接,形成复合物。

该步骤为后续杂交和检测打下基础。

5. 杂交与洗涤:将制备好的复合物在特定设备(如杂交箱)中进行杂交,然后洗涤去除未结合的荧光标记适配子。

6. 荧光检测与数据分析:将洗涤后的样本置于荧光检测设备中,检测荧光信号。

根据荧光信号的强弱,分析样本中的SNP位点。

7. 结果验证与分析:对检测结果进行验证,如PCR扩增、测序等。

进一步分析SNP位点的分布、频率等,探讨其与疾病、表型等因素之间的关系。

实验三单核苷酸多态性的检测

实验三单核苷酸多态性的检测

单核苷酸多态性的检测原理
总结词
单核苷酸多态性的检测原理基于分子生物学技术,如DNA测序、PCR扩增和电泳分离 等技术。
详细描述
目前检测单核苷酸多态性的方法有多种,主要包括直接测序法、单链构象多态性分析、 限制性片段长度多态性分析、变性梯度凝胶电泳和基于PCR的引物延伸技术等。这些方 法均可用于检测基因组中单核苷酸的变异,为遗传学研究和医学应用提供有力支持。
关系。
04
实验结果与数据分析
实验结果展示
实验结果表格
提供了各个样本的单核苷酸多态性位点检测结果,包括基因型、 等位基因频率等数据。
实验结果图
通过条形图、饼图等形式展示了不同样本间的单核苷酸多态性分 布和比较结果。
数据解读
对实验结果表格和图进行了详细的解读,包括各个位点的基因型 分布、等位基因频率等信息。
点样与电泳
将PCR产物点样至电泳介 质上,进行电泳分离。
染色与观察
对分离后的DNA片段进行 染色,以便观察和记录结 果。
结果分析
条带识别
01
根据电泳结果,识别并记录不同样本间的差异条带。
数据分析
02
对数据进行统计分析,比较不同样本间的单核苷酸多态性分布
和频率。
结果解释
03
根据数据分析结果,解释单核苷酸多态性与相关表型或疾病的
掌握实验操作技能
通过实验操作,掌握SNP检测 的实验操作技能,包括DNA提 取、PCR扩增、电泳检测和基 因测序等。
02
实验原理
单核苷酸多态性的定义与特性
总结词
单核苷酸多态性是指基因组中单个核苷酸的变异,包括碱基的替换、插入或缺 失。
详细描述
单核苷酸多态性是基因组中常见的变异形式,通常表现为单个碱基的差异,例 如A、T、C、G之间的替换、插入或缺失。这些变异在人群中具有一定的频率, 并呈现出一定的遗传特征。

细菌snp分型方法原理

细菌snp分型方法原理

细菌snp分型方法原理
《细菌SNP分型方法原理》
细菌的单核苷酸多态性(SNP)分型方法是一种用于研究细菌基因组变异的技术手段。

细菌的基因组包含大量的单核苷酸序列,其中存在着不同基因型之间的多态性。

通过研究这些SNP 位点的变异情况,可以对不同细菌株之间的遗传关系进行分析和比较。

SNP分型方法的原理主要是利用现代生物技术手段,对细菌基因组进行高通量测序,然后对测序数据进行比对和分析。

首先,需要从不同来源的细菌样品中提取基因组DNA,然后通过高通量测序技术对其进行测序。

随后,将得到的测序数据与已有的细菌基因组序列进行比对,找出SNP位点的变异情况,并据此对不同细菌株之间的遗传相关性进行分析。

这种分析方法可以帮助研究人员了解细菌的演化历史、种群结构和毒力等特性。

SNP分型方法的优势在于其高灵敏度和高分辨率。

相比传统的生物学分型方法,SNP分型方法可以对大量的SNP位点进行快速准确地分析,能够更全面地了解不同细菌株的遗传关系。

而且,这种方法还可以通过构建分型树和群聚分析等手段,直观地展现不同细菌株之间的遗传距离和亲缘关系,为细菌毒力评价和疾病溯源提供了重要的科学依据。

综上所述,细菌SNP分型方法是一种现代生物技术手段,能够通过对细菌基因组SNP位点的高通量测序和分析,揭示不同细菌株之间的遗传关系和演化历史。

这种方法在细菌分类鉴定、疾病溯源和医学微生物学研究中具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单核苷酸多态性(SNP)实验
SNP (Single Nucleotide Polymorphism)即单核苷酸多态性,是由于单个核苷酸改变而导致的核酸序列多态性(Polymorphism)。

据估计,在人类基因组中,大约每千个碱基中有一个SNP,无论是比较于度多态性(RFLP)分析还是微卫星标记(STR),都要广泛得多。

实验方法原理:
SNP (Single Nucleotide Polymorphism)即单核苷酸多态性,是由于单个核苷酸改变而导致的核酸序列多态性(Polymorphism)。

据估计,在人类基因组中,大约每千个碱基中有一个SNP,无论是比较于限制性片段长度多态性(RFLP)分析还是微卫星标记(STR),都要广泛得多。

SNP是我们考察遗传变异的最小单位,据估计,人类的所有群体中大约存在一千万个SNP位点。

一般认为,相邻的SNPs倾向于一起遗传给后代。

于是,我们把位于染色体上某一区域的一组相关联的SNP等位位点称作单体型(haplotype)。

大多数染色体区域只有少数几个常见的单体型(每个具有至少5%的频率),它们代表了一个群体中人与人之间的大部分多态性。

一个染色体区域可以有很多SNP位点,但是我们一旦掌握了这个区域的单体型,就可以只使用少数几个标签SNPs(tagSNP)来进行基因分型,获取大部分的遗传多态模式。

实验材料:
组织样品
试剂、试剂盒:
液氮、PBS、GA缓冲液、GB缓冲液、蛋白酶K、无水乙醇、蛋白液、漂洗液等
仪器、耗材:
离心管、离心机、废液收集管、吸附柱、水浴锅、分光光度计、低温冰箱等
实验步骤:
一、DNA抽提
1. 取新鲜肌肉组织约100 mg,PBS漂洗干净,置于1.5 ml离心管中,加入液氮,迅速磨碎。

2. 加200 μl 缓冲液GA,震荡至彻底悬浮。

加入20 μl 蛋白酶K(20 mg/ml)溶液,混匀。

3. 加220 μl 缓冲液GB,充分混匀,37℃消化过夜,溶液变清亮。

加220 μl 无水乙醇,充分混匀,此时可能会出现絮状沉淀。

4. 将上述一步所得溶液和絮状沉淀都加入一个吸附柱CB 中,(吸附柱放入废液收集管中)12 000 rpm 离心30 秒,弃掉废液。

5. 加入500 μl 去蛋白液GD(使用前请先检查是否已加入无水乙醇),12 000 rpm 离心30 秒,弃掉废液。

6. 加入700 μl 漂洗液GW(使用前请先检查是否已加入无水乙醇),12 000 rpm离心30 秒,弃掉废液。

加入500 μl 漂洗液GW,12 000 rpm 离心30 秒,弃掉废液。

将吸附柱CB 放回废液收集管中,12 000 rpm 离心2 分钟,尽量除去漂洗液。

7. 将吸附柱CB 转入一个干净的离心管中,加入100 μl 洗脱缓冲液(洗脱缓冲液应在60-70℃水浴预热),混匀,室温放置15 分钟,12 000 rpm 离心30 秒。

洗脱第二次,将洗脱缓冲液50 μl 加入吸附柱中,室温放置15 分钟,12 000 rpm 离心30 秒。

8. 采用Beckman DU 640 spectrophotometer 检测提取到的基因组DNA 浓度,在OD260 处有显著吸收峰。

同时检测纯度,OD260/280 的值应为为1.7-1.9。

9. 从原液中取出相应体积DNA 溶液,稀释致50 ng/ul,原液置于-70℃保存,稀释液置于-20℃保存。

二、PCR扩增目的片段
1. 按相关的试剂说明在标准反应管中准备反应体系,典型的PCR反应体系如下(20 ul 体系):
2. 向左扳动仪器盖子上的手柄,揭开仪器盖子,小心放置样品管于仪器的相应样品孔中,轻轻盖上盖子,将顶部的旋钮慢慢旋紧,让热盖紧密接触样品管,样品放置完毕。

三、在T1型PCR仪上编辑一个程序
1. 按[C programs]进入编辑模式。

要在主目录中创建一个程序请按[D enter]。

要进入一个子目录,用→键将光标向右移动,然后用↑↓键选择一个子目录。

按[D enter]进入选择的子目录。

2. 输入程序中要求的温度:用[D enter]确认温度。

为其输入时间,用小数点来间隔。

顺序为h.m.s。

用[D enter]确认时间设置,或者用光标键移动到下一个区域。

#表示循环的次数。

设定循环值=总循环值-1,即,总循环数为30时应输入“29”。

用[C pgm ok]来储存一个完整的程序。

程序数据永久的储存在记忆中。

四、运行程序
按[B start/stop]选择一个程序。

用→↑↓键选择一个子目录,或者用[D enter]进入主目录。

输入您想要启动的程序的号码。

或者,按[A list]在该子目录中的所有程序的列表中选择一个程序。

用↑↓键在列表中滚动选择。

用[D enter]确认用强光突出的程序。

按[D start]启动程序。

五、控制测试过程
运行过程中,按A按钮,可以获得程序剩余的时间信息。

运行完成后,按STOP按钮终止实验,按YES确认终止。

小心旋开热盖,按照放置样品的操作顺序,打开盖子,取出实验样品,再盖上盖子,关闭电源,本次实验结束。

六、PCR产物测序
由专门负责测序的服务公司完成。

七、数据分析
少量可人工读取,大量可软件读取。

比对发现的SNP在基因组中的位置:重点是启动子区、外显子区域(包括编码区的cSNP及5’及3’UTR)、剪切边界等,密码子的改变是否导致氨基酸的改变:错义突变、无义突变、终止突变。

注意事项:
1. 为保证待测目的区域测序真实可靠,引物设计应该使待测目的区域边界距离上下游引物至少各50 bp;
2. 引物设计建议使用在线方式,以保证成功率;
3. 为保证测序敏感性,PCR产物片段大小应在250 bp-650 bp范围;
4. 为方便实验,建议引物合成时分装成1 o.d/管,方便将PCR与测序的引物分开;
5. 为保证引物的特异性,建议引物设计后在NCBI上blast确认;
6. 为防止降解,PCR产物应尽快测序,否则应该保存在-20℃,且时间不宜过长;
7. 为保证结果真实性,建议对关键点进行反向测序确认。

相关文档
最新文档