气象数据的“大数据应用”浅析
大数据技术在气象领域的应用研究

大数据技术在气象领域的应用研究气象是一门应用性极强的科学,也是人与自然直接互动的重要领域之一。
现代气象科学依赖于数据的收集、分析和利用,而随着大数据技术在各领域的广泛应用,也给气象领域的研究带来了新的机遇和挑战。
本文将就大数据技术在气象领域的应用研究进行探讨。
一、大数据技术在气象数据处理中的应用大数据技术是一种对海量数据进行自动化的获取、存储、管理、分析、挖掘和利用的技术,它的应用让人们在处理数据时能够快速得到结论,提高了效率和精度。
在气象数据处理方面,大数据技术有着普遍的应用。
传统上,气象数据处理一般采用的是人工干预的方式:对观测数据进行筛选、敲打、修正、推算、通报等处理,这种方法虽然一定程度上提高了数据的精度,但由于人为因素的干扰,处理结果存在较大误差。
而大数据技术能够自动化地获取大量数据,进行自动筛选、去噪、校准、预测等一系列操作,从而消除了人为因素的干扰,得到更加精确的数据。
例如,在气象预测中,采用大数据技术的天气预报系统,不仅可以获取更加全面的观测数据,还可以分析历史数据、气象模型和其它来源的数据,从而提高预测的准确度,并能及时进行预警和安全风险评估等工作。
二、大数据技术在气象模型中的应用除了数据处理外,大数据技术在气象模型中的应用也十分广泛。
气象模型是对大气环境的变化进行数学建模和模拟的工具,它是气象预报和气象研究的重要方法。
而随着数据量的不断增加,大数据技术带来的计算和存储能力的提升,使得气象模型的发展和优化能够更加顺利。
大数据技术可以对模型进行更精细的拟合和优化,通过不断的学习和分析,提高模型的准确性和稳定性。
例如,在气象预报模型中,采用大数据技术可以不断获取新的气象数据,对模型进行反馈和验证,因此可以更加准确的预测气象现象,在提高气象预报精度的同时,也可以为人们采取合理的措施提供科学依据。
三、大数据技术在气象灾害预警方面的应用气象灾害是气象领域中的一个重要研究方向,它与人类生活和生产密切相关,并关系到人们的生命和财产安全。
大数据在气象服务中的应用探微

大数据在气象服务中的应用探微随着大数据技术的发展和应用,气象服务领域也探索着如何充分利用大数据来提升气象预报和服务的精确性和准确性。
下面将从数据采集、数据处理和数据应用三个方面来讨论大数据在气象服务中的应用。
首先,大数据在气象服务中的应用从数据采集角度来看,主要体现在通过多种传感器和设备来采集大气、海洋和地面的实时和历史气象数据。
例如,卫星、雷达、观测站等传感器可以实时地获取大气温度、湿度、风速、降雨量等数据;浮标和船只等设备可以获取海洋温度、盐度、洋流等数据;同时,地面观测站可以采集地面温度、气压、降雪量等数据。
这些大量的实时和历史数据提供了基础,为后续的气象预测和服务奠定了坚实的基础。
其次,大数据在气象服务中的应用从数据处理角度来看,主要包括数据清理、数据存储和数据挖掘等工作。
数据清理是指对采集到的原始数据进行校正、筛选和去除异常值等操作,以提高数据质量和准确性。
数据存储是指将处理后的气象数据进行结构化存储,以方便后续的数据分析和挖掘。
数据挖掘是指利用机器学习和数据分析等技术,从海量的气象数据中挖掘出有用的信息和规律。
例如,可以利用数据挖掘技术对历史气象数据进行分析,找出不同气象要素之间的关系和影响,以提高气象预测的准确性和可靠性。
最后,大数据在气象服务中的应用从数据应用角度来看,主要体现在气象预测和气象服务两个方面。
在气象预测方面,大数据可以帮助提高气象预测的时间精度和空间分辨率。
通过利用大数据分析历史气象数据和实时观测数据,结合先进的气象模型和算法,可以更加准确地预测未来的天气情况。
另外,大数据还可以提供个性化的气象预报和服务。
通过分析用户的位置、兴趣和需求等信息,可以为用户提供定制化的气象预报和服务,例如提醒用户天气变化、推荐出行路线等。
在气象服务方面,大数据可以用于天气预警和灾害监测等方面。
通过对实时气象数据进行分析和处理,可以及时发出天气预警,保护人们的生命和财产安全。
另外,大数据还可以用于灾害监测和应急响应。
气象大数据分析及应用研究

气象大数据分析及应用研究随着气候变化的日趋严重和频繁,对气象数据的需求量越来越大。
气象大数据的分析和应用研究成为了一个备受关注的领域。
通过对气象大数据的深入分析和应用,我们可以更好地了解天气变化的规律,预测天气趋势以及提供有效的应对措施。
在本文中,我们将探讨气象大数据分析及应用的重要性以及一些实际应用案例。
首先,气象大数据分析是指通过运用数据科学和统计学的方法,对气象数据进行深入研究和分析。
这些数据包括气温、降水、风速等多个气象要素,可以覆盖全球各地区的不同时间段。
通过对这些数据进行分析,我们可以发现一些隐藏的规律和趋势,对天气变化进行预测,并为决策者提供重要的参考依据。
其次,气象大数据的应用在多个领域中起到了重要作用。
在农业领域,农民可以根据气象数据来安排种植计划、施肥和灌溉,以提高农作物的产量和质量。
在能源行业,电力公司可以根据天气预测,合理调整发电计划,以确保电力供应的稳定性。
在城市规划领域,政府可以利用气象数据来预测城市气候变化,并制定相应的防灾减灾措施。
此外,气象大数据还可以应用在交通、航空、环境保护等多个领域中,为相关行业提供决策支持和风险评估。
在实际应用中,气象大数据的分析和处理往往需要借助数据科学和机器学习的技术。
通过分析历史气象数据,我们可以建立模型来预测未来的气象变化。
同时,大数据技术的应用可以加快数据处理的速度,提高数据的精确性,为决策者提供更准确的预测结果。
此外,还可以通过数据可视化的方式将复杂的数据呈现出来,帮助决策者更好地理解和利用这些数据。
举一个实际的应用案例来说明气象大数据的重要性。
在日本,由于台风带来的破坏性影响越来越大,政府决定利用气象大数据来进行灾害预防和减灾工作。
他们通过分析历史台风的路径和强度数据,建立了台风移动模型和强度预测模型。
这些模型可以提前几天预测台风的路径和强度,帮助政府和民众做好防范措施。
该项目的成功应用,使得日本在台风期间的准备工作更加有针对性和高效性。
大数据技术在气象学中的应用

大数据技术在气象学中的应用近年来,随着互联网和移动智能设备的普及,我们的生活逐渐数字化。
而伴随数字化的进程,大数据技术在各行各业中的应用也变得越来越广泛。
其中,气象学是大数据技术应用的领域之一。
本文将重点探讨大数据技术在气象学中的应用。
1. 数据采集技术在气象学中,数据采集是非常重要的一步。
大气环境中的数据非常庞大,需要在各种环境下进行收集。
以往的气象数据采集多采用人工观测,效率低下,且准确性不高。
但是,随着大数据技术的不断发展,现在已经可以通过各种传感器、遥感卫星等方式进行更加精确的数据采集。
在实时气象监测方面,露天气象站会收集到大量的关于空气温度、湿度、大气压力、风速和风向、降雨量等信息数据。
以往,数量庞大的数据需要专业工作人员进行处理,并存放在指定的存储设备中。
然而,大数据处理技术可以帮助气象数据处理员更快速地处理大量的数据量。
通过采用高效的大数据采集、处理和分析技术,气象学家现在能够更加准确地描述大气环境并分析天气趋势。
2. 预测技术气象预报是一项非常复杂的任务,因为天气现象具有较高的不确定性。
但是,大数据技术可以通过对历史气象数据和实时数据的分析,更好地预测天气趋势。
气象学家通过大数据处理技术可以建立更加准确的模型,实现精准的气象预测,还可以提供高分辨率的天气预报动态图像。
与此同时,人工智能技术的应用,例如机器学习,也可以帮助改进气象预测的准确性。
3. 气象应急响应天气灾害对人们日常生活和生产经济带来严重损失。
因此,在气象应急响应方面,大数据技术也发挥着越来越重要的作用。
气象应急响应需要进行实时监测和有效预测。
利用大数据技术,气象学家可以进行远程监控,并快速响应气象灾害。
例如,在即将到来的台风、暴雨、雪灾和干旱等自然灾害情况下,通过大数据技术可以实时监测气象数据,及时制定应急计划和采取有效的行动。
这使得在紧急情况下,能够更快地提供救援行动并救助灾民。
4. 气象数据分析大数据技术不仅可以帮助气象学家更好地进行气象预测,还可以帮助分析气象数据,确定气象变化趋势及其对人类生活和天然环境的影响。
大数据分析在天气预报领域的应用

大数据分析在天气预报领域的应用近年来,大数据技术的应用范围越来越广泛,并且产生了越来越多的创新性应用。
在天气预报领域,大数据分析技术也被广泛应用,为气象工作者提供了新的思路和方向。
下面,我们将探讨大数据分析在天气预报领域的应用,以及它为我们日常生活带来的影响。
一、大数据分析在气象领域的应用在气象领域,大数据分析可以帮助我们更准确地预测天气变化。
它通过获取大量的气象数据,并利用机器学习、人工智能等技术进行分析,从而得出更精准的天气预报结果。
首先,大数据分析可以用于对气象数据进行分析。
气象数据不仅包括温度、气压、湿度等基本气象数据,还包括大气污染指数、风速、降雨量等方面的数据。
这些数据可以通过气象探测器、卫星等设备进行采集,并储存在大数据平台上。
大数据分析可以帮助我们发现数据中隐藏的规律和趋势,并从这些规律中提取出有用的信息。
其次,大数据分析可以用于数值预报模型的优化。
数值预报模型是气象预报的核心,它根据当前气象状况、历史气象数据和未来天气预测需求等因素,对未来数天的天气进行预报。
大数据分析可以通过对历史天气数据进行分析,发现出不同地区的气象特征和影响因素,从而帮助气象工作者改进数值预报模型,提高气象预报的准确性。
最后,大数据分析还可以用于天气预警的发出。
在一些极端气候情况下,如暴雨、台风、大雪等,天气预警的及时发出十分关键。
通过分析气象数据、人口密度、交通等因素,大数据分析可以帮助气象工作者更准确地判断可能受灾区域,并及时发出预警信息,使民众做好应急准备。
二、大数据分析给我们生活带来的影响大数据分析在气象领域的应用,让我们对天气预报有了更准确的认识,也体现了信息技术对气象科学发展的推动。
除了气象领域,大数据分析还可以为我们的生活带来许多其他方面的影响。
首先,大数据分析可以帮助我们更好地了解自己。
通过采集和分析个人健康数据,大数据技术可以提供给我们更准确的健康评估结果,进而帮助我们更健康地生活。
与此类似,大数据分析还可以帮助我们更好地管理我们的财务状况、购物习惯、娱乐活动等方面。
大数据技术在气象预测中的应用研究

大数据技术在气象预测中的应用研究当今社会,随着科技的飞速发展,大数据技术在各个领域都得到了广泛的应用。
其中,气象预测作为一项重要的技术领域,也开始采用大数据技术进行研究和应用。
本文将探讨大数据技术在气象预测中的应用研究,并分析其对气象预测准确性的提升和天气灾害预警的改进。
一、大数据技术在气象预测中的应用情况1. 数据收集与整理在气象预测中,各种传感器、卫星和气象站点每天产生大量的观测数据。
大数据技术可以通过快速的数据收集和整理,将这些庞大的数据量进行有效的存储和管理。
与传统的手动观测相比,大数据技术可以极大地提高数据的收集速度和准确性,为后续的气象预测提供更可靠的数据基础。
2. 数据分析与预测模型建立大数据技术可以利用强大的数据处理能力,将海量的观测数据与历史数据进行分析比对。
通过建立数据模型,可以准确地分析和预测不同天气要素(如温度、湿度、风向等)的变化趋势,并根据这些趋势进行天气预测。
3. 基于人工智能的气象预测大数据技术结合人工智能算法,可以对复杂的气象系统进行深度学习和模式识别。
通过对历史数据的分析,大数据技术可以建立起复杂的气象系统模型,从而提高气象预测的准确性。
人工智能算法的引入,使得气象预测不再仅仅依赖于经验和统计方法,而可以更加精确地捕捉到气象系统的变化规律。
二、大数据技术在气象预测中的应用效果1. 提高气象预测准确性大数据技术的应用使得观测数据的收集和分析更加全面和精确。
通过对庞大的数据集进行分析和比对,可以更准确地预测未来的天气变化。
同时,利用大数据技术建立的数据模型和人工智能算法,使得气象预测能够更好地预测和捕捉突发天气现象,提高预测的准确性和及时性。
2. 加强天气灾害预警天气灾害对人类生命和财产安全造成严重威胁,预警系统对于减少灾害损失具有重要意义。
大数据技术可以将大规模的观测数据进行实时监测和分析,并利用人工智能算法,将天气灾害预测和预警系统与地理信息系统相结合,提供准确的天气灾害风险评估和预报预警信息。
气象数据的大数据应用浅析

气象数据的“大数据应用”浅析2014-03-24 17:03:19 作者:国家气象总局沈文海来源:CIO时代网摘要:气象数据在“大数据应用”浪潮中亟待解决的信息技术问题,是海量气象结构化数据的高效应用。
这是气象数据能否参与“大数据应用”的技术基础和前提。
关键词:气象数据大数据1、引言据统计,2011年全球的数据规模为1.8ZB,这些信息将填满575亿个32GB的ipad,以这些ipad做砖石,足可以垒建起两座中国的万里长城。
而到2013 年,仅中国当年产生的数据总量就已超过0.8ZB,2倍于2012年,相当于2009年全球的数据总量。
预计到2020年,中国产生的数据总量将是2013年的10倍,超过8.5ZB.【1】而届时全球的数据总量预计将达到40ZB,如果将这些数据全部刻录成蓝光光盘,则这些光盘的总重量相当于424艘满载荷的尼米兹航空母舰。
数据量暴增的速度令人瞠目结舌,我们的确已进入“大数据时代”.很快地,“地理大数据”、“水利大数据”、“环境大数据”、“金融大数据”、“互联网大数据”乃至“气象大数据”等名词陆续出现在有关媒体上。
“大数据”逐渐成为近来人们谈论最多、思考最多的技术话题之一。
一些人憧憬于“大数据”可能带来的十分珍稀的高价值信息和珍贵商机,也有许多人困惑于目前所知“大数据”的应用范式,以此研判着可能给本行业带来的变化和新的业务契机--气象部门也是如此。
做为抛砖引玉,笔者拟就如下问题提出自己的看法:(1)气象数据是否具备“大数据”的核心特征?(2)业界公认的“大数据应用”的主要形态是什么?(3)“大数据时代”背景下气象数据应用中新的价值领域在何处?需要首先具备哪些必要条件?(4)气象信息技术领域当务之急需要解决的关键技术问题。
2、大数据的现实以及气象数据的体量构成2.1 大数据的行业分布就数据量而言,中国的大数据近期具有如下行业分布特征:(1)互联网公司目前国内的互联网公司,拥有总计约2EB的数据,而其中的互联网三巨头BAT(百度、阿里巴巴、腾讯)占有了其中的3/4(约1.5EB)。
气象大数据的分析与应用

气象大数据的分析与应用随着科技的快速发展和数据技术的日益成熟,气象大数据的分析与应用逐渐成为当今气象领域的热点话题。
本文将探讨气象大数据的定义、来源和意义,以及它在天气预测、灾害预警和气候研究等方面的应用。
一、气象大数据的定义与来源气象大数据是指通过气象观测、卫星遥感、气象雷达等手段获取的大规模数据集合。
这些数据包括气温、降水、风速、湿度等多种气象要素的观测数据,以及云图、降水雷达回波等多种气象图像数据。
现代气象观测设备的发展使得我们能够获取更多、更精确的气象数据,进而为气象大数据的分析与应用提供了更多的可能性。
气象大数据的来源多种多样,主要包括气象观测站、卫星系统和气象雷达。
气象观测站位于地面和海洋上,通过测量气象仪器记录各种气象要素的数值。
卫星系统利用卫星对地球进行遥感观测,获取气象要素的全球分布情况。
气象雷达通过发射微波信号,接收并分析反射回来的信号,得出降水的位置和强度。
这些观测手段将气象大数据不断积累起来,为后续的分析与应用奠定了基础。
二、气象大数据的意义气象大数据的分析与应用具有重要的意义。
首先,它可以提供准确的天气预报。
利用气象大数据可以分析大气环流、云系的演变等信息,从而准确地预测未来一段时间内的天气情况。
这对于农田灌溉、交通运输等方面都具有重要的参考价值。
其次,气象大数据可以帮助进行灾害预警。
利用气象雷达数据和降水观测数据,可以及时发现、预警暴雨、冰雹等极端天气事件,为国家和地方政府提供预警信息,以便采取相应的应急措施,最大程度地减少灾害造成的损失。
另外,气象大数据也对气候研究具有重要意义。
现如今,人们对气候变化越来越关注。
通过分析大量的气象监测数据,可以探究气候系统的运行规律和变化趋势,为气候变化的研究提供科学依据,并为制定应对气候变化的政策和措施提供支持。
三、气象大数据的应用气象大数据的应用广泛而深入。
在天气预报方面,通过分析气象大数据,可以建立气象数值预报模型,实现对未来天气变化的准确预测;同时,基于气象大数据,还可以进行人工智能算法的训练和优化,提高天气预报的准确性和时效性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气象数据的“大数据应用”浅析2014-03-24 17:03:19 作者:国家气象总局沈文海来源:CIO时代网摘要:气象数据在“大数据应用”浪潮中亟待解决的信息技术问题,是海量气象结构化数据的高效应用。
这是气象数据能否参与“大数据应用”的技术基础和前提。
关键词:气象数据大数据1、引言据统计,2011年全球的数据规模为1.8ZB,这些信息将填满575亿个32GB的ipad,以这些ipad做砖石,足可以垒建起两座中国的万里长城。
而到2013 年,仅中国当年产生的数据总量就已超过0.8ZB,2倍于2012年,相当于2009年全球的数据总量。
预计到2020年,中国产生的数据总量将是2013年的10倍,超过8.5ZB.【1】而届时全球的数据总量预计将达到40ZB,如果将这些数据全部刻录成蓝光光盘,则这些光盘的总重量相当于424艘满载荷的尼米兹航空母舰。
数据量暴增的速度令人瞠目结舌,我们的确已进入“大数据时代”.很快地,“地理大数据”、“水利大数据”、“环境大数据”、“金融大数据”、“互联网大数据”乃至“气象大数据”等名词陆续出现在有关媒体上。
“大数据”逐渐成为近来人们谈论最多、思考最多的技术话题之一。
一些人憧憬于“大数据”可能带来的十分珍稀的高价值信息和珍贵商机,也有许多人困惑于目前所知“大数据”的应用范式,以此研判着可能给本行业带来的变化和新的业务契机--气象部门也是如此。
做为抛砖引玉,笔者拟就如下问题提出自己的看法:(1)气象数据是否具备“大数据”的核心特征?(2)业界公认的“大数据应用”的主要形态是什么?(3)“大数据时代”背景下气象数据应用中新的价值领域在何处?需要首先具备哪些必要条件?(4)气象信息技术领域当务之急需要解决的关键技术问题。
2、大数据的现实以及气象数据的体量构成2.1 大数据的行业分布就数据量而言,中国的大数据近期具有如下行业分布特征:(1)互联网公司目前国内的互联网公司,拥有总计约2EB的数据,而其中的互联网三巨头BAT(百度、阿里巴巴、腾讯)占有了其中的3/4(约1.5EB)。
(2)电信、金融、保险、电力、石化系统这些行业及企业数据量分布较为平均,就每个企业(或运营商、部门)而言,大致都拥有10PB以上的数据,且年增量都在PB级以上。
总和则有数百个EB的存储数据和数十EB的年增量。
(3)公共安全、医疗、交通、电子政务领域城市:随着平安城市、智慧城市等工程的推进,监控摄像头遍布大街小巷。
一个中等规模城市每年视频监控产生的数据约300PB.最保守估计(含定期循环清除),每年能够保存下来的数据在数百PB以上。
交通:飞机航班往返一次产生的数据达TB级。
列车、水陆路运输每年产生并保存下来的各种数据视频、文本类数据约达数十PB.卫生:整个医疗卫生行业,一年保存下来的数据可达到数百PB.电子政务:一个智慧城市的电子政务所产生的数据每季度约达200PB.而调查显示,未来1~2年中国政府部门的数据规模超过100TB的将达到53.3%,有将近三成(33.3%)的用户数据规模是10~50TB.(4)其他,商业销售、制造业、农业、物流和流通等领域随着产业互联网的普及,(线下)商业销售、制造业、农林牧渔业、(线下)餐饮、食品、科研、物流运输等等这些传统行业的数据量将呈现迅速增长态势,但目前这些行业数据量尚处于积累期,体量不大,多的达到PB级别,基本约近百TB甚至数十TB级别。
【2】(5)气象数据气象部门需要永久保存的数据目前约4~5PB,年增量约1PB.由此可见,以数据量而言,在整个大数据市场中,新兴的互联网行业巨头BAT,以及电信、金融、保险等行业占据比重较大。
相对而言,气象数据无论总量还是增量,较这些数据大户至少低3个数量级。
2.2 大数据的特征早在2012年,业界便已就大数据在体积、类型、速度和价值这四个方面的特征达成了共识,即所谓大数据的4V特征:Volume(大体积):体积巨大是大数据的最根本的特征,体积不足够大,任何数据都不能称之为“大数据”.一般而言,大数据的起始计量单位至少是PB、EB或ZB级别。
Variety(多样性):类型和来源渠道繁多是大数据的第二个特征。
大数据非但体积巨大,而且内容繁杂,数据种类繁多,包括网络日志、音频、视频、图片、地理位置信息等等;这些种类繁杂的数据来源于多种不同的渠道。
多类型的数据对数据的处理能力提出了更高的甚至全新的要求。
Velocity(高速度):生成速度快,处理时效要求高,这是大数据区分于传统数据采集、汇聚、处理乃至数据挖掘等方面最显着的特征。
Value(价值稀薄):数据价值密度相对较低,这是大数据的第四个特征。
根据业界专家的看法,大数据里蕴藏着的信息无所不包,任何人所需要的任何信息,都可以从大数据里寻找到。
只是这些信息隐藏在大数据的汪洋大海之中,寻之如同大海捞针,人们需要研究出类似沙里淘金的办法,才能在有效的时间内将所需信息寻找到。
因此如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
当然,还有一些人将对大数据“Value”的理解确定在“价值丰富”的层面上;而最早提出“大数据”概念及特征的Gartner 公司和麦肯锡公司,甚至至今仍坚持特征“3V”(Volume、Variety、Velocity)论,认为“Value”不能作为大数据的特征【3】。
限于篇幅,不予展开讨论。
需要注意的是,在此“4V”(或“3V”)特征中,“Volume”(体量巨大)仅仅是成为大数据的必要条件,而非充分条件,如同 30mm的日降水,在我国东南沿海地区十分平常,但在西北地区却可算罕见大雨,所以体量大小是相对的。
事实上,大数据概念的提出绝非仅因为数据量的暴增,而且是因为数据已多得用传统方法无法应对或处理,导致人们必须采用新的方法、新的思路乃至新的理念予以应对。
如果数据量虽大,但却能够处理和掌控,便不能称其为“大数据”.因此,“4V”对于大数据而言,既是特征,也是考量的四个维度。
2.3 气象数据的体量种类分布气象资料种类较多,就体积而言,其中的地面观测、气象卫星遥感、天气雷达和数值预报产品四类资料占据总量的90%以上,其中:地面观测资料:因二十一世纪以来观测方法从人工观测改进为自动观测,摆脱了人类居住条件限制的制约,台站数由本世纪初的不到3,000个,迅速扩展到目前的40,000多个,观测频度由最初的3小时/次调整到目前的5分钟/次,因而导致资料量呈几何倍数增涨,月增量由最初的约240MB猛增到现在的约2.4TB,增幅约4个数量级。
根据防、减灾以及气象服务的需要,未来扩建计划有可能将台站数继续扩增至70,000到100,000个,观测频度有可能继续加密到1分钟/次;因此未来六年内该类资料总量有可能在现有基础上再行扩增1~2个数量级,由现在的每天数百万条记录增至超过一亿条记录/天。
天气雷达资料:按照《天气雷达近期发展规划(2005-2010)》以及《气象发展规划(2011-2015)》中“新一代天气雷达建设增补站点布局方案”,目前在全国已布设约200部不同波长的多普勒天气雷达,并为达到雷达资料全社会共享的目的,已基本实现7×24小时全天候不间断观测;日增总量约300GB.气象卫星资料:根据《我国气象卫星及其应用发展规划(2011~2020年)》,至2020年,我国计划发射11颗气象业务卫星,包括3颗风云二号03批卫星,3颗风云三号上午星、2颗风云三号下午星、1颗降水测量雷达星以及2颗风云四号光学星。
此外还将在2020年前发射2颗气象试验卫星。
【数据量待补充】目前的日增总量约数百GB,未来有可能增加到数TB/日。
数值预报产品:与地面观测、气象卫星和天气雷达等气象观探测资料不同,气象数值预报模式资料属于气象观探测资料的加工产品。
以GRAPS、T639为代表的天气预报模式,以及以BCC_CSM2、DERF2.0为代表的气候预测模式,每天都在实时运行,不断产生着数以万计的各类要素场,以供国家级、省级乃至区域级预报员参考使用,日增量接近TB级。
在上述四类数据之外,气象资料尚有高空探测、地面农气观测、沙尘暴观测、闪电定位观测、风廓线雷达探测等等许多种,但就体积而言,较上述四类资料至少低一个数量级,难以将其称之为“大数据”.因此,如果就体积而言,气象资料可勉强算得上“大数据”,也是因为地面观测、气象卫星、天气雷达和数值模式这四大金刚将气象资料的体积撑大而成的。
3、“气象大数据”的特征分析气象数据的体积虽大,却有其独特的特征:(1)体积虽大但总量可控这里对地面观测、气象卫星遥感、天气雷达和数值预报产品这四类体量最大的气象数据进行分析:地面观测资料数据量剧增的原因,是站点数的增加和观测频度的大幅加密。
然而,这种台站规模的扩充和观测频次的加密是基于预报和服务需求,经过严格科学论证,有计划有步骤逐步推进的;在观测台站达到一定密度,观测频度足以满足气象业务需求后,台站数不会无限制持续增加,观测频度更不会无节制地永远加密下去,因此总量既是可预测的,更是可控的。
对天气雷达而言,布网工作已基本完成,雷达总量不会有成倍数的增加。
而且目前的天气雷达已基本实现7×24小时全天候不间断观测。
因此天气雷达的资料量(年增量),将稳定相当长一段时间,而不会有倍数的增量变化。
未来数年内,我国还将发射数颗气象卫星,每颗卫星都会产生数百TB级的数据年增量。
为满足气象卫星资料的应用时效,国家卫星气象中心针对每一颗气象卫星,都建有相应专属的地面接收处理系统,已完全实现所有气象卫星遥测遥感资料的实时接收处理。
因此气象卫星数据目前虽以每年数百TB的量级增长,而且规模有可能继续扩大,但却始终处于可控可管和完全可用状态。
数值预报模式产品资料是各级预报员最重要的预报参考资料,这些产品甫一生成,便即刻送达天气预报、气候预测专家的桌面,供其业务参考使用;同时以满足业务需求的时效,分发至各省级乃至地市级气象部门,供其本地化应用。
因此与气象卫星资料相类似,数值预报产品资料体积虽大,却始终处于可控可管和可用的状态,未来也将始终如此。
因此,气象资料体积虽大,在量级上算得上“大数据”,但却始终处于可控可管可用状态。
(2)种类虽多但内部信息单纯,来源单一按照行业标准《气象资料分类与编码》,气象资料分为14大类,计有数百种之多【4】。
该标准基本涵盖了气象资料的所有内容。
所以就内容而言,气象资料在目前及可预见的未来,超不出该行标所规定的范围。
数百种的气象资料种类虽多,但每种资料所含信息却十分单纯:土壤持水量只记载某时某地某规定土壤深度中水份的持有程度,“云能天”只记录某时某地的云量云状、能见度以及天气现象等信息。
这与互联网大数据如电子邮件、微信、微博中所包含的社会百态、生老病死、喜怒哀乐、柴米油盐酱醋茶等所有信息有很大差异。