第六章_橡胶弹性ppt课件

合集下载

第六章橡胶弹性ppt课件

第六章橡胶弹性ppt课件

121
Q5/3
溶剂的摩 Hunggins 尔体积 parameter
编辑版pppt
43
应用
Mc
2Vm,1
121
Q5/3
(1)得到 Hunggins 参数 (2)测定交联点间的分子量 (3)交联度同即溶涨后体积的定量关系。
编辑版pppt
44
6.4热塑弹性体 Thermoplastic elastomer(TPE)
第i个网链变形前后的熵变
S i S i d S i u k i 2 [1 2 ( - 1 i2 ) (2 2 x - 1 i 2 ) (3 2 y - 1 i2 ] )
试样的总熵变
假设3:交联网的构象数是各个单独网链的构象数的乘积
N
Ω =∏ Ωi
i=1
S=klnΩ
S
=
N

Si
i=1
N
△S = ∑ △ Si
i=1
N
S k i2 [(1 2-1i2 ) x (2 2-1i2 ) y (2 3-1i2 )]z
i 1
编辑版pppt
26
试样的总熵变
N
S k i2 [(1 2-1i2 ) x (2 2-1i2 ) y (2 3-1i2 )]z i 1
取平均值
S k2 [ N 1 2 ( - 1 x 2 ) (2 2 - 1 y 2 ) (2 3 - 1 z 2 ])
-橡胶状态方程3
E – 初始杨氏模量;G -初始剪切模量
E3N1k
T GNk 编辑版pppt
1
T
34
橡胶状态方程总结
N1k
T( 1) 2
橡胶状态方程1
M RcT(12) 橡胶状态方程2

高分子物理第六章

高分子物理第六章
2
一、橡胶
Rubber products
3
What is rubber?
Nature rubber-PI Synthesize rubber
CH2 C CH CH3 n CH3
•Polybutadiene •Polyisobutylene •Polychloroprene
4
The definition of rubber
12
第一节
形变类型及描述力学行为的基本物理量
13
6.1.1 基本概念
应变:当材料受到外力作用而所处的条件却使其不能产生惯性位 移,材料的几何形状和尺寸将发生变化,这种变化就称为~~
附加内力:材料发生宏观变形时,其内部分子以及分子内各原子间 的相对位置和距离发生变化,致使原子间或分子间的原有引力平衡 受到破坏,因而将产生一种恢复平衡的力,这种力简称~~
8
(2)高聚物的黏弹性
指高聚物材料不但具有弹性材料的一 般特性,同时还具有粘性流体的一些 特性。弹性和粘性在高聚物材料身上 同时呈现得特别明显。
9
三、橡胶的交联
PB cross-linked
Crosslinking is when individual polymer chains are linked together by covalent bonds to form one giant molecule. 10
dU =TdS-PdV+fdl
fdl =-TdS
dQ=TdS
fdl =-dQ
拉伸 dl>0, dS<0
dQ<0 拉伸放热
回缩 dl<0, dS>0
dQ>0 回缩吸热
42

第六章 橡胶弹性

第六章 橡胶弹性

上式的物理意义:外力作用在橡胶上,使橡胶的内能和熵随着 伸长而变化。或者说,橡胶的张力是由变形时内能和熵发生变 化引起的。
Company Logo
Logo
讨论
U S f T l T ,V l T ,V
T (6-12)
Company Logo

Logo
常见材料的泊松比 泊松比数值 解 释
0.5 0.0
不可压缩或拉伸中无体积变化
没有横向收缩
0.49~0.499
0.20~0.40

橡胶的典型数值
塑料的典型数值
Company Logo
U l T ,V
直线的截距为:
结果:各直线外推到T=0K时, U 0 几乎都通过坐标的原点 l T ,V
Company Logo
Logo
外力作用引起熵变
说明橡胶拉伸时,内能几乎不变,而主要引起熵的变化。 就是说,在外力作用下,橡胶的分子链由原来的蜷曲状 态变为伸展状态,甚至结晶,熵值由大变小,终态是一 种不稳定的体系,当外力除去后就会自发地回复到初态。 这就说明了为什么橡胶高弹形变是可回复的。
Logo
三、 橡胶的使用温度范围
Tg是橡胶使用温度下限,分解温度Td是使用温度上限。 (一)改善高温耐老化性能,提高耐热性 橡胶主链结构上常含有大量双键,橡胶在高温下,易 发生臭氧龟裂、氧化裂解、交联或其它因素的破坏, 不耐热,很少能在120℃以上长期使用。 1、改变主链结构 (1)使主链上不含或无双键,因双键最易被臭氧破 坏断裂;而双键旁的次甲基上的氢易被氧化,导 致裂解或交联。如乙丙橡胶、丁基橡胶或硅橡胶等 均有较好的耐热性。 (2)主链由非碳原子组成,如由Si-O组成,硅橡胶 可在200 ℃以上长期使用。

非线性弹性橡胶弹性.ppt

非线性弹性橡胶弹性.ppt

将(2),(3)代入(1)得到dU TdS PdV fdl (4)
由泊松比知,橡胶在伸长过程中体积几乎不变,dV 0 dU TdS fdl或者fdl dU TdS
f


U l
T ,V


S l
T
,V
(5)
上式表明f 的作用可分为两部分 : 一部分用于体系内能的
4.0
=1.42
3.0
300
320
340
TK
图5 天然橡胶在不同拉伸比下的张力-温度关系
由图可得到如下的结果:
(1)不同拉伸比的直线的斜率并不相同,拉伸比增大时,斜
率也增大.表明形变增大时,张力的温度敏感性变大.同时
由于
f S T l,V l T ,V
顺丁橡胶 天然橡胶 丁苯橡胶 丁基橡胶 乙丙橡胶 丁腈橡胶 氯丁橡胶
其他还有氟橡胶, 聚氨酯橡胶属于弹性体
Rubber Products
The definition of rubber
• 施加外力时发生大的形变,外力除去后可以回复的
弹性材料
• 橡胶、塑料、生物高分子在Tg~Tf间都可表现出一定
的高弹性
所以在形变增大时,单位长度增加所引起的熵下降也变大.
(2)不同拉伸比所得到的直线外推至0K时,截距几乎都为0.
U l
T ,V
0
即 U 0 l T,V
有f T f T S (8)
T l,V
l T,V
这就是说在外力作用下,橡胶的分子链由原来的蜷曲状 态(S1)变为伸展状态(S2),熵值由大变小 △ S = S1- S2 > 0 说明形变终态是个不稳定的体系,当外力除去后,就会 自发的回复到初态,这说明为什么橡胶的高弹形变可恢 复。同时说明高弹性主要是由橡胶内熵的贡献

6橡胶弹性

6橡胶弹性

能弹性
晶体材料变形时,原处于平衡结点上的原子沿 应力方向伸长,原子间的引力加大,内能增加。载 荷去除后内能自发减小的过程将使变形回复。由于 晶体材料变形时微观有序度基本不变,则熵值基本 不变。
熵弹性的特点(与能弹性相反):
1)应力和应变之间不保持单值、唯一的关系,与加载 路径有关;
2)弹性形变与时间有关,即弹性形变不是瞬时达到的; 3)弹性变形量大,一般在100%~1000%之间; 4)弹性模量较小; 5)绝热伸长时变热(放热),回复时吸热。
泊松比 0.21
0.25~0.33 0.31~0.34 0.32~0.36
0.45 0.5
材料名称 玻璃 石料
聚苯乙烯
低密度聚乙烯
赛璐珞 橡胶类
泊松比 0.25
0.16~0.34 0.33 0.38 0.39
0.49~0.5
泊松比数值
解释
0.5 0.0 0.49~0.499 0.20~0.40
缠结点 缠结点受聚合物分子量和温度的限制!!!!
缠结点??????
1)缠结点如何通过限制分子链的滑移起到临时交联点的作用? 2)缠结点为什么只能在一定的温度范围内限制分子链的滑移? 3)缠结点为什么只能在一定的时间范围内限制分子链的滑移? 4)不同结构的聚合物的橡胶态温度与时间范围有何不同? 5)不同分子量的聚合物的橡胶态范围有何不同? 6)临时橡胶的运动特征和“永久”橡胶有何不同?
Dunlop Tire
Michelin Tire
中文定义
THE DEFINITION OF RUBBER
施加外力时发生大的形变、外力除 去后可以恢复的弹性材料称为橡胶
Rubber is a polymer which exhibits rubber elastic properties, i.e. a material which can be stretched to several times its original length without breaking and

第六章橡胶弹性知识讲解

第六章橡胶弹性知识讲解

dU=TdS+fdl
f
(
U l
) T, V
T
(
S l
)
T,
V
等温等容条件的热力学方程:
f ( U ) T ( S )
l T,V
l T,V
物理意义:
橡胶的张力是由于变形时,内能发生变化 和熵变化而引起的。
f (U ) T (S )
l T, V
l T, V

(
S l
) T, V
变为容易测得的物理量
λ2
Z
λ3
第i个网链第i个网链变形前的构 象熵
Siu C ki2(xi2 yi2 zi2 )
Y
变形后的构象熵
Sid C ki2(12xi2 22yi2 23zi2 )
(xi,yi,zi) (λ1xi,λ2yi,λ3zi)
X
第i个网链变形前后的熵变
Si Sid Siu ki2[(12 -1)xi2 (22 -1)yi2 (32 -1)zi2 ]
3.温度升高,模量增加。 4.形变时有明显的热效应。 5.形变具有时间依赖性(称为力学松弛)。
6.2 橡胶的热力学分析
热力学体系: 橡皮试样 环境: 外力(单轴拉伸) 依据: 热力学第一定律dU=dQ+dW
热力学第二定律dQ=TdS
dU=dQ+dW
dQ=TdS
dW=fdl-pdV
dU=TdS+fdl-pdV, dV≈0 ,
第6章 橡胶弹性
6.1描述力学行为的基本物理量 6.2橡胶弹性的热力学分析 6.3橡胶弹性的统计理论
6.1 材料力学基本物理量 (理解)
应变
材料受到外力作用,它的几何形状发生变化,这 种变化叫应变。 附加内力 材料发生宏观形变时,使原子间或分子间产生附 加内应力来抵抗外力,附加内力与外力大小相等, 方向相反。 应力 单位面积上的附加内力为应力,单位Pa。

高分子物理课件6橡胶弹性


B P
B PV0 V
6 橡胶弹性
对于各向同性的材料,通过弹性力学的数学 推导可得出上述三种模量之间的关系
E 2G(1 ) 3B(1 2 )
泊松比 :
定义为拉伸实验中 材料横向应变与纵 向应变的比值之负
m / m0
l / l0
T
数。反映材料性质
的重要参数。
6 橡胶弹性
泊松比数值
橡胶拉伸形变时外力的作用主要只引起体系构象熵的变化 而内能几乎不变──熵弹性
橡胶弹性热力学的本质:熵弹性
6 橡胶弹性
橡胶弹性热力学的本质:熵弹性
拉伸橡胶时外力所做的功 主要转为高分子链构象熵的减小
体系为热力学不稳定状态 去除外力体系回复到初始状态
6 橡胶弹性
熵弹性本质的热效应分析
热 dU=0
dV=0
6 橡胶弹性
重点及要求:
橡胶状态方程及一般修正;一般了解“幻影网络” 理论和唯象理论;熟习橡胶和热塑性弹性体结构 与性能关系
教学目的:橡胶是高分子材料的最大种类之一,
研究其力学行为与分子结构和分子运动之间关系 具有重要的理论和实际意义 。通过本讲的学习, 可以全面理解和掌握橡胶弹性产生的理论原因及 在实际中的应用。
6 橡胶弹性
Similar to which type of materials?
橡胶弹性与 弹性相似,都是 弹性,弹性 模量随温度升高而 。
气体 液体 固体
6 橡胶弹性
橡胶弹性的统计理论和唯象理论
本讲内容: ➢橡胶弹性的统计理论 ➢橡胶状态方程 ➢橡胶状态方程的一般修正 ➢“幻象网络”理论 ➢唯象理论 ➢影响因素 ➢热塑性弹性体
平衡时,附加内力和外力相等,单位面积上的附加内力 (外力)称为应力。

第六章 橡胶弹性


dG=VdP-SdT+fdl
恒温恒压下:
当dT=0 dP=0时,
恒形变恒压下:
当dL=0 dP=0时,
所以恒温恒容下:
u S u f f ( )T .V T ( )T .V ( )T .V T ( )l .V l l l T
热力学方程之二
二、熵弹性的分析
将NR拉伸到一定拉伸比或伸长率在保持λ不变下 测定不同温度(T)下的张力(f)作f—T图 f/Mpa
高弹形变时分子运动需要时间
6、形变过程有明显的热效应
橡胶:急速拉伸——放热 ; 任其回缩——吸热
原因:a.蜷曲→伸展,熵减小,放热,b.分子摩擦放热,c.拉伸结晶,放热
6.1 形变类型及描述力学行为 的基本物理量
单轴拉伸
拉伸 Tensile 剪切 Shear
Uniaxial elongation
双轴拉伸
内能变化 熵变化
热力学方程之一
物理意义:外力作用在橡胶上
使橡胶的内能随伸长变化 使橡胶的熵变随伸长变化
u S f ( )T .V T ( )T .V l l
变换如下: 根据吉布斯自由能 G=H-TS
等式右边都是不易测定的量, 能否作些变通?
H=U+PV
G=U+PV-TS 对微小变化: dG=dU+PdV+VdP-TdS-SdT dU=TdS-PdV+fdl dG=VdP-SdT+fdl
2 2 2 2 第i个网链形变前熵 Si C K ( xi yi zi )
形变后熵
Si C K 2 ( 21 xi 2 2 2 yi 2 32 zi 2 )
第i个网链形变的熵变为:

高分子物理6 橡胶弹性


dV≈0
由 H=U+pV
H U l T ,P l T ,P
dH=dU+pdV
≈dU
(8)
再按照热力学定义
G H TS U PV TS
dG dU PdV VdPTdS SdT
将 dU TdS PdV fdl
dG fdl VdP SdT
所以
G f l T ,P
G S T l,P
上式的物理意义:外力作用在橡胶上,一方面使橡胶的
焓随伸长变化而变化,另一方面则引起橡胶的熵随伸长变
化而变化
这里需要说明一点,大多数参考书 张开/ 复旦大学 何
曼君 / 华东理工大学等书上都是:
f U T S
l T ,P
l T , p
上述两式实际上是一回事,因为橡胶在拉伸时,υ=0.5,
模量。 ②在不太大的外力作用下,橡胶可产生
很大的形变,可高达1000%以上,去除 外力后几乎能完全回复,给人以柔软而 富有弹性的感觉
③ 形变时有明显的热效应,绝热拉伸时 高聚物放热使温度升高,回缩时温度降 低(吸热)拉伸过程从高聚物中吸收热 量,使高聚物温度降低。
此外,拉伸的橡胶试样具有负的膨胀系 数,即拉伸的橡胶试样在受热时缩短 (定拉伸比)。
温度升高,分子链内各种运动单元
的热运动愈趋激烈,回缩力就愈大,因 此橡胶类物质的弹性模量随温度升高而 增高。
2)橡胶弹性与大分子结构的关系
① 链柔性:好 橡胶高分子链柔顺性好,内旋转容易。 如:硅橡胶(硅氧键) -Si-O- 顺丁橡胶(孤立双键)-C-C=C-C-
② 分子间作用力:小
如果聚合物分子链上极性基团过多,极 性过强,大分子间存在强烈的范德华力 或氢键,降低弹性。橡胶一般都是分子 间作用力较小或不含极性基团的化合物, 如天然橡胶、顺丁橡胶等。

7第六章橡胶弹性


(3)物理量的相互关系
对于各向同性材料
对于弹性体,理想不可压缩物体变 形时,体积为零,υ=0.5
6.2 橡胶与橡胶弹性的概念
橡胶 ASTM标准:20~70 C下,1min可拉伸2倍的试样,当 ASTM标准: 20~ 1min可拉伸 外力除去后1min内至少回缩到原长的1.5倍以下者,或 1min内至少回缩到原长的 1.5倍以下者,或 6 7 者在使用条件下,具有10 ~10 Pa的杨氏模量者 Pa的杨氏模量者 橡胶弹性(高弹性) 橡胶弹性是指以天然橡胶为代表的一类高分子材料表 现出的大幅度可逆形变的性质 橡胶、塑料、生物高分子在Tg~Tf间都可表现出一定的高弹性 高分子材料力学性能的最大特点:高弹性和粘弹性
(2)三种不同模式下的应力和应变
A. 拉伸应变
Ⅰ拉 伸
拉伸作用力产生的应变,叫做“拉伸应变”,用单位长 度的伸长来表示 小伸长时:用材料的起始尺寸作为标准,应变关系式 如下,叫做“工程应变”、“习用应变”
大形变时:其关系式为δ= ㏑(l/l0),叫做“真应变”。
B. 拉伸应力:
材料受到的外力是垂直于截面积的、大小相等 而方向相反的、作用于同一直线的两个力,这 种外力叫做“拉伸力”,所对应的应力叫做“拉 伸应力”。 小形变时:又叫“习用应力”或“工程应力”,截面积用 起始截面积表示,关系式为;
弹性模量小的原因长链有卷曲到伸展长链有卷曲到伸展链柔性好分子间吸引力小受力时分子链就易变形橡胶在伸长时会放热回缩时会吸热橡胶发生形变需要时间时间依赖性这是因为链橡胶发生形变需要时间时间依赖性这是因为链段的运动需要克服分子间的内摩擦力达到平衡位置段的运动需要克服分子间的内摩擦力达到平衡位置需要一定的时间需要一定的时间橡胶具有热弹效应橡胶具有热弹效应具有明显的松弛特征具有明显的松弛特征6565高弹性的高分子结构特征高弹性的高分子结构特征1分子链的柔性分子链的柔性橡胶类聚合物都是内旋转比较容易位垒低的柔性高分橡胶类聚合物都是内旋转比较容易位垒低的柔性高分子橡胶类聚合物的内聚能密度一般在子橡胶类聚合物的内聚能密度一般在290kjcm3290kjcm3比塑料比塑料和纤维类聚合物的内聚能密度低得多和纤维类聚合物的内聚能密度低得多2分子间的相互作用分子间的相互作用分子间作用力较小的非极性聚合物分子间作用力较小的非极性聚合物材料之所以呈现高弹性是由于链段运动能比较迅速的适应所受外力而改变分子链的构象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)模量modulus,柔量compliance

模量:指材料抵抗外力发生形变的能力 大小的物理量。

柔量:在外力作用下能够发生形变的能 力大小的物理量。
Modulus - the ability of a sample of a material to resist deformation.
形变类型
形变量大(WHY?长链,柔性)
弹性形变量可高达1000%
弹性模量小,高弹模量约105N/m2
一般聚合物109N/m2,金属1010-11 N/m2
弹性模量随温度升高而增大
晶体材料的弹性模量随温度升高而减小。
形变有热效应——快速拉伸放热,形变回复吸热
金属材料与此相反。

晶体材料的弹性模量随着温度的升高而减小。
Stress - the amount of force exerted on an object, divided by the cross-sectional area of the object. The cross-sectional area is the area of a cross-section of the object, in a plane perpendicular to the direction of the force. Stress is usually expressed in units of force divided by area, such as N/m2.
Rubber Products
具有橡胶弹性的条件:
柔性长链
使其卷曲分子在外力作用下通过链段 运动改变构象而舒展开来,除去外力 又恢复到卷曲状态
适度交联
可以阻止分子链间质心发生位移的 粘性流动,使其充分显示高弹性
Molecular movements
具有橡胶弹性高弹性特点
张应变
张应力
l l0 Dl e l0 l0 F A0
真应变 真应力
dl l ln l0 l l0
简单拉伸
基 本 的 形 变
tensile
形状改变而
体积不变
简单剪切 shear
本体压缩 compression
体积改变而 形状不变

材料受力方式不同,发生形变的方式亦不同, 材料受力方式主要有以下三种基本类型:
(i)简单拉伸(simple elongation,drawing, tensile): 材料受到一对垂直于材料截面、大小相等、方 向相反并在同一直线上的外力作用。
态,当加热时,有利于单键的内旋转,使之因
构象数增加而卷曲,所以在保持外界条件不变 时,升温会发生回缩现象。
橡胶兼有固、液、气三种物质的性质

固体:小形变,外观、尺寸一定,虎克定律(应力 -应变关系) 液体:热力学参数与液体一致。膨胀系数,等温压 缩系数与液体有相同数量级,泊松比=0.5 气体:弹性模量,随温度的上升而增加(气体的压 强随温度升高而增加。) 与木材、金属相反(低温下模量大)


及描述力学行为的 本物理量
聚合物的力学性能指的是其受力后的响应, 如形变大小、形变的可逆性及抗破损性能等, 这些响应可用一些基本的指标来表征。
描述力学性质的基本物理量
(1)应变strain与应力stress

材料在外力作用下,其几何形状和尺寸所发 生的变化称应变或形变,通常以单位长度(面 积、体积)所发生的变化来表征。
施加外力时发生大的形变,外力除去后可 以恢复的弹性材料.

美国材料与试验协会标准(ASTM): American Society for Testing and Materials

橡胶的定义: 20-27℃下,1min可拉伸2 倍的试样,当外力除去后1min内至少回缩 到原长的1.5倍以下者或者在使用条件下, 具有106-107Pa的杨氏模量者称为橡胶。
材料在外力作用下发生形变的同时,在其 内部还会产生对抗外力的附加内力,以使材料 保持原状,当外力消除后,内力就会使材料回 复原状并自行逐步消除。当外力与内力达到平 衡时,内力与外力大小相等,方向相反。单位 面积上的内力定义为应力。
of Strain and Stress
Strain - the amount of deformation a sample undergoes when one puts it under stress. Strain can be elongation, bending, compression, or any other type of deformation.
温度的升高导致原子间距由于热膨胀而增大, 由于原子间距增大,所以模量下降。
对于橡胶,弹性响应主要由熵控制

高弹模量就是由于高分子链力图保持卷曲 的分子构象而产生的反抗拉伸形变的回缩 张力的宏观表现。
当温度升高时,高分子链段的热运动加剧,高 分子链趋于卷曲分子构象的倾向增大,回缩 张力增大,表现为高弹模量随温度的升高而 增大 。
材料在拉伸作用下产生的形变称为拉伸应变, 也称相对伸长率(e)。受一对大小相等,方向相反, 作用在一条直线上的力。
F
A0
A
l0 Dl F
l
简单拉伸示意图
拉伸应力 = F / A0 (A0为材料的起始截面积) 拉伸应变(相对伸长率)e = (l - l0)/l0 = Dl / l0
l0
F F
l = l0 + Dl
第六章_橡胶弹性
The definition of rubber
Rubber is also called elastomer 弹性体.
It is defined as a cross-linked amorphous polymer above its glass transition temperature.

思考题

1.不受外力作用时,橡皮筋受热是伸长还是缩短?
伸长。 是由于正常的热膨胀现象,本质是分子的热运动。


2. 在恒定外力下,橡皮筋加热时是膨胀还是收缩? 为什么?
熵弹性
由于高分子链的特点,橡皮筋将收缩。

橡胶在张力(拉力)的作用下产生形变,主要
是熵变化,即蜷曲的大分子链在张力的作用下
变得伸展,构象数减少。熵减少是不稳定的状
相关文档
最新文档