新人教版数学必修三第一章测试题(有答案)

合集下载

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件3.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生5.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:销售量y (件)3 5 8 910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.76.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③ B .①③④C .①②④D .②③④7.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元C .12.0万元D .12.2万元8.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和929.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.211.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.14.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 15.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 18.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.22.某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.23.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x2 3 4 5 6 y 2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)24.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.025 0.010 0.005 0.00125.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑ 26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.3.D解析:D 【分析】由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C .本题主要考查线性回归方程的性质及其应用,属于中等题.6.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪(8,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.7.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.8.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.59.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n =++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x x x ∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.14.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④ 【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解. 【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确;故答案为:①②④. 【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.15.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题16.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++= ()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差. 详解1,0,4,,7,14x -中位数为45,52x+∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差222121[()()...()]n s x x x x x x n=-+-++-. 20.【解析】 三、解答题21.(1)见解析;(2)174.5cm ;(3)0.3. 【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.22.(Ⅰ)0.02;(Ⅱ)10800元. 【分析】(Ⅰ)由频率分布直方图中小矩形面积和为1能求出a .(Ⅱ)根据频率分布直方图,日销售量不低于25件的天数为(0.040.02)5309+⨯⨯=,一个月可获得的奖励为900元,由此可以估计一年内获得的礼金数. 【详解】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为:()0.040.025309+⨯⨯=(天),一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.23.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190ii x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.24.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45,设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.25.(1)见解析(2) 1.1.7ˆ0yx =+(3)9.5百万元 【解析】试题分析:(1)根据表格中的数据,在坐标系中描出点,将点连起来,就画出了散点图;(2)根据题目中的数据计算出 1.1,0.ˆˆ7ba ==,代入平均值3,4x y ==,即可得到回归方程;(3)将8x =,代入回归方程即可得到预测值. (1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得2715341.1,4 1.130.ˆˆ75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为 1.1.7ˆ0y x =+; (3)令8x =,得到预测值 1.1809.5ˆ.7y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案; (3)完善列联表,由公式计算卡方的值,从而查表即可, 【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=;该市一天的空气质量等级为2的概率为:5101227100100++=;该市一天的空气质量等级为3的概率为:67821100100++=;该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)

(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)

一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。

最新人教版高中数学必修3第一章三同步训练测评(a卷)(附答案)1

最新人教版高中数学必修3第一章三同步训练测评(a卷)(附答案)1

第一章 算法初步测评(A 卷)(总分:120分 时间:90分钟)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个问题:①输入一个数,输出它的绝对值;②求函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,x +1,x<0的函数值;③求面积为8的正方形的周长; ④求三个数中的最小数.其中,不需要条件语句描述算法的有A .1个B .2个C .3个D .4个 答案:A 只有③不需要条件语句. 2.下面程序输出的结果是 M =10 N =M -8 M =M -N PRINT M ENDA .10B .8C .2D .-2 答案:B ∵M =10,∴N =10-8=2,M =10-2=8. 3.程序: a =12b =a MOD 10c =ABS(a -b)d =SQR(10*C) PRINT d ENDA .10 B.-10 C .-8 D .6 答案:A ∵a =12,b =2,c =10, ∴d =10×10=10.4.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 的值,若要使输入的x 的值与输出的y 的值相等,则这样的x 的值有A.1个B.2个C.3个D.4个答案:C由题意,当x≤2时,输出y=x2,令y=x2=x,解得x=0或1,适合题意;当2<x≤5时,输出y=2x-3,令y=2x-3=x,解得x=3,适合题意;当x>5时,输出y=1x,令y=1x=x,解得x=1或-1,不适合题意.所以适合题意的x的值有0,1,3三个.5.(2009福建高考,理6)阅读下图所示的程序框图,运行相应的程序,输出的结果是A.2 B.4 C.8 D.16答案:C故S=2时输出n=8.6.读下列程序:INPUT xIF x<10THENP=x*0.35ELSEP=10*0.35+(x-10)*0.7END IFPRINT P END若x =20,则其运行结果P 为A .7B .10.5C .3.5D .17.5 答案:B ∵20>10,∴P =10×0.35+(20-10)×0.7=10.5.7.(2009广东深圳高三第二次调研,理4)某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过50 kg 按0.53元/kg 收费,超过50 kg 的部分按0.85元/kg 收费,相应收费系统的流程图如下图所示,则①处应填A .y =0.85xB .y =50×0.53+(x -50)×0.85C .y =0.53xD .y =50×0.53+0.85x答案:B 由框图可知,①处应填行李重量超过50 kg 时的费用, 故y =50×0.53+(x -50)×0.85.8.下图是一个算法的程序框图,当输入的x 值为3时,输出y 的结果恰好是13,则?处的关系式是A . y =x 3B .y =3-xC .y =3xD .y =31x答案:C 输入的x 值为3时,得3-2=1,则1-2=-1,因为3-1=13,所以y =3x.9.(2009山东济南第二次统考,理9)下面的程序框图所表示算法的运行结果是A.-3 B.-21 C.3 D.21答案:A程序共循环了6次,依次是i=1,S=1;i=2,S=-1;i=3,S=2;i=4,S=-2;i=5,S=3;i=6,S=-3;i=7时,循环结束输出的S是-3.答案:D本程序共循环了5次,它们依次是j=1,a=1;j=2,a=3;j=3,a=1;j =4,a=0;j=5,a=0.二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.把53化成四进制数得__________.答案:311(4)12.两个数102,238的最大公约数是__________.答案:34∵238=2×102+34,102=34×3,∴102,238的最大公约数为34.13.(2009广东广州普通高中毕业班综合测试二,理11)阅读下图所示的程序框图,若输出y的值为0,则输入x的值为__________.答案:2或0由x2-4x+4=0⇒x=2,结合程序框图,可以看出当输入2时,其输出结果为0;再由y=x结合程序框图,可以看出当输入0时,其输出结果也为0.14.一个算法如下:第一步,S取值0,i取值1.第二步,若i不大于12,则执行下一步;否则执行第六步.第三步,计算S+i并将结果代替S.第四步,用i+2的值代替i.第五步,转去执行第二步.第六步,输出S.则运行以上步骤输出的结果为__________.答案:36由程序可知该算法是计算1+3+5+7+9+11的值,则输出结果为36.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分10分)画出解方程ax+b=0(a,b∈R)的算法程序框图.答案:解:解此方程时要讨论a是否为0,还要讨论b是否为0,因此要用条件结构框图来描述算法.+ABS(x)+1 IF =”;y答案:解:本条件语句是用来解决分段函数的求值的. 当x<-1时,y =x 2-1; 当x>1时,y =3x +3;当-1≤x ≤1时,y =|x|+1,即求函数y =⎩⎪⎨⎪⎧ x 2-1,|x|+1,3x +3,x<-1,-1≤x ≤1,x>1的函数值.17.(本小题满分10分)古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上点火向国内报告,如图所示,烽火台上点火表示数字1,不点火表示数字0,约定二进制数对应的十进制的单位是1000,请你计算一下,这组烽火台表示有多少敌人入侵?答案:解:由题图可知从左到右的五个烽火台,表示二进制数的自左到右五个数位,依题意知这组烽火台表示的二进制数是11011,改写为十进制为11011(2)=1×24+1×23+1×21+1×20=16+8+2+1=27. 又27×1000=27000,∴这组烽火台表示边境共有27000个敌人入侵.18.(本小题满分12分)请用算法语句描述下列算法流程图.答案:解:本框图的功能是对分段函数求值.y =⎩⎪⎨⎪⎧12x -5,x>0,0,x =0,12x +3,x<0.程序如下:INPUT “x =”;x IF x>0 THENy =(1/2)*x -5 ELSEIF x<0 THEN y =(1/2)*x +3 ELSE y =0 END IF END IFPRINT “y =”;y END19.(本小题满分12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.答案:解:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示.1/(k (kLOOP UNTIL。

人教版高中数学必修3第一章单元测试(一)- Word版含答案

人教版高中数学必修3第一章单元测试(一)- Word版含答案

12018-2019学年必修三第一章训练卷算法初步(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A .13分钟B .14分钟C .15分钟D .23分钟2.如图给出了一个程序框图,其作用是输入x 值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则这样的x 值有( )A .1个B .2个C .3个D .4个3.已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是( )A .a =b ,b =aB .a =c ,b =a ,c =bC .a =c ,b =a ,c =aD .c =a ,a =b ,b =c4.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .1B .2C .3D .45.给出程序如下图所示,若该程序执行的结果是3,则输入的x 值是( )INPUT IF THEN =ELSE =END IF PRINT ENDxx y x y x y >0-A .3B .-3C .3或-3D .06.下列给出的输入语句、输出语句和赋值语句: (1)输出语句INPUT a ,b ,c (2)输入语句INPUT x =3 (3)赋值语句3=A (4)赋值语句A =B =C 则其中正确的个数是( ) A .0个B .1个C .2个D .3个7.执行如图所示的程序框图,若输入的a 为2,则输出的a 值是( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号2A .2B .1C D .1-8.阅读下面的程序框图,则输出的S 等于( )A .14B .20C .30D .559.将二进制数110101(2)转化为十进制数为( ) A .106B .53C .55D .10810.两个整数1908和4187的最大公约数是( ) A .51B .43C .53D .6711.运行下面的程序时,WHILE 循环语句的执行次数是( )N=WHILE N 20N=N +1N=N *NWEND PRINT N END< A .3B .4C .15D .1912.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A .i 5>B .i 4≤C .i 4>D .i 5≤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果a =123,那么在执行b =a /10-a \10后,b 的值是________. 14.给出一个算法:根据以上算法,可求得f (-1)+f (2)=________.15.把89化为五进制数是________.16.执行下边的程序框图,输出的T =________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数()2210250x xf xx x⎧-≥⎪⎨-<⎪⎩=对每输入的一个x值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f(x)=2x4+3x3+5x-4在x=2时的值.321.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f(x)=x2-5,写出求方程f(x)=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.42018-2019学年必修三第一章训练卷算法初步(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】(1)洗锅盛水2分钟;(2)用锅把水烧开10分钟,期间可以洗菜6分钟,准备面条及佐料2分钟, 共10分钟;(3)煮面条和菜3分钟.共15分钟.故选C . 2.【答案】C【解析】由题意可得212232 5 5x x y x x xx -⎧≤⎪=-<≤⎨⎪>⎩, ∵输入的x 值与输出的y 值相等,当2x ≤时,2x x =,解得0x =或1x =, 当25x <≤时,23x x =-,解得3x =,当5x >时,1x x -=,解得1x =或1x =-,不符合,舍去, 故满足条件的x 值共有3个,故选C . 3.【答案】D【解析】由赋值语句知选D . 4.【答案】D【解析】初值,S =2,n =1. 执行第一次后,S =-1,n =2, 执行第二次后,S =12,n =3, 执行第三次后,S =2,n =4, 此时符合条件,输出n =4.故选D . 5.【答案】C【解析】该算法对应的函数为y =|x |,已知y =3,则x =±3.故选C . 6.【答案】A【解析】(1)中输出语句应使用PRINT ;(2)中输入语句不符合格式INPUT“提示内容”;变量; (3)中赋值语句应为A =3;(4)中赋值语句出现两个赋值号是错误的.故选A . 7.【答案】A【解析】输入2a =,0k =,11a ==-,5k < 011k =+=,112k =+=,3k =时,1a =-,4k =时, 当5k =时,2a =,当6k =时,输出2a =,故选A . 8.【答案】C【解析】由题意知:S =12+22+…+2i ,当i =4时循环程序终止,故S =12+22+32+42=30.故选C . 9.【答案】B【解析】110101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.故选B . 10.【答案】C【解析】4187=1908×2+371,1908=371×5+53,371=53×7,从而,最大公约数为53.故选C . 11.【答案】A【解析】解读程序时,可采用一一列举的形式: 第一次时,N =0+1=1;N =1×1=1; 第二次时,N =1+1=2;N =2×2=4;第三次时,N =4+1=5;N =5×5=25.故选A . 12.【答案】C【解析】S =1×24+1×23+1×22+1×21+1=[]{}()211212121⨯+⨯+⨯+⨯+(秦九韶算法).循环体需执行4次后跳出,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】0.3【解析】∵a=123,∴a/10=12.3,又∵a\10表示a除以10的商,∴a\10=12.∴b=a/10-a\10=12.3-12=0.3.14.【答案】0【解析】()40 20 xfxxxx≤⎧⎪⎨>⎪⎩=,∴f(-1)+f(2)=-4+22=0.15.【答案】324(5)16.【答案】30【解析】按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】94,94.【解析】辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94.18.【答案】见解析.【解析】程序框图如下图:程序:Si1WHILE i=999S=S+i2i=i+2WENDPRINT SEND∧=0=<19.【答案】见解析.【解析】程序框图:程序为:20.【答案】62.【解析】()f x改写为()[]{}2)4(305f x x x x x-=+++,∴v=2,1v=2×2+3=7,2v=7×2+0=14,3v=14×2+5=33,4v=33×2-4=62,∴()262f=.21.【答案】见解析.【解析】程序如下:程序框图如下图:S M i 1DOINPUT IF 90THEN M =M +1S =S +END IFLOOP UNTIL i 54P =S /M PRINT P ENDxx x =0=0=>>22.【答案】见解析.【解析】本题可用二分法来解决,设1x =2,2x =3,122x x m +=.算法如下: 第一步:1x =2,2x =3; 第二步:122x x m +=; 第三步:计算()f m ,如果()f m =0,则输出m ; 如果()0f m >,则2x m =,否则1x m =;第四步:若21||0.001x x <-,输出m ,否则返回第二步. 程序框图如图所示:。

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。

高一数学必修3第一章测试题及答案-人教版(A汇编

高一数学必修3第一章测试题及答案-人教版(A汇编

高一数学必修3第一章测试题及答案-人教版(A)数学第一章测试题一.选择题1.下面的结论正确的是 ( )A .一个程序的算法步骤是可逆的B 、一个算法可以无止境地运算下去的C 、完成一件事情的算法有且只有一种D 、设计算法要本着简单方便的原则2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )A 、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭 同时 听广播D 、 S1吃饭 同时 听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法 S1 m=aS2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序 4.右图输出的是A .2005B .65C .64D .63 5、下列给出的赋值语句中正确的是( )A. 5 = MB. x =-x (第4题)C. B=A=3D. x +y = 06、下列选项那个是正确的( )A 、INPUT A;B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x 7、以下给出的各数中不可能是八进制数的是( ) A.123 B.10 110 C.4724 D.7 8578、如果右边程序执行后输出的结果是990,那么 在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C. i <=9 D.i<9 9.读程序 甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( )A .程序不同结果不同B .程序不同,结果相同C .程序相同结果不同D .程序相同,结果相同 10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果 ( )A .甲大乙小B .甲乙相同C .甲小乙大D .不能判断 二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是( 第12题)12、上面是求解一元二次方程)0(02≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。

人教A版高中数学必修3课后习题 第一章末测评卷

人教A版高中数学必修3课后习题 第一章末测评卷

第一章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算S的值的选项中,不能设计算法求解的是( )A.S=1+2+3+…+90B.S=1+2+3+4C.S=1+2+3+…+n(n≥2且n∈N)D.S=15+25+35+…+2 019,并且这样的步骤和序列可以解决一类问题.它的一个特点为有穷性,是指算法必须能在执行有限个步骤之后终止,而C项中S=1+2+3+…+n(n≥2且n∈N)中n是不确定的,所以不能设计算法求解.2.下列赋值语句错误的是( )A.i=i-1B.m=m∧ 2+1C.k=-1/kD.=m ∧2+1后,m 的值等于原来m 的平方再加1,B 正确;执行k=-1/k 后,k 的值是原来的负倒数,C 正确;赋值号的左边只能是一个变量,D 错误.3.若下列程序执行的结果是2,则输入的x 的值是( )A.2B.-2C.2或-2D.0y={x ,x ≥0,-x ,x <0,故输入2或-2的结果都是2.4.用辗转相除法计算56和264的最大公约数时,需要做除法的次数是( )A.3B.4C.6D.7得最大公约数为8,做了4次除法.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( ) A.4,2 B.5,3 C.5,2 D.6,25-x2+2=((((4x)x)x-1)x)x+2,所以需要做5次乘法运算和2次加减运算.6.若运行下面的程序,输出的结果为5,则横线处应填写的内容可以为( )A.0B.2C.4D.5,根据题意得12+y2=5,y=±2,故选B.7.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是( )A.9B.10C.11D.12,所以原.因为输出的结果为7,所以b=7,又b=b2b=14,即a1+a2=14.又a1=3,所以a2=11.8.阅读下面的程序:该程序的功能是( )A.求1+2+3+…+100的值B.求1+3+5+…+99的值C.求1+3+5+…+100的值D.求1+3+5+…+101的值,该程序中循环变量每次的增量是2,且当i=99时,i≤100,继续执行循环体“sum=sum+99,i=i+2”,当i=101时,101>100,循环终止,输出sum的值,此时sum=1+3+5+ (99)9.如图①②,它们都表示的是输出所有立方小于729的正整数的程序框图,那么判断框中应分别补充的条件为( )A.①n3≥729?②n3<729?B.①n3≤729?②n3>729?C.①n3<729? ②n3≥729?D.①n3<729? ②n3<729?,②为直到型循环结构,分析知选C.10.执行两次下图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为( )A.0,0B.1,1C.0,1D.1,0x=7,则b=2(b2<x,且x不能被b整除)→b=3(b2>x)→输出a=1;若输入x=9,则b=2(b2<x,且x不能被b整除)→b=3(b2=x,但x能被b整除)→输出a=0.故选D.11.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11当x=3时的值为1 616,则k的值为( )A.12B.13C.14D.15p(x)=((((3x+9)x+1)x+k)x+4)x+11,则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11=(495+3k+4)×3+11=9k+1508=161 6,所以k=12.12.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”, 如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:√3≈1.732,sin 15°≈0.258 8,sin7.5°≈0.130 5)()A.12B.24C.48D.96≈2.598,不满足条件n=6,S=3sin60°=3√32S≥3.10;n=12,S=6sin30°=3,不满足条件S≥3.10;n=24,S=12sin15°≈12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知以下程序,若输出的结果是12,则横线处应填写.M=4,S=10,i=2;第二次执行循环体后M=2,S=12,i=3;所以横线处应填i≤2(或i<3).i<3)14.如图所示的程序框图,若输入x=4.5,则输出的i= .i=1时,x=4.5-1=3.5;当i=1+1=2时,x=3.5-1=2.5;当i=2+1=3时,x=2.5-1=1.5;当i=3+1=4时,x=1.5-1=0.5;0.5<1,输出i=4.15.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中,v3= .f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0. 8,∴v3=((5x+2)x+3.5)x-2.6,将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.16.定义n!=1×2×3×…×n,如图是求10!的程序框图,其中k为整数,则k= .10!=1×2×…×10,所以判断框内的条件为“i<11?”,故k=11.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求三个数168,56,264的最大公约数.168=56×3+0,所以168与56的最大公约数为56.又因为264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,所以264与56的最大公约数为8.所以168,56与264的最大公约数为8.18.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.x=0及x=2时f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x+1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0,且f(x)在[0,2]上连续知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.19.(本小题满分12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:20.(本小题满分12分)已知函数y={x 2-3,x ≥0,2x 2-6,x <0,编写一个程序,对于输入的每一个x 的值,都能得到相应的函数值,并写出算法步骤,画出程序框图.:第一步,输入x 值.第二步,判断x 的范围,若x≥0,则y=x 2-3;否则y=2x 2-6.第三步,输出y 值.程序如下:程序框图如图所示:21.(本小题满分12分)“鸡兔同笼”问题是我国古代著名的趣题之一,大约在1 500年前,《孙子算经》中就记载了这个有趣的问题,书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试编写一个程序,解决这一问题.:设鸡、兔的头的总数为H,脚的总数为F,则可求出共有鸡x=4H-F2(只),兔子y=F-2H2(只),也可以用H-x来表示兔子的数量.要解决这一类问题,只要设计好公式,输入头、脚的数目,运用公式即可.程序如下:执行这个程序时,输入H=35,F=94,则会输出相应的x,y的值.22.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=时,输出最后一对,共输出(x,y)的组数为1009.(3)程序框图的程序语句如下:。

高一数学必修3第一章测试题及答案

高一数学必修3第一章测试题及答案

高一数学必修3第一章测试题及答案数学练习高一数学必修3第一章测试题及答案-人教版(A)数学第一章测试题一.选择题1.下面的结论正确的是()A.一个程序的算法步骤是可逆的 B、一个算法可以无止境地运算下去的C、完成一件事情的算法有且只有一种 D、设计算法要本着简单方便的原则 2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )A、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B、 S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C、 S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D、 S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法S1 m=aS2 若b_lt;m,则m=b S3 若c_lt;m,则m=c S4 若d_lt;m,则 m=dS5 输出m,则输出m表示 ( ) A.a,b,c,d中最大值B.a,b,c,d中最小值 C.将a,b,c,d由小到大排序D.将a,b,c,d由大到小排序 4.右图输出的是A.____ B.65 C.64 D.63 5、下列给出的赋值语句中正确的是( )A. 5 = MB. _ =-_ (第4题)C. B=A=3D. _ +y = 06、下列选项那个是正确的()A、INPUT A; B B. INPUT B=3 C. PRINT y=2__+1 D. PRINT4__ 7、以下给出的各数中不可能是八进制数的是() A.123 B.10 110C.4724D.7 8578、如果右边程序执行后输出的结果是990,那么在程序until后面的“条件”应为() A.i _gt; 10 B. i _lt;8 C. i _lt;=9 D.i_lt;9 9.读程序甲: i=1 乙: i=1000 S=0 S=0 WHILE i_lt;=1000 DO S=S+i S=S+i i=i+l i=i一1WEND Loop UNTIL i_lt;1 PRINT S PRINTS。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本章测评(时间:90分钟满分:100分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1下列说法中不正确
...的是( ).
A.系统抽样是先将差异明显的总体分成几个小组,再进行抽取
B.分层抽样是将差异明显的几部分组成的总体分成几层,然后进行抽取
C.简单随机抽样是从个体无差异且个数较少的总体中逐个抽取个体
D.系统抽样是从个体无差异且个数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取
解析:当总体中个体差异明显时,用分层抽样;当总体中个体无差异且个数较多时,用系统抽样;当总体中个体无差异且个数较少时,用简单随机抽样.所以A项中的叙述不正确.
答案:A
2某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是( ).
A.简单随机抽样
B.系统抽样
C.分层抽样
D.抽签法
解析:抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”.
答案:B
3统计某校1 000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是( ).
% % % %
解析:从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10+==80%.答案:D
4两个相关变量满足如下关系:
两变量的回归直线方程为( ).
A.=+
B.=解析:利用公式==,
=- =.
则回归直线方程为=+.
答案:A
5某市A,B,C三个区共有高中学生20 000人,其中A区高中学生7 000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600的样本进行“学习兴趣”调查,则在A区应抽取( ).
人人人人
解析:抽样比是=,则在A区应抽×7 000=210(人).
答案:C
6为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图,如图所示.已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在[80,100)之间的学生人数是( ).
解析:由于所有矩形的面积之和等于1,
所以该班学生数学成绩在[80,100)之间的频率是=.
所以该班学生数学成绩在[80,100)之间的学生人数是×60=33.
答案:D
7某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是( ).
=-10x+200 =10x+200
=-10x-200 =10x-200
解析:由于y与x是负相关,则回归方程的斜率<0,排除选项B,D;很明显销售量y=0时,销售价格x应该较大,故排除选项C.
答案:A
8(2011·陕西宝鸡高三教学质量检测(一),文5)甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示.如果,分别表示甲、乙两名运动员的测试成绩的平均数,s1,s2分别表示甲、乙两名运动员的测试成绩的标准差,则有( ).
A.>,s1<s2
B.=,s1<s2
C.=,s1>s2
D.<,s1>s2
解析:根据茎叶图可知,甲的8次测试成绩分别是8,9,14,15,15,16,21,22;乙的8次测试成绩分别是7,8,13,15,15,17,22,23.
由此计算得,==15,s1≈,s2≈,故有=,s1<s2.
答案:B
9一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据绘制了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出( ).
人人人人
解析:在[2 500,3 000)(元)月收入段的频率是5×500=,则在[2 500,3 000)(元)月收入段的人数是10 000×=2 500,抽样比是=,则在[2 500,3 000)(元)月收入段应抽出2 500×=25(人).答案:B
10(2011·北京西城一模,文8)某次测试成绩满分为150分,设n名学生的得分分别为a1,a2,…,a n(a i∈N,1≤i≤n),b k(1≤k≤150)为n 名学生中得分至少为k分的人数.记M为n名学生的平均成绩.则( ).
=
=
>
>
解析:此次测试中,b k(1≤k≤150)为n名学生中得分至少为k分的人数,则分数为m的学生,在b1,b2,b3,…,b m中各占一份,共m份,以此类推,可知b1+b2+…+b150表示n名同学的总得分,所以n名学生的平均成绩为M=.
答案:A
二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)
11为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为60的样本,考虑用系统抽样,则分段的间隔k
为.
答案:20
12(2011·广东惠州一模,文11)某校对全校男女学生共1 600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生抽了95人,则该校的女生人数应是人.
解析:由样本可知,女生所占比例为=,则该校的女生人数应为1 600×=760.
答案:760
13甲、乙两人在10天中每天加工零件的个数用茎叶图表示如右图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为和.
解析:=
=24,
=
=23.
答案:24 23
14(2011·北京朝阳二模,文13)某射击运动员在一组射击训练中共射击5次,成绩统计如下表:
则这5次射击的平均环数为;5次射击环数的方差为.
解析:由统计表可知,在射击训练中,成绩为8环的次数为2,成绩为9环的次数为2,成绩为10环的次数为1,则射击训练中的总环数为8×2+9×2+10=44,所以5次射击的平均环数为=,5次射击环数的方差s2==.
答案:
15两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床生产的产品中各抽出4件进行测量,结果如下:
如果你是质量检验员,在收集到上述数据后,机床生产的零件质量更符合要求.
解析:①先计算平均直径:
=(10++10+=10,
=+10++10)=10,
由于=,因此,平均直径反映不出两台机床生产的零件的质量优劣.
②再计算方差:
=[(10-10)2+2+(10-10)2+2]=,
=[2+(10-10)2+2+(10-10)2]=.
由于<,这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更符合要求.
答案:乙
三、解答题(本大题共2小题,共25分.解答时应写出必要的文字说明、证明过程或演算步骤)
16(本小题满分10分)某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表:
已知:=280,=45 309,x i y i=3 487.
(1)求:,;
(2)画出散点图;
(3)求纯利y与每天销售件数x之间的回归直线方程;
(4)若该周内某天销售服装20件,估计可获纯利多少元.
解:(1)==6,==.
(2)散点图如图所示.
(3)由散点图知,y与x具有线性相关关系,设回归直线方程为=bx+a.
∵=280,=45 309,x i y i=3 487,=6,=,∴b===,a=-6×≈,
∴回归直线方程为=+.
(4)当x=20时,=×20+≈146.
故该周内某天的销售量为20件时,估计这天可获纯利大约为146元.
17(本小题满分15分)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:min).下面是这次抽样的频率分布表和频率分布直方图,解答下列问题:
(1)这次抽样的样本容量是多少
(2)在表中填写缺失的数据并补全频率分布直方图.
(3)旅客购票用时的平均数可能落在哪一小组
(4)若每增加一个购票窗口可使平均购票用时缩短5 min,要使平均购票用时不超过10 min,那么你估计最少要增加几个窗口
分析:利用各组频数之和等于样本容量,各组频率之和为1,且频率=来解决以上问题.
解:(1)样本容量为100.
(2)
(3)设旅客平均购票时间为s min,则有
≤s<,
解得15≤s<20,
故旅客购票用时平数可能落在第四小组.
(4)设需增加x个窗口,则20-5x≤10,解得x≥2,故至少需要增加2个窗口.。

相关文档
最新文档