一元二次方程根的判别式练习题(精选.)

合集下载

(完整版)一元二次方程的根的判别式练习题

(完整版)一元二次方程的根的判别式练习题

一元二次方程的根的判别式1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。

2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。

3、方程x 2+2x+m=0有两个相等实数根,则m= 。

4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。

5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。

6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。

7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。

8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。

9、不解方程,判断下列关于x 的方程根的情况:(1)(a+1)x 2-2a 2x+a 3=0(a>0)(2)(k 2+1)x 2-2kx+(k 2+4)=010、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根?11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。

12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0也无实根。

14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。

15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。

(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。

16、当一元二次方程(2k -1)x2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。

一元二次方程根的的判别式

一元二次方程根的的判别式

一元二次方程根的的判别式一、选择题1、 不解方程,判别方程x x 249162=+的根的情况是A.有两个不等实根B.有两个等实根C.无实根D.有一个根为12、关于x 的方程08)18(22=+++k x k kx 有实根,则k 的取值范围是 A.k>161- B. .k>161-且k ≠0 C. k ≥161- D. k ≥161-且k ≠0 3、若关于x 的方程0122=++x ax 有且只有一个实根,则实数a 的值是A.1或-1B. 0或-1C. 0或1D. 0、1或-1 4、若关于x 的一元二次方程0132=--x k x 有实根,则k 的取值范围是A.k ≥0B. .k>0C. k >94-D. k ≥94- 5、已知122+-mx x 是完全平方式,则的值为A.1B. -1C. ±1D. 06、一元二次方程a c bx ax (02=++≠0)的根为有理数根的条件是A.042>-ac b B . 是有理数ac b 42- C. ac b 42-≥0 D. ac b 42-是完全平方数7、关于x 的方程042)1(222=++-+m mx x m 的根的情况是A.有两个不等实根B. 无实根C. 有两个等实根D. 不确定 8、若关于x 的方程0342=+-x kx 有实根,则k 的非负整数值是A.0、1B. 0、1、2C. 1D. 0、1、2、39、方程06)4(22=+--x kx x 无实根,则k 的最小正整数值是A.1B.4C. 3D. 210、若m 是实数,且不等式1)1(+>+m x m 的解集是x<1,则关于x 的方程041)1(2=+++m x m mx 的根的情况是 A.有两个不等实根 B.有两个等实根 C. 无实根 D. 无法确定11、已知一直角三角形的三边为a 、b 、c ,∠B=90°,则关于x 的方程0)1(2)1(22=++--x b cx x a 的根为A.有两个等实根B.有两个不等实根C. 无实根D. 无法确定二、填空题1、不解方程,判断一元二次方程022632=+--x x x 的根的情况是2、若关于x 的一元二次方程2x(kx-4)-x 2+6=0有两个等实根,则化简二次根式2212+-+-k k k 的正确结果是3、若方程kx 2+4kx+3=k 有两个等实根,则k= 。

根的判别式练习题(含答案)

根的判别式练习题(含答案)

根的判别式练习题一.填空题(共9小题)1.方程x2﹣5x﹣1=0的根的判别式的值为.2.若关于x的方程x2﹣mx+m=0有两个相等的实数根,则m的值为.3.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为.4.若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.5.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.6.等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值是.7.如果恰好只有一个实数a是方程(k2﹣9)x2﹣2(k+1)x+1=0的根,则k的值为.8.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=9.已知双曲线y=与直线y=﹣x+1没有交点,则b的取值范围是.二.解答题(共5小题)10.已知关于x的一元二次方程.(1)求证:对于任意实数m,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m的值.11.已知关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.12.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为.13.已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.14.已知关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?参考答案与试题解析一.填空题(共9小题)1.方程x2﹣5x﹣1=0的根的判别式的值为29.【分析】根据方程的系数结合根的判别式,可得出Δ=29,此题得解.【解答】解:∵a=1,b=﹣5,c=﹣1,∴Δ=b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29.故答案为:29.【点评】本题考查了根的判别式,牢记根的判别式Δ=b2﹣4ac是解题的关键.2.若关于x的方程x2﹣mx+m=0有两个相等的实数根,则m的值为0或4.【分析】根据方程的系数结合根的判别式Δ=0,即可得出关于m的方程,解之即可求出m的值.【解答】解:∵关于x的方程x2﹣mx+m=0有两个相等的实数根,∴Δ=(﹣m)2﹣4×1×m=0,解得:m1=0,m2=4,∴m的值为0或4.故答案为:0或4.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.3.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为2.【分析】由关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,即可得判别式Δ=0,继而可求得k的值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×k=8﹣4k=0,解得:k=2,故答案为:2.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个相等的实数根,即可得Δ=0.4.若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是且k≠0.【分析】根据一元二次方程的定义及根的判别列出不等式组求解即可.【解答】解:根据题意可知,.解得:且k≠0,故答案为:且k≠0.【点评】本题主要考查一元二次方程的定义及根的判别式,根据题意列出不等式组是解题的关键.5.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.6.等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值是25或16.【分析】等腰△ABC中,BC可能是方程的腰也可能是方程的底边,应分两种情况进行讨论.当BC是底边时,AB=AC,则方程x2﹣10x+m=0有两个相等的实根,即Δ=0,即可得到关于m的方程,求得m的值;当BC是腰时,则方程一定有一个解是x=8,根据一元二次方程的根与系数的关系即可求得另一边,即底边与m的值.【解答】解:在方程x2﹣10x+m=0中,x1+x2=10,当这两边是等腰三角形的腰时,有x1=x2=5,∴x1x2=25=m,当这两边的长有一边为8时,有8+x2=10,∴x2=2,m=x1x2=2×8=16,∴m=25或16.故答案为:25或16.【点评】本题考查了一元二次方程的根与系数的关系及等腰三角形中有两边相等的性质,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.7.如果恰好只有一个实数a是方程(k2﹣9)x2﹣2(k+1)x+1=0的根,则k的值为±3或﹣5.【分析】分原方程是一元一次方程和一元二次方程两种情况讨论即可得到答案.【解答】解:①当原方程是一个一元一次方程时,方程只有一个实数根,则k2﹣9=0,解得k=±3,②如果方程是一元二次方程时,则方程有两个相等的实数根,即Δ=b2﹣4ac=0,即:4(k+1)2﹣4(k2﹣9)=0解得:k=﹣5.故答案为±3或﹣5.【点评】本题考查了根的判别式,同时还考查了分类讨论思想,是一道好题.8.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=﹣.【分析】由二次方程有实根,得到△≥0,即Δ=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,通过代数式变形可得两个非负数的和小于或等于0,从而得到a,b的方程组,解方程组即可求出它们的比.【解答】解:∵方程有实根,∴△≥0,即Δ=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化简得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,所以=﹣.故答案为﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式Δ=b2﹣4ac.当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.同时考查了几个非负数和的性质以及代数式变形的能力.9.已知双曲线y=与直线y=﹣x+1没有交点,则b的取值范围是b>.【分析】根据方程解析式,可以得到=﹣x+1,即可转化为一个一元二次方程,利用判别式求出b的取值范围.【解答】解:因为双曲线y=与直线y=﹣x+1没有交点,即方程=﹣x+1无解,去分母,得x2﹣x+b=0,∴Δ=b2﹣4ac=(﹣1)2﹣4×1×b=1﹣4b<0,解得b>.【点评】考查一元二次方程根的判别式和双曲线与直线的位置关系,同时考查综合应用能力及推理能力.二.解答题(共5小题)10.已知关于x的一元二次方程.(1)求证:对于任意实数m,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m的值.【分析】(1)求出Δ=1,即可证明方程总有两个不相等实数根;(2)把x=0代入可得关于m的一元二次方程,即可解得答案.【解答】(1)证明:对关于x的一元二次方程,Δ=[﹣(m﹣1)]2﹣4×(m2﹣2m)=m2﹣2m+1﹣m2+2m=1,∴Δ>0,∴对于任意实数m,一元二次方程总有两个不相等实数根;(2)解:如果此方程有一个根为0,则×02﹣(m﹣1)×0+(m2﹣2m)=0,∴m2﹣2m=0,解得m=0或m=2,答:m的值为0或2.【点评】本题考查一元二次方程根的判别式及解一元二次方程,解题的关键是掌握根的判别式△与根个数的关系以及解一元二次方程的方法步骤,此题难度不大.11.已知关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.【分析】(1)根据二次项系数非零及根的判别式Δ≥0列出关于k的不等式组,求解即可.(2)由(1)中k的取值范围得出符合条件的k的值,代入原方程,求解即可.【解答】解:(1)∵关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根,∴,解得k≤3且k≠2.(2)由题意得,k=3,当k=3时,方程为x2﹣2x+1=0,即(x﹣1)2=0,解得x1=x2=1.【点评】本题考查一元二次方程,牢记:一元二次方程ax2+bx+c=0(a≠0)的根的判别式为Δ=b2﹣4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实根.12.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为.【分析】(1)根据根的判别式求出Δ=(m﹣4)2+8,再根据根的判别式得出答案即可;(2)把x=2代入方程,得出关于m的一元二次方程,再求出方程的解即可.【解答】(1)证明:2x2﹣3mx+m2+m﹣3=0,Δ=(﹣3m)2﹣4×2×(m2+m﹣3)=9m2﹣8m2﹣8m+24=m2﹣8m+24=(m﹣4)2+8,因为不论m为何值,(m﹣4)2≥0,即Δ>0,所以无论m为何值,方程总有两个不相等的实数根:(2)解:把x=2代入方程2x2﹣3mx+m2+m﹣3=0得:2×22﹣3m×2+m2+m﹣3=0,整理得:m2﹣5m+5=0,解得:m=,故答案为:.【点评】本题考查了解一元二次方程,根的判别式,一元二次方程的解等知识点,能熟记根的判别式的内容和一元二次方程的解的定义是解此题的关键.13.已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=(m+1)2≥0,由此可证出:无论m取何值,这个方程总有实数根;(2)分3为底边及3为腰长两种情况考虑:①当3为底边时,根据等腰三角形的性质可得出m的值,结合根与系数的关系可求出两根之和,由该值为负值可得出该结论不符合题意;②当3为腰长时,代入x=3可求出m值,再利用根与系数的关系结合三角形的三边关系可求出△ABC的周长.综上即可得出结论.【解答】(1)证明:∵a=1,b=﹣(3m+1),c=2m2+m,∴Δ=[﹣(3m+1)]2﹣4(2m2+m)=m2+2m+1=(m+1)2≥0,∴无论m取何值,这个方程总有实数根;(2)解:设方程的两根为x1,x2.①当3为底边时,则两腰的长是方程的两根,∴Δ=(m+1)2=0,∴m=﹣1,∴x1+x2=3m+1=3×(﹣1)+1=﹣2<0,∴此种情况不合题意,舍去;②当3为腰时,把x=3代入方程x2﹣(3m+1)x+2m2+m=0得:9﹣3(3m+1)+2m2+m=0,解得m1=1,m2=3.当m=1时,x1+x2=3m+1=4,△ABC的周长为7;当m=3时,x1+x2=3m+1=10,此时腰长为3,底为7,∵3+3<7,∴此种情况不合题意,舍去.综上所述:m的值为1,△ABC的周长为7.【点评】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形三边关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)分3为底边及3为腰长两种情况考虑.14.已知关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0可知方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b,c的长,并根据三角形三边关系检验,综合后求出△ABC的周长.【解答】(1)证明:∵Δ=b2﹣4ac=(k+2)2﹣8k=(k﹣2)2≥0,∴无论k取任意实数值,方程总有实数根;(2)解:分两种情况:①若b=c,∵方程x2﹣(k+2)x+2k=0有两个相等的实数根,∴Δ=b2﹣4ac=(k﹣2)2=0,解得k=2,∴此时方程为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长为5;②若b≠c,则b=a=1或c=a=1,即方程有一根为1,∵把x=1代入方程x2﹣(k+2)x+2k=0,得1﹣(k+2)+2k=0,解得k=1,∴此时方程为x2﹣3x+2=0,解得x1=1,x2=2,∴方程另一根为2,∵1、1、2不能构成三角形,∴所求△ABC的周长为5.综上所述,△ABC的周长为5.。

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = .2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________.3. (2010 江苏省苏州市) 若一元二次方程()2220x a x a -++=的两个实数根分别是3b 、,则a b +=_________.4. (2010 江苏省苏州市) 下列四个说法中,正确的是( )A .一元二次方程22452x x ++=有实数根; B. 一元二次方程23452x x ++=有实数根; C. 一元二次方程25453x x ++=有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根.5. (2010 湖南省益阳市) 一元二次方程)0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42-满足的条件是 A.ac b 42-=0 B.ac b 42->0C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= .7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根?9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根.10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长. 11. (2010 四川省乐山市) 若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.(1)求实数k 的取值范围;(2)设k t βα+=,求t 的最小值.12. (2010 甘肃省天水市) 已知A B C △的两边A B 、A C 的长是关于x 的一元二次方程22(23)320x k x k k -++++=的两个实数根,第三边B C 的长为5. (1)当k 为何值时,A B C △是直角三角形;(2)当k 为何值时,A B C △是等腰三角形,并求出A B C △的周长.13.已知关于x 的两个一元二次方程: 方程:02132)12(22=+-+-+k k x k x ① 方程:0492)2(2=+++-k x k x② (1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.14.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)15.设两个方程的判别式分别为x 1,x 2,则x 1=a 2-4c ,x 2=b 2-4d .∴x 1+x 2=a 2+b 2-2ab =(a -b )2≥0.从而x 1,x 2中至少有一个非负数,即两个方程中至少有一个方程有实数根.16.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根。

一元二次方程之判别式专项练习60题

一元二次方程之判别式专项练习60题

一元二次方程判别式专项练习60题(有答案)1.已知关于x的一元二次方程2x2﹣5x﹣a=0(1)如果此方程有两个不相等的实数根,求a的取值范围.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解.2.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.3.已知关于x的方程x2+2kx+(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.4.若关于x的方程 x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.6.已知关于x的方程x2+3x﹣m=8有两个不相等的实数根.(1)求m的最小整数值是多少?(2)将(1)中求出的m值,代入方程x2+3x﹣m=8中解出x的值.7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.8.已知关于x的方程kx2﹣2x+1=0有两个实数根x1、x2.(1)求k的取值范围;(2)是否存在k使(x1+1)(x2+1)=k﹣1成立?如果存在,求出k的值;如果不存在,请说明理由.9.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)判断方程根的情况;(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.10.若关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)为k选取一个符合要求的值,并求出此方程的根.11.已知关于x的一元二次方程 x2+2mx+(m+2)(m﹣1)=0(m为常数).(2)如果方程有两个相等的实数根,求m的值;如果方程没有实数根,求m的取值范围.12.当k取什么值时,关于x的一元二次方程(1)有两个不相等的实数根?(2)没有实数根?13.已知关于x的方程是ax2﹣3(a﹣1)x﹣9=0.(1)证明:不论a取何值,总有一个根是x=3;(2)当a≠0时,利用求根公式求出它的另一个根.14.若k是一个整数,已知关于x 的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k最大可以取多少?为什么?15.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m=﹣2时,方程的两根互为相反数吗?并求出此时方程的解.16.已知关于x的方程x2+2x+k﹣1=0,(1)若方程有一个根是1,求k的值;(2)若方程没有实数根,求实数k的取值范围.17.已知关于x的方程x2+(m﹣2)x﹣9=0(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;(2)若这个方程两个根α,β满足2α+β=m+1,求m的值.18.已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p19.m是什么实数时,方程x2﹣4|x|+5=m有4个互不相等的实数根?20.设关于x的方程x2﹣4x+(y﹣1)|x﹣2|+2﹣2y=0恰有两个实数根,求y的负整数值.21.已知关于x的方程x2+2mx+m+2=0.(1)方程两根都是正数时,求m的取值范围;(2)方程一个根大于1,另一个根小于1,求m的取值范围.22.已知关于x的一元二次方程x2﹣2mx+m2﹣2m=0.(1)当m=1时,求方程的根.(2)试判断方程根的情况.23.已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.24.已知关于x的一元二次方程x2﹣mx+m﹣2=0,求证:无论m取何值,该方程总有两个不相等的实数根.25.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.26.关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k﹣1是方程x2﹣2x+k﹣1=0的一个解,求k的值.27.已知关于x的方程x2+2x+m﹣1=0(1)若1是方程的一个根,求m的值;(2)若方程有两个不相等的实数根,求m的取值范围.28.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.29.已知关于x的方程x2+(3k﹣2)x﹣6k=0,(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=6,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.30.已知一元二次方程x2﹣5x+k=0.(1)当k=6时,解这个方程;(2)若方程x2﹣5x+k=0有两个不相等的实数根,求k的取值范围;(3)设此方程的两个实数根分别为x1,x2,且2x1﹣x2=2,求k的值.31.已知关于x的方程x2﹣(m+1)x+m=0(1)求证:不论m取何实数,方程都有实数根;(2)为m选取一数,使方程有两个不相等的整数根,并求出这两个实数根.32.已知关于x的方程x2﹣2x+2k﹣3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为符合条件的最大整数,求此时方程的根.33.已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值.(1)求p的取值范围;(2)若,求p的值.35.实数k取何值时,一元二次方程x2﹣(2k﹣3)x+2k﹣4=0(1)有两个正根;(2)有两个异号根,且正根的绝对值较大;(3)一个根大于3,一个根小于3.36.已知关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根.①求k的取值范围;②试判断直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),并说明理由.37.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程根的情况,并说明理由.38.证明:无论m为何值,关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0,若方程有两个相等的实数根,求m的值.40.已知关于x的一元二次方程x2﹣kx﹣2=0.(1)求证:无论k取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.41.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.42.已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.43.如果关于x的一元二次方程(1﹣m)x2﹣2x﹣1=0有两个不相等的实数根,当m在它的取值范围内取最大整数时,求的值.44.若关于x的一元二次方程x2+2kx+(k2+2k﹣5)=0有两个实数根,分别是x1,x2.(1)求k的取值范围;(2)若有x1+x2=x1x2,则k的值是多少.45.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.46.已知关于x的方程x2﹣(k+1)x+k=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一腰长a=4,另两边b、c恰好是这个方程的两根,求△ABC 的周长.47.已知x2+(2k+1)x+k2﹣2=0是关于x的一元二次方程方程.(1)方程有两根不相等的实数根,求k的取值范围.(2)方程有一根为1,求k的取值.(3)方程的两根两根互为倒数,求k的取值.48.已知关于x的方程(k﹣1)x2+2x﹣5=0有两个不相等的实数根,求:①k的取值范围.②当k为最小整数时求原方程的解.49.已知关于x的方程(m﹣1)x2﹣(2m﹣1)x+2=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若方程只有整数根,求整数m的值.50.已知关于x的方程2x2+kx﹣1=0.(1)小明同学说:“无论k为何实数,方程总有实数根.”你认为他说的有道理吗?(2)若方程的一个根是﹣1,求另一根及k的值.51.已知关于x的一元二次方程.(1)m取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.52.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根(1)求k的取值范围(2)若方程的两实根的平方和等于11,求k的值.53.如果一元二方程x2+mx+2m﹣n=0有一个根为2,且根的判别式为0,求m、n 的值.54.已知,关于x的一元二次方程:ax2+4x﹣1=0,(1)当a取什么值时,方程有实数根?(2)设x1,x2为方程两根,y=x1+x2﹣x1•x2,试比较y与0的大小.55.已知关于x的一元二次方程x2﹣mx﹣2=0(1)x=2是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程的根的情况,并说明理由.56.已知关于x的方程.(1)若方程只有一个根,求k的值并求出此时方程的根;(2)若方程有两个相等的实数根,求k的值.57.已知关于x的方程4x2+4(k﹣1)x+k2=0和2x2﹣(4k+1)x+2k2﹣1=0,它们都有实数根,试求实数k的取值范围.58.已知关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0(1)若方程有实数根,求k的取值范围(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.59.已知关于2x2+kx﹣1=0.(1)求证:该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是﹣1,请求出另一个根.60.已知12<m<40,且关于x的二次方程x2﹣2(m+1)x+m2=0有两个整数根,求整数m.参考答案:1.(1)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4×2×(﹣a)>0,解得a >﹣,即a的取值范围为a >﹣;(2)根据题意得=1,解得a=﹣2,方程化为2x2﹣5x+2=0,变形为(2x﹣1)(x﹣2)=0,解得x1=,x2=2.2.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.3.方程整理得x2+(2k﹣1)x+(k﹣2)2=0①,由题意得(2k﹣1)2﹣4(k﹣2)2=0,解得.将代入①得,解得4.(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2 5.(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.此时方程为x2+3x+=0,解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=6.(1)化为一般形式得:x2+3x﹣m﹣8=0△=9+4(m+8)>0,解得m >﹣,∴m的最小整数值m=﹣10.(2)把m=﹣10代入原方程得x2+3x+10=8,即x2+3x+2=0解得:x1=﹣1,x2=﹣27.∵△=(﹣5)2﹣4×m×3=25﹣12m,∴由题意得:25﹣12m=1,∴m=2,当m=2时,方程为2x2﹣5x+3=0,两根为x1=1,x2=.答:m的值为2,方程的根为1和.8.(1)根据题意得k≠0且△≥0,即4﹣4k≥0,解得k ≤1,所以k的取值范围为k≤1且k≠0;(2)存在,k=﹣1.理由如下:根据题意得x1+x2=,x1•x2=,∵(x1+1)(x2+1)=k﹣1,∴x1•x2+x1+x2+1=k﹣1,即++1=k﹣1,化为整式方程得k2﹣2k﹣3=0,∴(k﹣3)(k+1)=0,∴k1=3,k2=﹣1,∵k≤1且k≠0;∴k=﹣19.①∵△=(2k+1)2﹣4×1×4(k ﹣)=4k2+4k+1﹣16k+8=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实根;②若方程有两个相等的实数根,则△=b2﹣4ac=0,∴(2k﹣3)2=0,解得:k=,∴k=时,方程有两个相等的实数根;把k=时代入原式得:x2﹣(2×+1)x+4(﹣)=0x2﹣4x+4=0,解得:x=2;∴方程两根均为2.10.(1)根据题意得k≠0且△=(k+2)2﹣4k ×=4k+4>0,解得k>﹣1且k≠0;(2)取k=1,方程化为x2+3x+=0,△=4k+4=8,∴x==,∴x1=,x2=11.△=(2m)2﹣4(m+2)(m﹣1)=4m2﹣4m2﹣4m+8=﹣4m+8.(1分)(1)因为方程有两个不相等的实数根,所以﹣4m+8>0,所以m<2.(2分)(2)因为方程有两个相等的实数根,所以﹣4m+8=0,所以m=2.(2分)因为方程没有实数根,所以﹣4m+8<0,所以m>212.(1)根据题题意得k≠0且△=(k﹣2)2﹣4k •>0,解得k<1且k≠0;(2)根据题意得k≠0且△=(k﹣2)2﹣4k •<0,解得k>113.(1)证明,将x=3代入方程,得左边=9a﹣9(a﹣1)﹣9=9﹣9=0=右边,所以,方程总有一个根是x=3;(2)当a≠0时,△=9(a﹣1)2+4×9=9(a+1)2,所以,x1==3,x2==﹣,即方程的另一个根是x=﹣.14.∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴1﹣k≠0,且△>0,即22﹣4×(1﹣k)×(﹣1)>0,解得k<2,又∵k是整数,∴k的取值范围为:k<2且k≠1的整数,∴k最大可以取0.15.(1)证明:△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴方程有两个不相等的实数根;(2)解:当m=﹣2时,方程变形为x2﹣5=0,解得x1=,x2=﹣,∴方程的两根互为相反数16.(1)∵x=1是方程x2+2x+k﹣1=0的一个根,∴12+2×1+k﹣1=0,解得,k=﹣2;(2)∵方程没有实数根,∴b2﹣4ac<0,即22﹣4(k﹣1)<0,解得k>217.(1)证明:方程的根的判别式△=(m﹣2)2﹣4×1×(﹣9)=(m﹣2)2+36∵无论m取何实效(m﹣2)2+36>0恒成立∴这个方程总有两个不相等的实数根(2)解由根与系数的关系.得α+β=2﹣m则2α+β=α+α+β=α+2﹣m∵2α+β=m+1,∴α+2﹣m=m+1,则α=2m﹣1∵α是方程的根,∴α2+(m﹣2)α﹣9=0则(2m﹣1)2+(m﹣2)(2m﹣1)﹣9=0整理,得2m2﹣3m一2=0解,得m1=2,m2=﹣.18.∵已知的整系数二次方程有整数根,∴△=4p2﹣4(p2﹣5p﹣1)=4(5p+1)为完全平方数,从而,5p+1为完全平方数设5p+1=n2,注意到p≥2,故n≥4,且n为整数∴5p=(n+1)(n﹣1),则n+1,n﹣1中至少有一个是5的倍数,即n=5k±1(k为正整数)∴5p+1=25k2±10k+1,p=k(5k±2),由p是质数,5k±2>1,∴k=1,p=3或7当p=3时,已知方程变为x2﹣6x﹣7=0,解得x1=﹣1,x2=7;当p=7时,已知方程变为x2﹣14x+13=0,解得x1=1,x2=13 所以p=3或p=7.19.∵△=b2﹣4ac=16﹣4(5﹣m)=4m﹣4>0∴m>1当x≥0时,方程是x2﹣4x+5﹣m=0,方程有两个不同的根,则两个的积一定大于0,即5﹣m>0,则m<5∴1<m<5当x<0时,方程是x2+4x+5﹣m=0,方程有两个不同的根,则两个根的积一定大于0,即5﹣m>0,则m<5则1<m<5∴1<m<5时,方程x2﹣4|x|+5=m有4个互不相等的实数根20.原式可变形为:|x﹣2| 2+(y﹣1)|x﹣2|﹣2﹣2y=0,(|x﹣2|﹣2)[|x﹣2|+(1+y)]=0,则|x﹣2|=2或|x﹣2|=﹣(y+1),故2=﹣(y+1),则y=﹣3,当|x﹣2|=2,且1+y>0时,则y>﹣1,故y的负整数值为:﹣321.(1)根据题意,m 应当满足条件…(3分)即∴﹣2<m≤﹣1…(7分)(2)根据题意,m 应当满足条件…(10分),即∴m<﹣122.(1)当m=1时,原方程变为:x2﹣2x﹣1=0解得:;(2)△=b2﹣4ac=(﹣2m)2﹣4×(m2﹣2m)=8m,当m>0时,原方程有两个不相等的实数根;当m=0时,原方程有两个相等的实数根;m<0时,原方程没有实数根23.由已知条件△=4(b﹣a)2﹣4(c﹣b)(a﹣b)=4(a ﹣b)(a﹣c)=0,∴a=b或a=c,∵c﹣b≠0则c≠b,∴这个三角形是等腰三角形24.△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴无论m取何值,该方程总有两个不相等的实数根.25.(1)∵方程有两个相等的实数根,∴(m﹣1)2﹣4(m+2)=0,∴m2﹣2m+1﹣4m﹣8=0,m2﹣6m﹣7=0,∴m=7或﹣1;(2)∵方程的两实数根之积等于m2﹣9m+2,∴m2﹣9m+2=m+2,∴m2﹣10m=0,∴m=0或m=10,当m=0时,方程为:x2+x+2=0,方程没有实数根,舍去;∴m=10,∴=426.(1)由题意,知(﹣2)2﹣4(k﹣1)>0,解得k<2,即k 的取值范围为k<2.(2)由题意,得(k﹣1)2﹣2(k﹣1)+k﹣1=0即k2﹣3k+2=0解得k1=1,k2=2(舍去)∴k的值为127.(1)把x=1代入方程,得1+2+m﹣1=0,所以m=﹣2;(2)∵方程有两个不相等的实数根,∴△>0,即22﹣4(m﹣1)>0,解得m<2.所以m的取值范围为m<228.∵关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,∴,解得k >.所以k的取值范围是k >且k≠2.29.(1)证明:∵△=b2﹣4ac=(3k﹣2)2﹣4•(﹣6k)=9k2﹣12k+4+24k=9k2+12k+4=(3k+2)2≥0∴无论k取何值,方程总有实数根.(2)解:①若a=6为底边,则b,c为腰长,则b=c,则△=0.∴(3k+2)2=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为6,2,2不能构成三角形,故舍去;②若a=b为腰,则b,c中一边为腰,不妨设b=a=6代入方程:62+6(3k﹣2)﹣6k=0∴k=﹣2则原方程化为x2﹣8x+12=0(x﹣2)(x﹣6)=0∴x1=2,x2=6即b=6,c=2此时△ABC三边为6,6,2能构成三角形,综上所述:△ABC三边为6,6,2.∴周长为6+6+2=14.30.(1)k=6,方程变为x2﹣5x+6=0,即(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)根据题意△=(﹣5)2﹣4k>0,解得k <;(3)根据题意得x1+x2=5,x1,•x2=k,而2x1﹣x2=2,∴x1=,∴x2=,∴k=×=31.(1)∵△=[﹣(m﹣1)]2﹣4m=m2+2m+1﹣4m=(m﹣1)2,又∵不论m取何实数,总有(m﹣1)2≥0,∴△≥0,∴不论m取何实数,方程都有实数根.(2)∵由求根公式得=∴x1=m,x2=1,∴只要m取整数(不等于1),则方程的解就都为整数且不相等.如取m=2,则原方程有两个不相等的整数根,分别是x1=2,x2=1.32.(1)△=(﹣2)2﹣4(2k﹣3)=8(2﹣k).∵该方程有两个不相等的实数根,∴8(2﹣k)>0,解得k<2.(2)当k为符合条件的最大整数时,k=1.此时方程化为x2﹣2x﹣1=0,方程的根为x==1±.即此时方程的根为x1=1+,x2=1﹣.33.(1)当k=﹣1时,方程﹣4x﹣4=0为一元一次方程,此方程有一个实数根;当k≠﹣1时,方程(k+1)x2+(3k﹣1)x+2k﹣2=0是一元二次方程,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2.∵(k﹣3)2≥0,即△≥0,∴k为除﹣1外的任意实数时,此方程总有两个实数根.综上,无论k取任意实数,方程总有实数根;(2)∵方程(k+1)x2+(3k﹣1)x+2k﹣2=0中a=k+1,b=3k ﹣1,c=2k﹣2,∴x=,∴x1=﹣1,x2=﹣2,∵方程的两个根是整数根,且k为正整数,∴当k=1时,方程的两根为﹣1,0;当k=3时,方程的两根为﹣1,﹣1.∴k=1,334.(1)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴△≥0,即12﹣4×1×(p﹣1)≥0,解得p ≤,∴p的取值范围为p ≤;(2)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x12﹣x1=﹣p+1=0,x22﹣x2=﹣p+1,∴(﹣p+1﹣2)(﹣p+1﹣2)=9,∴(p+1)2=9,∴p1=2,p2=﹣4,∵p ≤,∴p=﹣435.(1)设方程的两个正根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)≥0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4>0 ②,解①,得:k为任意实数,解②,得:k>2,所以k的取值范围是k>2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4<0 ②,解①,得:k ≠,解②,得:<k<2,所以k 的取值范围是<k<2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,(x1﹣3)(x2﹣3)<0 ②,解①,得:k ≠,由②,得:x1x2﹣3(x1+x2)+9<0,又x1+x2=2k﹣3>0,x1x2=2k﹣4,代入整理,得﹣4k+14<0,解得k >.则k >.36.(1)∵关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根,∴△=b2﹣4ac>0∴(2k+1)2﹣4(k2+2)>0∴4k2+4k+1﹣4k2﹣8>0,∴4k>7,解得,k >;(2)假设直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),∴5=(2k﹣3)×(﹣2)﹣4k+7,即﹣8=﹣8k,解得k=1<;又由(1)知,k >;∴k=1不符合题意,即直线y=(2k﹣3)x﹣4k+7不通过点A(﹣2,5)37.(1)把x=﹣1代入原方程得:1+m﹣2=0,解得:m=1,∴原方程为x2﹣x﹣2=0.解得:x=﹣1或2,∴方程另一个根是2;(2)∵△=b2﹣4ac=m2+8>0,∴对任意实数m方程都有两个不相等的实数根.38.∵△=(﹣2m)2﹣4×1×(﹣2m﹣4)=4(m2+2m)+16=4(m2+2m+1﹣1)+16=4(m+1)2+12>0,∴关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.∵关于x的一元二次方程x2﹣(m﹣1)x+m+2=0有两个相等的实数根,∴△=b2﹣4ac=0,即:(m﹣1)2﹣4(m+2)=0,解得:m=7或m=﹣1,∴m的值为7或﹣140.1)证明:∵a=1,b=﹣k,c=﹣2∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8,∵k2>0,∴△>0,∴无论k取何值,方程有两个不相等的实数根.(2)解:∵,;又∵x1+x2=x1•x2∴k=﹣2.41.当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m ≥﹣,则m的范围是m ≥﹣且m≠0;所以,m的取值范围为m ≥﹣42.(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣343.∵一元二次方程有两个不相等的实数根,∴△=4+4(1﹣m)=8﹣4m>0,且1﹣m≠0,∴m<2,且m ≠1.当m=0时,无意义,故m≠0,则m的最大整数值为﹣1,所以=4×1+1=5.答:=5.44.(1)∵方程x2+2kx+(k2+2k﹣5)=0有两个实数根,∴△≥0,即4k2﹣4( k2+2k﹣5 )≥0,∴﹣8k+20≥0∴k ≤;(2)∵x1+x2=﹣2k,x1x2=k2+2k﹣5,而x1+x2=x1x2,∴﹣2k=k2+2k﹣5,即k2+4k﹣5=0解得k1=﹣5,k2=1,又∵k ≤,∴k=﹣5或145.(1)(2k﹣1)2﹣4k2×1≥0,解得:k ≤,且:k2≠0,∴k≠0,∴k ≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=﹣,x1x2=,∴==﹣=﹣2k+1=0,k=,∵k ≤且k≠0;∴不存在46.(1)∵△=[﹣(k+1)]2﹣4k=k2+2k+1﹣4k=(k﹣1)2≥0,∴无论k取什么实数值,这个方程总有实根;(2)∵等腰△ABC的一边长a=4,∴另两边b、c中必有一个数为4,把4代入关于x的方程x2﹣(k+1)x+k=0中得,∴16﹣4(k+1)+k=0,解得:k=4,所以b+c=k+1=5∴△ABC的周长=4+5=9.47.(1)∵方程有两根不相等的实数根,∴△=(2k+1)2﹣4×1×(k2﹣2)>0,∴k >﹣;(2)把x=1代入原方程得1+(2k+1)+k2﹣2=0,整理得k2+2k=0,解得k=0或﹣2;(3)设两实数根为:x1,x2,由根与系数的关系:x1x2=k2﹣2=1,解得k=±48.①由题意得,22﹣4(k﹣1)•(﹣5)>0.解得,.且k﹣1≠0,即k≠1故且k≠1.(2)k的最小整数是k=2.则原方程为x2+2x﹣5=0故此时方程的解为:,49.(1)证明:∵△=[﹣(2m﹣1)]2﹣4×(m﹣1)×2=4m2﹣12m+9=(2m﹣3)2≥0,∴无论m取任何实数,方程总有实数根;(2)x==,x1==2,x2==,∵方程只有整数根,∴m﹣1=±1,解得:m=0或250.(1)有道理,△=k2﹣4×2×(﹣1)=k2+8,∴k2≥0,∴k2+8>0,∴无论k为何实数,方程总有实数根;(2)∵方程的一个根是﹣1,∴2×(﹣1)2﹣k﹣1=0,解得:k=1,把k=1代入方程2x2+kx﹣1=0得方程2x2+x﹣1=0,解得:x1=﹣1,x2=,故另一根是,k的值是151.(1)∵△≥0,方程有两个实数根,∴12﹣4×1×m≥0,解得m≤1,∴当m≤1时,方程有两个实数根;(2)∵方程的两个实数根为a、b,∴b2﹣b+m=0,ab=m,∴y=m﹣2(b2﹣b)+1=m﹣2×(﹣m)+1=m+1,∵m≤1,∴y ≤+1,即y ≤.52.(1)∵关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根,∴△=(2k+1)2﹣4×1×(k2﹣2)≥0,解得:;(2)设方程x2+(2k+1)x+k2﹣2=0设其两根为x1,x2,得x1+x2=﹣(2k+1),x1•x2=k2﹣2,∵x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k ≥﹣,∴k=1.53.∵一元二方程x2+mx+2m﹣n=0有一个根为2,∴4+4m﹣n=0①,又∵根的判别式为0,∴△=m2﹣4×(2m﹣n)=0,即m2﹣8m+4n=0②,由①得:n=4+4m,把n=4+4m代入②得:m2+8m+16﹣0,解得m=﹣4,代入①得:n=﹣12,所以m=﹣4,n=﹣12.54.(1)∵方程有实数根,∴△≥0,即16+4a≥0,解得a≥﹣4.由于ax2+4x﹣1=0是关于x的一元二次方程,可知a≠0,∴a≥﹣4且a≠0.(2)∵ax2+4x﹣1=0是关于x的一元二次方程,∴x1+x2=﹣,x1•x2=﹣,∴y=﹣+=﹣.当﹣4≤a<0时,y=﹣+=﹣>0;当a>0时,y=﹣+=﹣<0.55.(1)将x=2代入方程得:4﹣2m﹣2=0,解得:m=1,方程为x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x=2或x=﹣1,则方程的另一根为﹣1;(2)∵△=m2+8≥8>0,∴方程有两个不相等的实数根.56.(1)∵方程只有一个根,∴此方程是一元一次方程,即k ﹣=0,∴k=;代入原方程得﹣x=1,解得x=﹣;(2)∵方程有两个相等的实数根,∴,∴k1=0,k2=﹣6.57.∵两个一元二次方程都有实数根,∴,解得﹣≤k ≤.58.(1)∵关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0方程有实数根,∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)≥0,解得:k ≥﹣且k≠0;(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为3,2,2能构成三角形,∴△ABC的周长为:3+2+2=8;②若a=b为腰,则b,c中一边为腰,不妨设b=a=3代入方程:kx2+2(k+4)x+(k﹣4)=0得:k×32+2(k+4)×3+(k﹣4)=0∴解得:k=﹣,∵x1×x2=bc====3c,∴c=,∴△ABC的周长为:3+3+=.59.(1)证明:∵△=k2﹣4×2×(﹣1)=k2+4>0,∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x1,根据根与系数的关系可得:x1•x2=﹣,∵一个根是﹣1,∴x1•(﹣1)=﹣,解得:x1=60.∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴△=b2﹣4ac=4(m+1)2﹣4m2=8m+4≥0,∴,∵12<m<40,由求根公式,∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴2m+1必须是完全平方数,∴m=24。

根的判别式练习题(含答案解析)

根的判别式练习题(含答案解析)

根的判别式练习题一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=时,△ABC是等腰三角形;当k=时,△ABC是以BC为斜边的直角三角形.8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.参考答案与试题解析一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是m≤且m≠0.【分析】根据判别式的意义得到m≠0,b2﹣4ac=(﹣3)2﹣4m≥0,然后解不等式即可.【解答】解:∵关于x的一元二次方程mx2﹣3x+1=0有两个实数根,∴Δ=(﹣3)2﹣4m≥0且m≠0,解得:m≤且m≠0,故答案为:m≤且m≠0.【点评】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是0.【分析】根据方程有实数根可知△≥0,据此求出m的取值范围,从而得到m的最大整数值.【解答】解:∵关于x的方程x2+2(m﹣1)x+m2=0有实数根,∴△≥0,∴[2(m﹣1)]2﹣4m2≥0,∴﹣8m+4≥0,解得,m≤,故m的最大整数值是0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为10.【分析】讨论:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0可求出对应的n的值;当a=b时,根据判别式的意义得到Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10.【解答】解:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0得4﹣12+n﹣1=0,解得n=9,此时方程的根为2和4,而2+2=4,故舍去;当a=b时,Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10,故答案为10.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了等腰三角形的性质.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值1或﹣9..【分析】通过解方程x2﹣2x=0,可得出方程的根,分x=0为两方程相同的实数根或x =2为两方程相同的实数根两种情况考虑:①若x=0是两个方程相同的实数根,将x=0代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=1符合题意;②若x=2是两个方程相同的实数根,将x=2代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=2符合题意.综上此题得解.【解答】解:解方程x2﹣2x=0,得:x1=0,x2=2.①若x=0是两个方程相同的实数根.将x=0代入方程x2+3x+m﹣1=0,得:m﹣1=0,∴m=1,此时原方程为x2+3x=0,解得:x1=0,x2=﹣3,符合题意,∴m=1;②若x=2是两个方程相同的实数根.将x=2代入方程x2+3x+m﹣1=0,得:4+6+m﹣1=0,∴m=﹣9,此时原方程为x2+3x﹣10=0,解得:x1=2,x2=﹣5,符合题意,∴m=﹣9.综上所述:m的值为1或﹣9.故答案为:1或﹣9.【点评】本题考查了一元二次方程的解,代入x求出m的值是解题的关键.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=3或4时,△ABC是等腰三角形;当k=2时,△ABC是以BC为斜边的直角三角形.【分析】(1)此题要分两种情况进行讨论,若AB=BC=5时,把5代入方程即可求出k 的值,若AB=AC时,则Δ=0,列出关于k的方程,解出k的值即可;(2)若△ABC是以BC为斜边的直角三角形,则根据勾股定理,AB2+AC2=25,再根据根与系数的关系求得k的值即可.【解答】解:(1)因为Δ=b2﹣4ac=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,所以方程总有两个不相等的实数根.若AB=BC=5时,5是方程x2﹣(2k+3)x+k2+3k+2=0的实数根,把x=5代入原方程,得k=3或k=4.∵无论k取何值,Δ>0,∴AB≠AC,故k只能取3或4;(2)根据根与系数的关系:AB+AC=2k+3,AB•AC=k2+3k+2,则AB2+AC2=(AB+AC)2﹣2AB•AC=25,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或k=﹣5.根据三角形的边长必须是正数,因而两根的和2k+3>0且两根的积k2+3k+2>0,解得k >﹣1,∴k=2.故答案为:3或4;2.【点评】本题主要考查了一元二次方程根与系数的关系和根的判别式,一元二次方程根的情况与判别式△的关系是:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.在解题的过程中注意不要忽视三角形的边长是正数这一条件8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为0.【分析】根据关于x的方程ax2+4x﹣3=0有唯一实数解,可知是一元一次方程,依此求出a的值.【解答】解:∵关于x的方程ax2+4x﹣3=0有唯一实数解,∴a=0.故答案为:0.【点评】此题主要考查了根的判别式,关键是掌握Δ>0时,方程有两个不相等的实数根,Δ=0时,方程有两个相等的实数根,Δ<0时,方程没有实数根.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.【分析】根据判别式的意义得到Δ=22﹣4(m﹣1)×(﹣1)>0,然后解不等式即可.【解答】解:根据题意得Δ=22﹣4(m﹣1)×(﹣1)>0,解得m>0,且m﹣1≠0,解得:m≠1,所以m>0且m≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.【分析】(1)分类讨论:当m=0时,方程变形一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,再进行判别式得到Δ=(3m﹣1)2,易得△≥0,故判别式的意义得到方程有两个实数根,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先利用求根公式得到x1=﹣3,x2=﹣,再利用方程有两个不同的整数根,且m 为正整数和整数的整除性易得m=1.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,Δ=(3m+1)2﹣4m•3=9m2﹣6m+1=(3m﹣1)2,∵(3m﹣1)2,≥0,即△≥0,∴此时方程有两个实数根,所以不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0且Δ=(3m+1)2﹣4m•3=(3m﹣1)2>0,x=,所以x1=﹣3,x2=﹣,∵方程有两个不同的整数根,且m为正整数,∴m=1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.。

一元二次方程根的判别式基础练习30题含详细答案

一元二次方程根的判别式基础练习30题含详细答案
(2)求证:无论m取任何实数,此方程总有两个不相等的实数根;
(3)设该方程的两个实数根为x1,x2,若x12+x22+m(x1+x2)=m2+1,求m的值.
21.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若方程的两根x1,x2满足x12+x22=16,求k的值.
【点睛】
此题主要考查一元二次方程根的情况,解题的关键是熟知根的判别式特点.
5.B
【分析】
先根据一元二次方程的解的定义得到α2+2α﹣2015=0,则α2+2α=2015,于是α2+3α+β可化为2015+α+β,再利用根与系数的关系得到α+β=﹣2,然后利用整体代入的方法计算.
【详解】
解:∵α是方程x2+2x﹣2015=0的根,
16.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是_____.
三、解答题
17.关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
18.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.
(1)若方程的一个根为1,求m的值;
7.D
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.
【详解】
解:A、x2+1=0中 ,没有实数根,故本选项错误;

《一元二次方程的解法及根的判别式》练习

《一元二次方程的解法及根的判别式》练习

《一元二次方程的解法及根的判别式》练习1.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( ) A.2018 B.2008 C.2014 D.20122.一元二次方程x2-2x-3=0的解是( )A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=33.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是( )A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解4.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于( ) A.1 B.2 C.1或2 D.05.若关于x的一元二次方程x2+2x+a-1=0有两个根,分别为x1,x2,且21x-x1x2=0,则a的值是( )A.a=1 B.a=1或a=-2 C.a=2 D.a=1或a=26.若关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<-2 B.k<2 C.k>2 D.k<2且k≠17.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰方程”,若ax2+bx+c=0(a≠0)是凤凰方程,且有两个相等的实数根,则下列结论正确的是( )A.a=c B.a=bC.b=c D.a=b=c8.若将方程x2+6x=7化为(x+m)2=16,则m=_______.9.一元二次方程x(x-6)=0的两个实数根中较大的根是_______.10.定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是_______.11.若a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是_______.12.如果关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是_______.13.对于实数a,b,定义运算“*”:a*b=22,,a ab a bab b a b⎧-≥⎪⎨-<⎪⎩例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根.则x1*x2=_______.14.若关于x的一元二次方程x2-x-3=0的两个实数根分别为α,β,则(α+3)(β+3)=_______.15.选择适当的方法解下列方程:(1)(x+1)(x-3)=2x-6;(2)3(x-3)2=x2-9.16.已知关于x的方程x2+x+n=0有两个实数根-2,m,求m,n的值.17.已知关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?18.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看成一个整体,然后设x2-1=y……①,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x2-1=1,∴x2=2,∴x;当y=4时,x2-1=4,∴x2=5,∴x故原方程的解为x1,x2,x3x4解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_______法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x4-x2-6=0.参考答案1.A2.A3.B4.B5.D6.D7.A8.39.6 10.-1或411.没有实数根12.a≥-1 13.-3或3 14.915.(1)x1=1,x2=3 (2)x1=3,x2=616.n=-2,m=117.(1)x1=11mm+-,x2=1 (2)m=2或318.(1)换元(2)x1x2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.3一元二次方程根的判别式课堂练习
例题1 不解方程,判别下列方程的根的情况:
0354)1(2=--x x 3)6(2)2(-=-y y
练习 不解方程,判断下列方程的根的情况:
7)2(3)1(-=-x x 09341)2(2=+-x x 005.06.02.0)3(2=++x x
例题2: 不解方程,判别方程0)1(2=--+m x m x (其中m 是实数)根的情况.
变式:不解方程,讨论关于x 的方程01)12(2=++++m x m mx
(其中m 是
实数)根的情况.
例题3 当m 取何值时,关于x 的方程014
1)2(22=-+-+m x m x (1)有两个不相等的实数根?
(2)有两个相等的实数根?
(3)没有实数根?
(4)有实数根?并求出这时方程的根(用含m 的代数式表示).
【课堂反馈测试】
1.判别下列方程根的情况:
041)2(0
1)1(22=+-=++x x x x
01)1)(4()
0(02)3(222=++<=++x m c c x x
2. 关于x 的方程0122=++x mx 有两个不相等的实数根,求m 的取值范围。

最新文件 仅供参考 已改成word 文本 。

方便更改。

相关文档
最新文档