2018北京市清华附中高一(上)期末数学

合集下载

2018-2019学年北京市清华附中高一(上)期中数学试卷(解析版)

2018-2019学年北京市清华附中高一(上)期中数学试卷(解析版)

第1页,共5页2018-2019学年北京市清华附中高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设全集,集合,,则集合 U =R A ={x|x >0}B ={x|x <1}(∁U A)∩B =()A. B. C. D. (‒∞,0)(‒∞,0](1,+∞)[1,+∞)【答案】B【解析】解:集合,,∵A ={x|x >0}∴∁AU ={x|x ≤0},∵B ={x|x <1},∴(∁U A)∩B ={x|x ≤0}故选:B .求出集合A 的补集,从而求出其和B 的交集即可.不同考查了集合的运算,熟练掌握运算性质是解题的关键,不同是一道基础题.2.命题“,使得”的否定是 ∃x ∈R x 2<1()A. ,都有 B. ,使得∀x ∈R x 2<1∃x ∈R x 2≥1C. ,都有 D. ,使得∀x ∈R x 2≥1∃x ∈R x 2>1【答案】C【解析】解:命题是特称命题,则否命题的否定是:,都有,∀x ∈R x 2≥1故选:C .根据特称命题的否定是全称命题进行判断即可.本题主要考查含有量词的命题的否定,比较基础.3.下列函数中,既是奇函数又在R 单调递减的是 ()A.B. C. D. y =1xy =e‒xy =lnx y =‒x|x|【答案】D【解析】解:根据题意,依次分析选项:对于A ,,为反比例函数,其定义域为,不符合题意;y =1x{x|x ≠0}对于B ,,不是奇函数,不符合题意;y =e ‒x =(1e )x对于C ,,是对数函数,不是奇函数,不符合题意;y =lnx 对于D ,,既是奇函数又在R 单调递减,符合题意;y =‒x|x|={‒x 2,x ≥0x 2,x <0故选:D .根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.本题考查函数奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4.已知,,,那么 a =log 23b =log 32c =log 0.52()A. B. C. D. a <b <ca <c <bc <b <a b <c <a【答案】C【解析】解:,,,a =log 23>1b =log 32∈(0,1)c =log 0.52<0可得.c <b <a 故选:C .利用对数性质,判断三个数的范围,即可得到结果.本题考查对数值的大小比较,是基础题.5.“”是““的 a >|b|a >b (()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:“”““,反之不成立.a >|b|⇒a >b “”是““的充分不必要条件.∴a >|b|a >b 故选:A .由“”可得““,反之不成立即可判断出关系.a >|b|a >b .本题考查了不等式的基本性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.函数的零点所在的一个区间是 f(x)=2x ‒1+log 2x ()A.B.C.D. (18,14)(14,12)(12,1)(1,2)【答案】C【解析】解:函数,在单调递增.∵f(x)=2x ‒1+log 2x (0,+∞),,∴f(1)=1f(12)=‒1根据函数的零点的判断方法得出:零点所在的一个区间是,∴(12,1)故选:C .根据函数,在单调递增,,,可判断分析.f(x)=2x ‒1+log 2x (0,+∞)f(1)=1f(12)=‒1本题考查了函数的性质,函数的零点的判断方法,属于容易题.7.要得到的图象,只需将函数的图象 g(x)=log 2(2x)f(x)=log 2x ()A. 向上平移1个单位B. 向下平移1个单位C. 向左平移1个单位D. 向右平移1个单位【答案】A【解析】解:,g(x)=log 2(2x)=log 2x +1故将函数的图象向上平移1个单位,即可得到,f(x)=log 2x 故选:A .利用对数的运算性质,可得,结合函数图象平移变换法则,可得答案.g(x)=log 2(2x)=log 2x +1本题考查的知识点是函数图象的平移变换,对数的运算性质,难度中档.8.函数,的图象为 y =a|x +b|(0<a <1,‒1<b <0)()A.B.C.D.【答案】C【解析】解:,∵0<a <1的图象过第一、第二象限,且是单调减函数,经过,∴y =a x(0,1) 的图象可看成把的图象在y 轴的右铡的不变,再将右侧的图象作关于y 轴的图象得到的,y =a |x|y =a x的图象可看成把的图象向右平移个单位得到的,y =a |x +b|y =a x ‒b(0<‒b <1)故选:C .先考查的图象特征,的图象可看成把的图象向右平移个单位得到y =a |x|y =a |x +b|y =a x‒b(0<‒b <1)的,即可得到的图象特征.y =a|x +b|本题考查函数图象的变换,指数函数的图象特征,体现了转化的数学思想.二、填空题(本大题共5小题,共25.0分)9.函数的定义域是______.y =ln(x ‒1)+12‒x 【答案】(1,2)【解析】解:由,解得.{x ‒1>02‒x >01<x <2函数的定义域是.∴y =ln(x ‒1)+12‒x (1,2)故答案为:.(1,2)由对数式的真数大于0,分式中根式内部的代数式大于0,联立不等式组求解即可.本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.10.若为R 上的奇函数,当时,,则______.f(x)x <0f(x)=log 2(2‒x)f(0)+f(2)=【答案】‒2【解析】解:为R 上的奇函数,f(x)则,f(‒x)=‒f(x)即有,,f(0)=0f(‒2)=‒f(2)当时,,x <0f(x)=log 2(2‒x),f(‒2)=log 2(2+2)=2则.f(0)+f(2)=0‒2=‒2故答案为:.‒2运用奇函数的定义,已知解析式,可得,,即可得到结论.f(0)=0f(2)=‒2本题考查函数的奇偶性的运用:求函数值,考查运算能力,属于基础题.11.已知函数对任意的满足,且当时,,若有4个零f(x)x ∈R f(‒x)=f(x)x ≥0f(x)=x 2‒ax +1f(x)点,则实数a 的取值范围是______.【答案】(2,+∞)第3页,共5页【解析】解:,∵f(‒x)=f(x)函数是偶函数,∴f(x),∵f(0)=1>0根据偶函数的对称轴可得当时函数有2个零点,x ≥0f(x)即,,{△=a 2‒4>0‒‒a 2=a2>0∴{a >2或a <‒2a >0解得,a >2即实数a 的取值范围,(2,+∞)故答案为:(2,+∞)由,可知函数是偶函数,根据偶函数的对称轴可得当时函数有2个零点,即可得f(‒x)=f(x)x ≥0f(x)到结论.本题主要考查函数奇偶的应用,以及二次函数的图象和性质,利用偶函数的对称性是解决本题的关键.12.已知函数,若,则x 的取值范围是______.f(x)={x +1,x ≤1log 2x,x >1f(x)>f(x +1)【答案】(0,1]【解析】解:函数,∵f(x)={x +1,x ≤1log 2x,x >1故函数在上单调递增,在上单调递增,f(x)(‒∞,1](1,+∞)由于,且,f(x)>f(x +1)x <x +1则有,{x ≤1x +1>1x +1>log 2(x +1)由,可得,,0<x ≤11<x +1≤20<log 2(x +1)≤1不等式在成立,x +1>log 2(x +1)0<x ≤1则的解集为.f(x)>f(x +1)(0,1]故答案为:.(0,1]由题意可得函数在上单调递增,在上单调递增,由,可得,f(x)(‒∞,1](1,+∞)f(x)>f(x +1)x +1>1,,由此求得x 的范围.x ≤1x +1>log 2(x +1本题考查分段函数的应用:解不等式,函数的单调性的应用,属于中档题.13.函数的值域是______注:其中表示不超过x 的最大整数f(x)=[3x]‒3[x].([x])【答案】(‒1,3)【解析】解:根据高斯函数的性质,,x ‒1<[x]≤x 那么:,3x ‒3<3[x]≤3x 则 ‒3x ≤‒3[x]<3‒3x 由,3x ‒1<[3x]≤3x∴‒1<[3x]‒3[x]<3函数的值域为.f(x)=[3x]‒3[x](‒1,3)故答案为(‒1,3)根据高斯函数的性质,,,结合不等式的性质即可求解;x ‒1<[x]≤x 3x ‒1<[3x]≤3x 本题考查了表示不超过x 的最大整数新定义的应用,其实是高斯函数的性质应用属于中档题.[x].三、解答题(本大题共7小题,共85.0分)14.已知,,则______.4a=2lgx =a x =【答案】10【解析】解:,∵4a=2,∴22a =2即2a =1解得a =12,∵lgx =a ,∴lgx =12∴x =10故答案为:10根据指数函数和对数函数的定义计算即可.本题主要考查了指数函数和对数函数的运算,属于基础题.15.已知集合,.A ={x|x 2‒ax +12≤0}B ={x|x 2‒6x +5<0}若,求;(1)a =8A ∩B 若集合中至少存在一个整数,求实数a 的取值范围.(2)A ∩B 【答案】解:时,集合,(1)∵a =8A ={x|x 2‒8x +12≤0}={x|2≤x ≤6}.B ={x|x 2‒6x +5<0}={x|1<x <5}.∴A ∩B ={x|2≤x <5}集合,.(2)∵A ={x|x 2‒ax +12≤0}B ={x|1<x <5}集合中至少存在一个整数,A ∩B ,∴A ={x|a ‒a 2‒482≤a ≤a +a 2‒482}或,∴{a ‒a 2‒482≤1a +a 2+482≥2{a‒a 2‒482≤4a +a 2+482≥5解得.a ≥163实数a 的取值范围是.∴[163,+∞)【解析】时,集合,(1)a =8A ={x|x 2‒8x +12≤0}={x|2≤x ≤6},由此能求出.B ={x|x 2‒6x +5<0}={x|1<x <5}A ∩B 集合,由集合中至少存在一个整数,得(2)A ={x|x 2‒ax +12≤0}B ={x|1<x <5}.A ∩B ,由此能求出实数a 的取值范围.A ={x|a ‒a 2‒482≤a ≤a +a 2‒482}本题考查交集的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.16.已知函数f(x)=a x(a >0,a ≠1)若,求的值;(1)f(1)+f(‒1)=3f(2)+f(‒2)若函数在区间的最大值与最小值的差为,求实数a 的值.(2)f(x)[‒1,1]83【答案】解:,可得,(1)f(1)+f(‒1)=3a +a‒1=3两边平方可得,a 2+a ‒2=7即有;f(2)+f(‒2)=a 2+a‒2=7当时,在递增,(2)a >1f(x)[‒1,1]可得,f(1)‒f(‒1)=a ‒a ‒1=83解得;a =3当时,在递减,0<a <1f(x)[‒1,1]可得,f(‒1)‒f(1)=a ‒1‒a =83解得.a =13综上可得或.a =313【解析】由题意可得,两边平方即可得到所求值:(1)a +a ‒1=3讨论和,运用指数函数的单调性,可得a 的方程,解方程即可得到所求值.(2)a >10<a <1本题考查指数函数的单调性和运用:求最值,考查方程思想和运算能力,属于基础题.17.已知函数,,若在区间上有最大值5,最小值2.f(x)=ax 2‒2ax +2+b (a ≠0)f(x)[2,3]求a ,b 的值;(1)若,在上为单调函数,求实数m 的取值范围.(2)b <1g(x)=f(x)‒mx [2,4]【答案】解:由于函数,,对称轴为,(1)f(x)=ax 2‒2ax +2+b =a(x ‒1)2+2+b ‒a (a ≠0)x =1当时,函数在区间上单调递增,由题意可得,a >0f(x)[2,3]{f(2)=2+b =2f(3)=2+b +3a =5解得.{a =1b =0当时,函数在区间上单调递减,由题意可得,a <0f(x)[2,3]{f(2)=2+b =5f(3)=2+b +3a =2解得.{a =‒1b =3综上可得,,或 .{a =1b =0{a =‒1b =3若,则由可得,,(2)b <1(1){a =1b =0g(x)=f(x)‒mx =x 2‒(m +2)x +2再由函数在上为单调函数,可得,或,g(x)[2,4]m +22≤2m +22≥4解得,或,m ≤2m ≥6故m 的范围为.(‒∞,2]∪[6,+∞)【解析】由于函数,,对称轴为,分当时、当时两(1)f(x)=a(x ‒1)2+2+b ‒a (a ≠0)x =1a >0a <0种情况,分别依据条件利用函数的单调性求得a 、b 的值.由题意可得可得,,根据条件可得,或,由此求得m(2){a =1b =0g(x)=x 2‒(m +2)x +2m +22≤2m +22≥4的范围.本题主要考查求二次函数在闭区间上的最值,二次函数的性质应用,体现了分类讨论的数学思想,属于中档题.18.设函数是R 上的增函数,对任意x ,,都有f(x)y ∈R yf(x)‒xf(y)=xy(x 2‒y 2).求;(1)f(0)求证:是奇函数;(2)f(x)若,求实数x 的取值范围.(3)f(x 2+1)+f(3x ‒5)<0【答案】解:对任意x ,,都有,(1)y ∈R yf(x)‒xf(y)=xy(x 2‒y 2)可令,,可得,即;x =1y =00‒f(0)=0f(0)=0证明:由任意x ,,都有,(2)y ∈R yf(x)‒xf(y)=xy(x 2‒y 2)可令,可得,y =‒x ‒xf(x)‒xf(‒x)=‒x 2⋅(x 2‒x 2)=0可得,由,可得,‒x[f(x)+f(‒x)]=0x ∈R f(‒x)=‒f(x)即有为奇函数;f(x)奇函数是R 上的增函数,(3)f(x)由,即,f(x 2+1)+f(3x ‒5)<0f(1+x 2)<‒f(3x ‒5)=f(5‒3x)即有,1+x 2<5‒3x第5页,共5页解得.‒4<x <1实数x 的取值范围为.(‒4,1)【解析】可令,,计算可得所求;(1)x =1y =0f(0)可令,结婚酒函数的奇偶性的定义,即可得证;(2)y =‒x 由奇函数是R 上的增函数,将已知不等式移项,可得,由二次不等式的解法,即可(3)f(x)1+x 2<5‒3x 得到所求范围.本题考查抽象函数的奇偶性的判断和运用,考查不等式的解法,注意运用函数的单调性和奇偶性,考查运算能力,属于中档题.19.若函数满足:在区间内有且仅有一个实数,使得成立,则称函数具有性f(x)(‒2,2)x 0f(x 0)=1ff(x)质M .判断函数是否具有性质M ,说明理由;(1)y =1+x2‒x若函数具有性质M ,求实数a 的取值范围;(2)y =log a x(a >0,a ≠1)若函数具有性质M ,求实数m 的取值范围.(3)f(x)=x 2+2mx +2m +1【答案】解:函数,由,可得,(1)y =1+x2‒x1+x 2‒x=1x =12∈(‒2,2)则函数具有性质M ;y =1+x2‒x函数具有性质M ,(2)y =log a x(a >0,a ≠1)可得,即,log a x =1x =a ∈(‒2,2)可得a 的取值范围是;(0,1)∪(1,2)依题意,若函数具有性质M ,(3)f(x)=x 2+2mx +2m +1即方程在上有且只有一个实根.x 2+2mx +2m =0(‒2,2)设,即在上有且只有一个零点,ℎ(x)=x 2+2mx +2m ℎ(x)=x 2+2mx +2m (‒2,2)由得,,解得或.ℎ(‒2)⋅ℎ(2)<0(4‒2m)(6m +4)<0m <‒23m>2同时需要考虑以下三种情况:由解得;①{‒2<‒m <2△=4m 2‒8m =0m =0由解得,不等式组无解;②{‒2<‒m <0ℎ(‒2)=4‒2m =0{0<m <2m =2由解得,解得.③{0<‒m <2ℎ(2)=6m +4=0{‒2<m <0m =‒23m =‒23综上所述,若函数具有性质M ,实数m 的取值范围f(x)是或或.m ≤‒23m >2m =0【解析】解方程可得想x ,可判断是否具有性质M ;(1)y =1由题意可得,解方程可得,再由性质M 即可得到所求范围;(2)log a x =1x =a 依题意,若函数具有性质M ,即方程在上有且只(3)f(x)=x 2+2mx +2m +1x 2+2mx +2m =0(‒2,2)有一个实根设,即在上有且只有一个零点讨论m 的.ℎ(x)=x 2+2mx +2m ℎ(x)=x 2+2mx +2m (‒2,2).取值范围,结合零点存在定理和二次函数的图象,即可得到m 的范围.本题考查函数的零点的判断和求法,考查零点存在定理的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.已知函数.f(x)=1‒a ⋅(12)x +(14)x当时,求函数在上的值域;(1)a =3f(x)(‒∞,0)若不等式在区间上恒成立,求实数a 的取值范围.(2)|f(x)|≤3[0,+∞)【答案】解:当时,,(1)a =3f(x)=1‒3⋅(12)x +(14)x 令,则原函数化为,(12)x =ty =t 2‒3t +1,则,∵x ∈(‒∞,0)t ∈(1,+∞)当时,.∴t =32y min =94‒3×32+1=‒54函数在上的值域为;∴f(x)(‒∞,0)[‒54,+∞)由知,在区间上恒成立,(2)(1)|f(x)|≤3[0,+∞)即在上恒成立,|t 2‒at +1|≤3t ∈(0,1]令,g(t)=|t 2‒at +1|则,解得:.{g(0)=1<3g(1)=|2‒a|≤3g(a 2)=|1‒a 24|≤3‒1≤a ≤4实数a 的取值范围是.∴[‒1,4]【解析】把代入函数解析式,利用换元法结合二次函数求最值;(1)a =3令,把问题转化为在上恒成立,得到关于t 的不等式组求(2)g(t)=|t 2‒at +1||t 2‒at +1|≤3t ∈(0,1]解.本题考查函数值域的求法,考查恒成立问题的求解方法,训练了换元法,体现了数学转化思想方法的应用,是中档题.。

北京市清华大学附属中学2019-2020学年高一上学期数学期末考试卷带讲解

北京市清华大学附属中学2019-2020学年高一上学期数学期末考试卷带讲解
【详解】解:根据题意,若函数 是 , 上的平均值函数,
则方程 ,即 在 内有实数根,
若函数 在 内有零点.
则 ,解得 ,或 .
(1) , . .
对称轴: .
① 时, , , (1) ,因此此时函数 在 内一定有零点. 满足条件.
② 时, ,由于 (1) ,因此函数 在 内不可能有零点,舍去.
综上可得:实数 的取值范围是 , .
【详解】因为 ,所以 ; ; ; .
故 最大.
故选:B.
【点睛】本题考查了根据实数范围比较实数大小,属于基础题.
5.“ , ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】A
【分析】由 可解得 或 ,即可判断.
【详解】若 ,则 , ,
即 或 ,
则可得“ , ”是“ ”的充分而不必要条件.
故选:A.
6.下列区间包含函数 零点的为()
A. B. C. D.
【答案】C
【分析】
根据零点存在定理,分别判断选项区间的端点值的正负可得答案.
【详解】 , ,
, ,
,又 为 上单调递增连续函数
故选:C .
7.函数 的定义域为()
A. B.
C. D.
【答案】B
2.下列函数在定义域内单调递增的是()
A. B. C. D.
【答案】D
【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.
【详解】解:根据题意,依次分析选项:
对于A, ,是二次函数,在其定义域上不是单调函数,不符合题意;
对于B, ,是正切函数,在其定义域上不是单调函数,不符合题意;
对于C, ,是指数函数,在定义域内单调递减,不符合题意;

2019-2020学年北京市清华附中高一(上)期末数学试卷(1)

2019-2020学年北京市清华附中高一(上)期末数学试卷(1)

2019-2020学年北京市清华附中高一(上)期末数学试卷一.选择题(每小题4分,共40分).1.(4分)已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.12.(4分)下列函数在定义域内单调递增的是()A.y=x2B.y=tan x C.y=0.5x D.y=lgx3.(4分)若点P(4,3)在角α的终边上,则cosα=()A.B.C.D.4.(4分)在a=log30.1,b=tan,c=2,d=sin2中,最大的数为()A.a B.b C.c D.d5.(4分)“α+β=+2kπ,k∈Z”是“sinα=cosβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)下列区间包含函数f(x)=x+log2x﹣5零点的为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)7.(4分)函数f(x)=的定义域为()A.(﹣1,0)∪(0,+∞)B.[﹣1,0)∪(0,+∞)C.[﹣1,+∞)D.(﹣1,+∞)8.(4分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件9.(4分)已知θ=(0,),sin2θ=,则sinθ﹣cosθ=()A.B.﹣C.D.﹣10.(4分)若函数f(x)的图象上存在一点A(x0,y0),满足x0+y0=0,且x0y0≠0,称函数f(x)为“可相反函数”.在:①y=sin x;②y=lnx;③y=x2+4x+1;④y=﹣e﹣x中,为“可相反函数”的全部序号是()A.①②B.②③C.①③④D.②③④二、填空题(每小题5分,共30分).11.(5分)已知幂函数f(x)=x m经过点(2,),则f()=.12.(5分)已知θ为第二象限角,且sinθ=,则sin(θ+)=.13.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数f(x)的单调递增区间为.14.(5分)关于函数f(x)=sin x与g(x)=cos x有下面三个结论:①函数f(x)的图象可由函数g(x)的图象平移得到:②函数f(x)与函数g(x)在(,π)上均单调递减;③若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|≤1.其中全部正确结论的序号为.15.(5分)已知函数f(x)=,若函数y=f(x)﹣k恰有两个不同的零点.则实数k的取值范围为.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”.x0是它的一个均值点,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则实数m的取值范围是.三、解答题(共6小题,共80分).17.(13分)计算:(1)log64+2log63.(2)×(3)cos120°+tan135°.18.(13分)已知=.(1)若α为第三象限角,求cosα的值;(2)求tan(α+)的值;(3)求cos2α的值.19.(13分)已知函数f(x)=|log a x|(a>0,a≠1).(1)若f(2)=,求实数a的值;(2)若0<x1<x2,且f(x1)=f(x2),求x1x2的值;(3)若函数f(x)在[,3]的最大值与最小值之和为2,求实数a的值.20.(13分)已知函数f(x)=4cos x sin(x+).(1)求f()的值;(2)求函数f(x)的最小正周期及其图象的对称轴方程:(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,求实数m的取值范围.21.(14分)若函数f(x)的定义域为R,且存在非零实数T,使得对于任意x∈R,f(x+T)=Tf(x)恒成立,称函数f(x)满足性质P(T).(1)分别判断下列函数是否满足性质P(1),并说明理由;①f(x)=sin2πx;②g(x)=cosπx.(2)若函数f(x)既满足性质P(2).又满足性质P(3),求函数f(x)的解析式;(3)若函数f(x)满足性质P(1.01).求证:存在x0∈R.使得|f(x0)|<0.001.22.(14分)已知集合A为非空数集,定义A+={x|x=a+b,a,b∈A},A﹣={x|x=|a﹣b|,a,b∈A}.(1)若集合A={﹣1,1},直接写出集合A+及A﹣;(2)若集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,求证x1+x4=x2+x3;(3)若集A⊆{x|0≤x≤2020,x∈N},且A+∩A﹣=∅,求集合A中元素的个数的最大值.2019-2020学年北京市清华附中高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共40分).1.(4分)已知集合A={x|x2<1},且a∈A,则a的值可能为()A.﹣2B.﹣1C.0D.1【分析】化简集合A,利用元素与集合之间的关系即可得出.【解答】解:集合A={x|x2<1}={x|﹣1<x<1},四个选项中,只有0∈A,故选:C.2.(4分)下列函数在定义域内单调递增的是()A.y=x2B.y=tan x C.y=0.5x D.y=lgx【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=x2,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,y=tan x,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,y=0.5x,是指数函数,在定义域内单调递减,不符合题意;对于D,y=lgx,是对数函数,在定义域内单调递增,符合题意;故选:D.3.(4分)若点P(4,3)在角α的终边上,则cosα=()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得cosα的值.【解答】解:∵点P(4,3)在角α的终边上,则cosα==,故选:A.4.(4分)在a=log30.1,b=tan,c=2,d=sin2中,最大的数为()A.a B.b C.c D.d【分析】分别判断三个数的大小,进行比较即可.【解答】解:a=log30.1<0,b=tan=1,c=2∈(0,1),d=sin2<1,则最大的是b=1.故选:B.5.(4分)“α+β=+2kπ,k∈Z”是“sinα=cosβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】sinα=cosβ⇒cos(﹣α)=cosβ,可得β=2kπ±((﹣α),k∈Z.即可判断出结论.【解答】解:sinα=cosβ⇒cos(﹣α)=cosβ,∴β=2kπ±((﹣α),k∈Z.化为:α+β=+2kπ,k∈Z,或β﹣α=﹣+2kπ,k∈Z,∴“α+β=+2kπ,k∈Z“是“sinα=cosβ“的充分不必要条件.故选:A.6.(4分)下列区间包含函数f(x)=x+log2x﹣5零点的为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【分析】此类选择题可以用代入计算出函数值,利用零点判定定理解决【解答】解:经计算f(1)=1﹣5=﹣4<0,f(2)=2+1﹣5=﹣2<0,f(3)=3+log23﹣5=log23﹣2<0,f(4)=4+2﹣5=1>0,故函数的零点所在区间为(3,4),故选:C.7.(4分)函数f(x)=的定义域为()A.(﹣1,0)∪(0,+∞)B.[﹣1,0)∪(0,+∞)C.[﹣1,+∞)D.(﹣1,+∞)【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则ln(x+1)≠0,且x+1>0,即x>﹣1且x≠0,故函数的定义域为{x|x>﹣1且x≠0},故选:A.8.(4分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.9.(4分)已知θ=(0,),sin2θ=,则sinθ﹣cosθ=()A.B.﹣C.D.﹣【分析】由已知利用同角三角函数基本关系式,二倍角的正弦函数公式即可求解.【解答】解:∵θ=(0,),sin2θ=,∴sinθ﹣cosθ<0,∴sinθ﹣cosθ=﹣=﹣=﹣=﹣.故选:D.10.(4分)若函数f(x)的图象上存在一点A(x0,y0),满足x0+y0=0,且x0y0≠0,称函数f(x)为“可相反函数”.在:①y=sin x;②y=lnx;③y=x2+4x+1;④y=﹣e﹣x中,为“可相反函数”的全部序号是()A.①②B.②③C.①③④D.②③④【分析】根据已知条件把问题转化为函数f(x)与直线y=﹣x有交点且交点不在坐标原点,结合图象即可得到结论【解答】解:由定义可得:;函数f(x)为“可相反函数”,即函数f(x)与直线y=﹣x有交点且交点不在坐标原点.结合图象可得:只有②③④符合要求;故选:D.二、填空题(每小题5分,共30分).11.(5分)已知幂函数f(x)=x m经过点(2,),则f()=.【分析】把点的坐标代入幂函数解析式求出m的值,求出解析式,再计算f()的值.【解答】解:幂函数f(x)=x m经过点(2,),即2m=,解得m=﹣2,所以f(x)=x﹣2;所以f()==.故答案为:.12.(5分)已知θ为第二象限角,且sinθ=,则sin(θ+)=﹣.【分析】由已知结合同角平方关系可求cosθ,然后结合诱导公式进行化简即可求解.【解答】解:因为θ为第二象限角,且sinθ=,所以cos,则sin(θ+)=cosθ=﹣.故答案为:﹣13.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数f(x)的单调递增区间为[2k﹣,2k﹣],k∈Z.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,得出结论.【解答】解:根据函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=1,•=﹣,∴ω=π.再根据五点法作图,可得π×+φ=π,∴φ=,f(x)=sin(π•x+).令2kπ﹣≤π•x+≤2kπ+,求得2k﹣≤x≤2k﹣,故函数的增区间为[2k﹣,2k﹣],k∈Z,故答案为:[2k﹣,2k﹣],k∈Z.14.(5分)关于函数f(x)=sin x与g(x)=cos x有下面三个结论:①函数f(x)的图象可由函数g(x)的图象平移得到:②函数f(x)与函数g(x)在(,π)上均单调递减;③若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|≤1.其中全部正确结论的序号为①②.【分析】根据正弦函数与余弦函数的性质逐个判断即可.【解答】解:对于①,由于f(x)=sin x=cos(x+),所以函数f(x)=sin x的图象可由函数g(x)=cos x的图象向左平移个单位得到;①正确;对于②,函数f(x)=sin x在(,π)上为减函数,函数g(x)=cos x在(,π)上为减函数;②正确;对于③,若直线x=t与这两个函数的图象分别交于不同的A,B两点,则|AB|=|sin t﹣cos t|=|sin(t﹣)|≤.故③错误;故正确结论序号为①②;故答案为:①②.15.(5分)已知函数f(x)=,若函数y=f(x)﹣k恰有两个不同的零点.则实数k的取值范围为(﹣1,0)∪[1,3].【分析】题目等价于函数f(x)与y=k的图象有2个不同的交点,作出图象,数形结合即可【解答】解:条件等价于方程f(x)=k有2个不等实根,也即函数f(x)与y=k的图象有2个不同的交点,作出函数f(x)的图象如图:由图象可知,﹣1<k<0或1≤k≤3,故k∈(﹣1,0)∪[1,3],故答案为(﹣1,0)∪[1,3].16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”.x0是它的一个均值点,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则实数m的取值范围是[0,+∞).【分析】根据题意,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,方程x2+mx=,即x2+mx﹣m=0在(﹣1,1)内有实数根,若函数g(x)=x2+mx﹣m 在(﹣1,1)内有零点.首先满足:△≥0,解得m≥0,或m≤﹣4.g(1)=1>0,g(﹣1)=1﹣2m.对称轴:x=﹣.对m分类讨论即可得出.【解答】解:根据题意,若函数f(x)=x2+mx是[﹣1,1]上的平均值函数,则方程x2+mx=,即x2+mx﹣m=0在(﹣1,1)内有实数根,若函数g(x)=x2+mx﹣m在(﹣1,1)内有零点.则△=m2+4m≥0,解得m≥0,或m≤﹣4.g(1)=1>0,g(﹣1)=1﹣2m.g(0)=﹣m.对称轴:x=﹣.①m≥0时,﹣≤0,g(0)=﹣m≤0,g(1)>0,因此此时函数g(x)在(﹣1,1)内一定有零点.∴m≥0满足条件.②m≤﹣4时,﹣≥2,由于g(1)=1>0,因此函数g(x)=x2+mx﹣m在(﹣1,1)内不可能有零点,舍去.综上可得:实数m的取值范围是[0,+∞).故答案为:[0,+∞).三、解答题(共6小题,共80分).17.(13分)计算:(1)log64+2log63.(2)×(3)cos120°+tan135°.【分析】(1)利用对数的运算性质求解即可得解.(2)利用指数的运算即可求解.(3)利用诱导公式化简根据特殊角的三角函数值即可求解.【解答】解:(1)log64+2log63=+2===lg6;(2)×=2+2+2=2=21=2.(3)cos120°+tan135°=cos(180°﹣60°)+tan(180°﹣45°)=﹣cos60°﹣tan45°=﹣﹣1=﹣.18.(13分)已知=.(1)若α为第三象限角,求cosα的值;(2)求tan(α+)的值;(3)求cos2α的值.【分析】(1)由题意利用同角三角函数的基本关系,求得cosα的值.(2)由题意利用两角和的正切公式,求得所给式子的值.(3)由题意利用二倍角公式的余弦公式,求得cos2α的值.【解答】解:(1)∵已知==,∴tanα=3=.∵α为第三象限角,∴cosα<0,sinα<0,且sin2α+cos2α=1.求得sinα=﹣,cosα=﹣.(2)由以上可得,tan(α+)===﹣2.(3)cos2α=2cos2α﹣1=2•﹣1=﹣.19.(13分)已知函数f(x)=|log a x|(a>0,a≠1).(1)若f(2)=,求实数a的值;(2)若0<x1<x2,且f(x1)=f(x2),求x1x2的值;(3)若函数f(x)在[,3]的最大值与最小值之和为2,求实数a的值.【分析】(1)代入直接求解即可;(2)计算可知log a(x1x2)=0,由此得到x1x2=1;(3)分析可知函数f(x)在[,3]的最大值为2,讨论即可得解.【解答】解:(1)依题意,,即或,解得a=4或;(2)依题意,|log a x1|=|log a x2|,又0<x1<x2,故log a x1+log a x2=0,即log a(x1x2)=0,故x1x2=1;(3)显然当x=1时,函数f(x)=|log a x|取得最小值为0,则函数f(x)在[,3]的最大值为2,若,解得或;若f(3)=|log a3|=2,解得或;结合(2)可知,只有或满足题意.20.(13分)已知函数f(x)=4cos x sin(x+).(1)求f()的值;(2)求函数f(x)的最小正周期及其图象的对称轴方程:(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,求实数m的取值范围.【分析】(1)直接利用已知条件求解即可.(2)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和对称轴求得f(x)的最小正周期和对称轴即可.(3)求出函数f(0)的值,然后求解函数在(0,π)的范围内,求出x的值等于f(0),即可得到m的最大值.【解答】解:(1)f(x)=4cos x sin(x+).f()=0.(2)依题意,得函数f(x)=4cos x sin(x+)=4cos x•(sin x+cos x)=sin2x+2cos2x ﹣1+1=2(sin2x+cos2x)+1=2sin(2x+)+1.它的最小正周期为=π.函数f(x)的图象的对称轴方程令2x+=kπ+,求得x=kπ+,k∈Z.(3)对于任意x∈[0,m]均有f(x)≥f(0)成立,f(0)=4cos0sin=2.2sin(2x+)+1=2,可得x=时,f()=2,所以0<m≤.21.(14分)若函数f(x)的定义域为R,且存在非零实数T,使得对于任意x∈R,f(x+T)=Tf(x)恒成立,称函数f(x)满足性质P(T).(1)分别判断下列函数是否满足性质P(1),并说明理由;①f(x)=sin2πx;②g(x)=cosπx.(2)若函数f(x)既满足性质P(2).又满足性质P(3),求函数f(x)的解析式;(3)若函数f(x)满足性质P(1.01).求证:存在x0∈R.使得|f(x0)|<0.001.【分析】(1)根据P(1)的定义可知,该函数的周期为1,利用公式可分别求出它们的周期;(2)根据P(2)、P(3)的性质,合理变换x的取值,结合性质,可构造出关于f(x)的方程解出f(x);(3)采用构造法,将P(1.01)的性质转化为,让函数值随着x后面累加1.01,绝对值逐渐缩小,再利用赋值法求得符合题意的x0.【解答】解:(1)令T=1,则f(x+1)=f(x),即该函数的周期为1,∵f(x)=sin2πx的周期为=1,故f(x)满足性质P(1),②g(x)=cosπx的周期为=2,故g(x)不满足性质P(1),(2)函数f(x)既满足性质P(2).又满足性质P(3),∴f(x+2)=2f(x),f(x+3)=3f(x),∴f(x+3)=f(x+1+2)=2f(x+1)=3f(x)①又f(x+2)=f(x﹣1+3)=3f(x﹣1)=2f(x)②结合f(x+1)=f(x﹣1+2)=2f(x﹣1)③,联立①②③消去f(x+1)、f(x﹣1)解得f(x)=0.(3)因为f(x+1.01)=1.01f(x),所以f(x)=f(x+1.01),所以f(x﹣1.01)=,取x=0,,,……,f(﹣n×1.01)=,(n∈N+)易知<0.001,且随着n的增大|f(﹣n×1.01)|的值递减.对两边取常用对数得:﹣nlg1.01+lg|f(0)|<﹣3整理后得,取大于的整数n时,对应的x0=﹣n×1.01满足|f(x0)|<0.001.所以,存在x0∈R.使得|f(x0)|<0.001.22.(14分)已知集合A为非空数集,定义A+={x|x=a+b,a,b∈A},A﹣={x|x=|a﹣b|,a,b∈A}.(1)若集合A={﹣1,1},直接写出集合A+及A﹣;(2)若集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,求证x1+x4=x2+x3;(3)若集A⊆{x|0≤x≤2020,x∈N},且A+∩A﹣=∅,求集合A中元素的个数的最大值.【分析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A ﹣,通过A+∩A﹣=∅建立不等关系求出相应的值.【解答】解:(1)根据题意,由A={﹣1,1},则A+={﹣2,0,2},A﹣={0,2};(2)由于集合A={x1,x2,x3,x4},x1<x2<x3<x4,且A﹣=A,所以A﹣中也只包含四个元素,即A﹣={0,x2﹣x1,x3﹣x1,x4﹣x1},剩下的x3﹣x2=x4﹣x3=x2﹣x1,所以x1+x4=x2+x3;(3)设A={a1,a2,…a k} 满足题意,其中a1<a2<…<a k,则2a1<a1+a2<a1+a3<…<a1+a k<a2+a k<a3+a k<…<a k﹣1+a k<2a k,∴|A+|⩾2k﹣1,a1﹣a1<a2﹣a1<a3﹣a1<…<a k﹣a1,∴|A﹣|⩾k,∵A+∩A﹣=∅,由容斥原理|A+∪A﹣|=|A+|+|A﹣|⩾3k﹣1,A+∪A﹣中最小的元素为0,最大的元素为2a k,∴|A+∪A﹣|⩾2a k+1,∴3k﹣1⩾2a k+1⩾4041(k∈N*),∴k≤1347,实际上当A={674,675,676,…,2020}时满足题意,证明如下:设A={m,m+1,m+2,…,2020},m∈N,则A+={2m,2m+1,2m+2,…,4040},A﹣={0,1,2,…,2020﹣m},依题意有2020﹣m<2m,即m>673,故m的最小值为674,于是当m=674时,A中元素最多,即A={674,675,676,…,2020}时满足题意,综上所述,集合A中元素的个数的最大值是1347.。

2017-2018学年北京市清华附中高一(上)期末数学试卷(解析版)

2017-2018学年北京市清华附中高一(上)期末数学试卷(解析版)

2017-2018学年北京市清华附中高一(上)期末数学试卷一、选择题(本大题共8小题,共40.0分)1.下列各角中,与50°的角终边相同的角是()A. B. C. D.2.设向量=(0,2),=(,1),则,的夹角等于()A. B. C. D.3.已知角α的终边经过点P(4,-3),则的值为()A. B. C. D.4.为了得到函数y=cos(2x-)的图象,只需将函数y=cos2x的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度5.已知非零向量与满足=且,则△ABC为()A. 三边均不相等的三角形B. 直角三角形C. 等腰非等边三角形D. 等边三角形6.同时具有性质“①最小正周期为π;②图象关于直线x=对称;③在[,]上是增函数”的一个函数是()A. B.C. D.7.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则()A. fB. fC. fD. f8.若定义[-2018,2018]上的函数f(x)满足:对任意x1,x2∈[-2018,2018]有f(x1+x2)=f(x1)+f(x2)-2017,且当x>0时,有f(x)>2017,设f(x)的最大值、最小值分别为M,m,则M+m的值为()A. 0B. 2018C. 4034D. 4036二、填空题(本大题共6小题,共30.0分)9.若θ为第四象限的角,且,则cosθ=______;sin2θ=______.10.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,,,则△ABC的面积为______.11.已知tan x=2,则cos2x+sin(π+x)cos(+x)=______12.已知α∈(0,π)且sin(α+)=,则cos(α+)=______;sinα=______13.如图,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=3,BC=DC=2,若E,F分别是线段DC和BC上的动点,则的取值范围是______.14.已知函数f(x)=2sin2x-2sin2x-a.①若f(x)=0在x∈R上有解,则a的取值范围是______;②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______三、解答题(本大题共6小题,共80.0分)15.已知函数f(x)=4sin x cos(x+)+1.(1)求f()的值;(2)求f(x)的最小正周期;(3)求f(x)在区间[0,]上的最大值和最小值.16.已知不共线向量,满足||=3,||=5,(-3)•(2+)=20.(1)求•(-);(2)是否存在实数λ,使λ+与(-2)共线?(3)若(k+2)⊥(-k),求实数k的值.17.设锐角三角形的内角A,B,C的对边分别为a、b、c,且sin A-cos C=cos(A-B).(1)求B的大小;(2)求cos A+sin C的取值范围.18.已知向量=(cosθ,sinθ),=(cosβ,sinβ).(2)若记f(θ)=,θ∈[0,].当1≤λ≤2时,求f(θ)的最小值.19.借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数>Z可以将g(x)表示为,例如要表示分段函数g(x)=<g(x)=xh(x-2)+(-x)h(2-x).(1)设f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),请把函数f(x)写成分段函数的形式;(2)已知G(x)=[(3a-1)x+4a]h(1-x)+log a x h(x-1)是R上的减函数,求a 的取值范围;(3)设F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函数F(x)的最小值.20.一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.(1)判断f1(x)=x,f2(x)=log2(6+2sin x-cos2x)中,哪些是“保三角形函数”,哪些不是,并说明理由;(2)若函数g(x)=ln x(x∈[M,+∞))是“保三角形函数”,求M的最小值;(3)若函数h(x)=sin x(x∈(0,A))是“保三角形函数”,求A的最大值.答案和解析1.【答案】D【解析】解:由50°的角终边相同的角的集合为{α|α=50°+k•360°,k∈Z}.取k=-1,可得α=-310°.∴与50°的角终边相同的角是-310°.故选:D.写出与50°的角终边相同的角的集合,取k=-1得答案.本题考查终边相同角的概念,是基础题.2.【答案】A【解析】解:∵=(0,2),=(,1),∴•=||||cos<,>=0×+2×1=2,又||=||=2,∴cos<,>==,又<,>∈[0,π],∴<,>=.故选:A.利用向量的数量积即可求得,的夹角的余弦,继而可求得,的夹角.本题考查向量的数量积表示两个向量的夹角,属于中档题.3.【答案】C【解析】解:∵角α的终边经过点P(4,-3),∴p到原点的距离为5∴sinα=,cosα=∴故选:C.利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简已知一个角的终边过某一个点时,利用任意角的三角函数的定义求出三角函数值.4.【答案】B【解析】解:函数=cos2(x-),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.由条件利用函数y=Asin(ωx+φ)的图象变换规率可得结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.5.【答案】D【解析】解:△ABC中,=,∴=,∴cos<,>=cos<,>,∴B=C,△ABC是等腰三角形;又,∴1×1×cosA=,∴cosA=,A=,∴△ABC是等边三角形.故选:D.根据=得出B=C,得出A=,由此判断△ABC是等边三角形.本题考查了平面向量的数量积运算问题,也考查了三角形形状的判断问题,6.【答案】C【解析】解:“①最小正周期是π,可得ω=2,排除选项A;②图象关于直线x=对称,可得:2×+=,cos=-,排除选项B,2×+=,cos=-,排除选项D;对于C,函数y=sin(2x-),最小正周期为π,且2×-=,sin=1,函数图象关于x=对称;x∈[,]时,2x-∈[,],∴y=sin(2x-)是单调增函数,C满足条件.故选:C.根据三角函数的图象与性质,判断满足条件的函数即可.本题考查了三角函数的图象与性质的应用问题,是基础题.7.【答案】A【解析】解:根据题意,定义在R上的偶函数f(x)满足f(x+2)=f(x),则有f(-x)=f(x+2),即函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,2]上是减函数,则其在[0,1]上是增函数,若α,β是锐角三角形的两个内角,则α+β>,则有α>-β,则有sinα>sin(-β)=cosβ,又由函数f(x)在[0,1]上是增函数,则f(sinα)>f(cosβ);故选:A.根据题意,分析可得f(-x)=f(x+2),即函数f(x)的图象关于直线x=1对称,据此分析可得f(x)在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便(cosβ),即可得答案.本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.8.【答案】C【解析】解:令x1=x2=0得f(0)=2f(0)-2017,∴f(0)=2017,令x1=-x2得f(0)=f(-x2)+f(x2)-2017=2017,∴f(-x2)+f(x2)=4034,令g(x)=f(x)-2017,则g max(x)=M-2017,g min(x)=m-2017,∵g(-x)+g(x)=f(-x)+f(x)-4034=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2017+m-2017=0,∴M+m=4034.故选:C.计算f(0)=2017,构造函数g(x)=f(x)-2017,判断g(x)的奇偶性得出结论.本题考查了奇偶性的判断与性质,考查函数的最值求法,注意运用赋值法,属于中档题.9.【答案】;-【解析】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(-)×=-.故答案为:,-.由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.10.【答案】【解析】解:∵A+C=2B,A+B+C=π,∴B=,由余弦定理得cosB===,解得c=2或c=-1(舍).∴S△ABC=sinB==.故答案为:.利用三角形的内角和解出B,使用余弦定理解出c,代入三角形的面积公式计算.本题考查了余弦定理在解三角形中的应用,三角形的面积公式,属于中档题.11.【答案】【解析】解:∵tanx=2,则cos2x+sin(π+x)cos(+x)=cos2x-sinx•(-sinx)=+=+=+=,故答案为:.利用诱导公式,同角三角函数的基本关系,求得cos2x+sin(π+x)cos(+x)的值.本题主要考查诱导公式,同角三角函数的基本关系,属于基础题.12.【答案】;【解析】解:∵α∈(0,π),∴α+∈(),又sin(α+)=,∴cos(α+)=;则sinα=sin[()-]=sin()cos-cos()sin故答案为:;.直接利用同角三角函数基本关系式求cos(α+);再由sinα=sin[()-],展开两角差的正弦求解.本题考查两角和与差的三角函数,考查同角三角函数基本关系式的应用,是基础题.13.【答案】[-4,6]【解析】解:∵AB//DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(-1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又-1≤μ≤0,∴-4≤4μ≤0②,①+②得:-4≤9λ+4μ≤6.即的取值范围是[-4,6],故答案为:[-4,6].依题意,设=λ(0≤λ≤),=μ(-1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,-1≤μ≤0,即可求得-4≤9λ+4μ≤6,从而可得答案.本题考查平面向量数量积的坐标运算,设=λ(0≤λ≤),=μ(-1≤μ≤0),并求得=9λ+4μ是关键,考查平面向量加法的三角形法与共线向量基本定理的应用,考查运算求解能力,属于中档题.14.【答案】[,];解:f(x)=2sin2x-2sin2x-a=2sin2x-(1-cos2x)-a=2sin2x+cos2x-1-a=-1-a.其中tanθ=①f(x)=0在x∈R上有解,则sin(2x+θ)=a+1有解,∵∴≤a+1.则a的取值范围是[,],故答案为:[,]②∵x1,x2是函数y=f(x)在[0,]内的两个零点,那么x1,x2是关于在[0,]内的对称轴是对称的.由f(x)=-1-a.其中tanθ=其对称轴2x+θ=+kπ,k∈Z.x1,x2是关于在[0,]内的对称轴是对称的.∴对称轴x==∴x1+x2=.则sin(x1+x2)=sin()=cosθ.∵tanθ=,即,∴cosθ=,则sin(x1+x2)=.故答案为:.①利用三角函数的公式化简,f(x)=0在x∈R上有解,转化为两个函数图象有交点问题即可求解;②x1,x2是函数y=f(x)在[0,]内的两个零点,即么x1,x2是关于在[0,]内的对称轴是对称的.即可求解本题主要考查了三角函数的图象及性质的应用,同角三角函数间的基本关系式,属于中档题.15.【答案】解:函数f(x)=4sin x(cos x cos-sin x sin)+1,=2sin x cosx-2sin2x+1,=sin2x+cos2x,=2sin(2x+),(1)f()=2sin(+)=2sin=(2)周期T=;(3)由x在[0,]上,∴2x+∈[,],当2x+=,即x=,f(x)取得最小值为-1;当2x+=,即x=,f(x)取得最大值为2.【解析】(1)根据两角和的余弦公式、二倍角公式及辅助角公式将f(x)化简为f(x)=2sin(2x+),即可计算;(2)根据周期公式求解即可;(3)由x在[0,]上,求解内层函数的范围,结合三角函数的性质可得最值.本题考查三角函数的恒等变换、三角形面积公式、余弦定理以及三角函数图象与性质的综合应用,熟练掌握相关定理及公式是解题的关键,属于中档题16.【答案】解:(1)不共线向量,满足||=3,||=5,(-3)•(2+)=20.所以:,解得:,所以:•(-)==-.(2)存在实数使λ+与(-2)共线.由于:,故:(1-2λ),所以:.(3)若(k+2)⊥(-k),则:,整理得:,由于△<0,故方程无解.所以不存在实数,使(k+2)⊥(-k).【解析】(1)直接利用向量的数量积的应用求出结果.(2)利用向量的共线求出λ的值.(3)利用向量垂直的充要条件求出结果.本题考查的知识要点:向量的数量积的应用,向量垂直和共线的充要条件的应用.17.【答案】解:(1)设锐角三角形中,sin A-cos C=cos(A-B),即sin A+cos(A+B)=cos(A-B),即sin A+cos A cos B-sin A sin B=cos A cos B+sin A sin B,即sin A=2sin A sin B,∴sin B=,∴B=.(2)cos A+sin C=cos A+sin(π-A-B)=cos A+sin(-A)=cos A+sin(+A)=cos A+cos A+sin A=sin(A+).∵B=,∴A∈(,),A+∈(,),∴sin(A+)∈(,),∴sin(A+)∈(,),即cos A+sin C的取值范围为(,).【解析】(1)利用诱导公式,两角和差的三角公式,化简所给的式子,求得sinB的值,可得B的值.(2)化简要求的式子sin(A+),根据A∈(,),利用正弦函数的定义域和值域,求得cosA+sinC的取值范围.本题主要考查诱导公式,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.18.【答案】解:(1)∵向量=(cosθ,sinθ),=(cosβ,sinβ),∴ -=(cosθ-cosβ)+(sinθ-sinβ),∴|-|2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos(θ-β)=2-2cos=2-1=1,∴|-|=1;(2)•=cosθcosβ+sinθsinβ=cos(θ-β)=cos(2θ-),∴|+|==2|cos(θ-)|=2cos(θ-),∴f(θ)=cos(2θ-)-2λcos(θ-)=2cos2(θ-)-2λcos(θ-)-1令t=cos(θ-),则t∈[,1],∴f(t)=2t2-2λt-1=2(t-)2--1,又1≤λ≤2,≤≤1,∴t=时,f(t)有最小值--1,∴f(θ)的最小值为--1.【解析】(1)根据向量的坐标运算和向量的模以及两角和差即可求出答案,(2)根据向量的数量积和二倍角公式化简得到f(θ)=2cos2(θ-)-2λcos(θ-)-1,令t=cos(θ-),根据二次函数的性质即可求出.本题考查了向量的坐标运算和向量的数量积以及三角函数的化简,以及二次函数的性质,属于中档题.19.【答案】解:(1)当x>1时,x-1>0,1-x<0,可得f(x)=(x2-2x+3)+0•(1-x2)=x2-2x+3;当x=1时,f(x)=2;当x<1时,x-1<0,1-x>0,可得f(x)=1-x2.即有f(x)=,>,,<;(2)G(x)=[(3a-1)x+4a]h(1-x)+log a x h(x-1)=,由y=G(x)是R上的减函数,可得<<<,解得≤a<;(3)F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),当x>a时,x-a>0,可得F(x)=x2+x-a+1;若a≥-,可得F(x)在x>a递增,可得F(x)>F(a)=a2+1;若a<-,可得F(x)的最小值为F(-)=-a;当x=a时,可得F(x)=2(a2+1);当x<a时,x-a<0,a-x>0,则F(x)=x2-x+a+1.若a≥,可得F(x)在x<a的最小值为F()=a+;若a<,可得F(x)在x<a递减,即有F(x)>F(a)=a2+1.①当a≥时,F(x)在区间(-∞,-)上单调递减,在区间(-,a)上单调递增,在区间(a,+∞)上单调递增,可得F(-)为最小值,且为-+a+1=a+;②当-<a<时,F(x)在区间(-∞,a)上单调递减,在区间(a,+∞)上单调递增.F(x)的最小值为F(a)=a2+1;③当a≤-时,在区间(-∞,a)上单调递减,在区间(a,-)上单调递减,在区间(-,+∞)上单调递增.所以F(x)的最小值为F()=-a+;综上所述,得当a≤-时,F(x)的最小值为-a+;当a≥时,F(x)的最小值为为a+;当-<a<时,F(x)的最小值为F(a)=a2+1.【解析】(1)分当x>1、当x=1和当x<1时3种情况加以讨论,分别根据S(x)的对应法则代入,可得f(x)相应范围内的表达式,最后综合可得函数f(x)写成分段函数的形式;(2)运用分段函数形式表示G(x),再由一次函数、对数函数的单调性,可得a 的范围;(3)由题意,讨论x>a,x=a,x<a,求得F(x)的解析式,再结合二次函数的图象与性质,分a≥、-<a<和a≤-的4种情况进行讨论,最后综合可得F (x)的最小值.本题以分段函数和含有字母参数的二次函数为载体,讨论函数的单调性与最小值,着重考查了基本初等函数的图象与性质、函数解析式的求解及常用方法和单调性的综合等知识,属于难题.20.【答案】解:(1)不妨设a≤c,b≤c,由a+b>c,可得f1(a)+f1(b)>f1(c),即有f1(x)=x为“保三角形函数”;由6+2sin x-cos2x=sin2x+2sin x+5=(sin x+1)2+4∈[4,8],可得f2(x)∈[2,3],即有2+2>3,可得f2(x)为“保三角形函数”;(2)函数g(x)=ln x(x∈[M,+∞))是“保三角形函数”,可得a≥M,b≥M,a+b>c,即有a-1≥M-1;b-1≥M-1,则(a-1)(b-1)≥(M-1)2,即ab≥a+b-1+(M-1)2>c-1+(M-1)2,只要-1+(M-1)2≥0,解得M≥2,即M的最小值为2;(3)A的最大值是.①当A>时,取a==b,c=,显然这3个数属于区间(0,A),且可以作为某个三角形的三边长,但这3个数的正弦值、、1显然不能作为任何一个三角形的三边,故此时,h(x)=sin x,x∈(0,A)不是保三角形函数.②当A=时,对于任意的三角形的三边长a、b、c∈(0,),若a+b+c≥2π,则a≥2π-b-c>2π--=,即a>,同理可得b>,c>,∴a、b、c∈(,),∴sin a、sin b、sin c∈(,1].由此可得sin a+sin b>+=1≥sin c,即sin a +sin b>sin c,同理可得sin a+sin c>sin b,sin b+sin c>sin a,故sin a、sin b、sin c可以作为一个三角形的三边长.若a+b+c<2π,则+<π,当≤时,由于a+b>c,∴0<<≤,∴0<sin<sin≤1.当>时,由于a+b>c,∴0<<<,∴0<sin<sin<1.综上可得,0<sin<sin≤1.再由|a-b|<c<,以及y=cos x在(0,π)上是减函数,可得cos=cos>cos>cos>0,∴sin a+sin b=2sin cos>2sin cos=sin c,同理可得sin a+sin c>sin b,sin b+sin c>sin a,故sin a、sin b、sin c可以作为一个三角形的三边长.故当A=时,h(x)=sin x,x∈(0,A)是保三角形函数,故A的最大值为.【解析】(1)不妨设a≤c,b≤c,由函数的值域,即可得到结论;(2)由对数函数的性质和对数的运算性质,可得M的最小值;(3)A的最大值是,讨论①当A>时;②当A=时;结合新定义和三角函数的恒等变换,即可得到最大值.本题考查新定义的理解和运用,考查转化思想和运算能力、推理能力,属于综合题.。

北京市清华附中2017-2018学年第一学期高一期末数学试题(含精品解析)

北京市清华附中2017-2018学年第一学期高一期末数学试题(含精品解析)

2017-2018学年北京市清华附中高一(上)期末数学试卷一、选择题(本大题共8小题,共40.0分) 1. 下列各角中,与50°的角终边相同的角是( )A. 40∘B. 140∘C. −130∘D. −310∘ 2. 设向量a⃗ =(0,2),b ⃗ =(√3,1),则a ⃗ ,b ⃗ 的夹角等于( ) A. π3B. π6C. 2π3D. 5π63. 已知角α的终边经过点P (4,-3),则sin(π2+α)的值为( )A. 35B. −35C. 45D. −454. 为了得到函数y =cos (2x -π3)的图象,只需将函数y =cos2x 的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度5. 已知非零向量AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 满足AB ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=CA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |且AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗ |⋅AC ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ |=12,则△ABC 为( ) A. 三边均不相等的三角形B. 直角三角形C. 等腰非等边三角形D. 等边三角形6. 同时具有性质“①最小正周期为π;②图象关于直线x =π3对称;③在[π6,π3]上是增函数”的一个函数是( )A. y =sin(x 2−π3) B. y =cos(2x +π6) C. y =sin(2x −π6)D. y =cos(2x +2π3)7. 定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f (sinα)>f (cos β) B. f (sinα)<f (cos β) C. f (sin α)>f (sin β) D. f (cosα)<f (cos β)8. 若定义[-2018,2018]上的函数f (x )满足:对任意x 1,x 2∈[-2018,2018]有f (x 1+x 2)=f (x 1)+f (x 2)-2017,且当x >0时,有f (x )>2017,设f (x )的最大值、最小值分别为M ,m ,则M +m 的值为( ) A. 0 B. 2018 C. 4034 D. 4036 二、填空题(本大题共6小题,共30.0分)9. 若θ为第四象限的角,且sinθ=−13,则cosθ=______;sin2θ=______.10. 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =√3,A +C =2B ,则△ABC的面积为______. 11. 已知tan x =2,则cos2x +sin (π+x )cos (π2+x )=______12. 已知α∈(0,π)且sin (α+π6)=13,则cos (α+π6)=______;sinα=______ 13. 如图,在直角梯形ABCD 中,AB //DC ,∠ABC =90°,AB =3,BC =DC =2,若E ,F分别是线段DC 和BC 上的动点,则AC ⃗⃗⃗⃗⃗ ⋅EF⃗⃗⃗⃗⃗ 的取值范围是______. 14. 已知函数f (x )=2sin2x -2sin 2x -a .①若f (x )=0在x ∈R 上有解,则a 的取值范围是______;②若x 1,x 2是函数y =f (x )在[0,π2]内的两个零点,则sin (x 1+x 2)=______ 三、解答题(本大题共6小题,共80.0分) 15. 已知函数f (x )=4sin x cos (x +π6)+1.(1)求f (π12)的值; (2)求f (x )的最小正周期;(3)求f (x )在区间[0,π2]上的最大值和最小值.16. 已知不共线向量a ⃗ ,b ⃗ 满足|a ⃗ |=3,|b ⃗ |=5,(a ⃗ -3b ⃗ )•(2a ⃗ +b ⃗ )=20.(1)求a ⃗ •(a ⃗ -b ⃗ );(2)是否存在实数λ,使λa ⃗ +b ⃗ 与(a ⃗ -2b ⃗ )共线?(3)若(k a⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ),求实数k 的值.17. 设锐角三角形的内角A ,B ,C 的对边分别为a 、b 、c ,且sin A -cos C =cos (A -B ).(1)求B 的大小;(2)求cos A +sin C 的取值范围.18. 已知向量a ⃗ =(cosθ,sinθ),b ⃗ =(cosβ,sinβ).(1)若|θ−β|=π3,求|a ⃗ −b ⃗ |的值;(2)若θ+β=π3记f (θ)=a ⃗ ⋅b ⃗ −λ|a ⃗ +b ⃗ |,θ∈[0,π2].当1≤λ≤2时,求f (θ)的最小值.19. 借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数ℎ(x)={0(x <0)1(x≥0),例如要表示分段函数g (x )={x(x >2)0(x =2)−x(x <2)Z 可以将g (x )表示为g (x )=xh (x -2)+(-x )h (2-x ).(1)设f (x )=(x 2-2x +3)h (x -1)+(1-x 2)h (1-x ),请把函数f (x )写成分段函数的形式; (2)已知G (x )=[(3a -1)x +4a ]h (1-x )+log a x ⋅h (x -1)是R 上的减函数,求a 的取值范围; (3)设F (x )=(x 2+x -a +1)h (x -a )+(x 2-x +a +1)h (a -x ),求函数F (x )的最小值.20. 一个函数f (x ),如果对任意一个三角形,只要它的三边长a ,b ,c 都在f (x )的定义域内,就有f (a ),f (b ),f (c )也是某个三角形的三边长,则称f (x )为“保三角形函数”.(1)判断f 1(x )=x ,f 2(x )=log 2(6+2sin x -cos 2x )中,哪些是“保三角形函数”,哪些不是,并说明理由;(2)若函数g (x )=ln x (x ∈[M ,+∞))是“保三角形函数”,求M 的最小值; (3)若函数h (x )=sin x (x ∈(0,A ))是“保三角形函数”,求A 的最大值.答案和解析1.【答案】D【解析】解:由50°的角终边相同的角的集合为{α|α=50°+k•360°,k∈Z}.取k=-1,可得α=-310°.∴与50°的角终边相同的角是-310°.故选:D.写出与50°的角终边相同的角的集合,取k=-1得答案.本题考查终边相同角的概念,是基础题.2.【答案】A【解析】解:∵=(0,2),=(,1),∴•=||||cos<,>=0×+2×1=2,又||=||=2,∴cos<,>==,又<,>∈[0,π],∴<,>=.故选:A.利用向量的数量积即可求得,的夹角的余弦,继而可求得,的夹角.本题考查向量的数量积表示两个向量的夹角,属于中档题.3.【答案】C【解析】解:∵角α的终边经过点P(4,-3),∴p到原点的距离为5∴sinα=,cosα=∴故选:C.利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.已知一个角的终边过某一个点时,利用任意角的三角函数的定义求出三角函数值.4.【答案】B【解析】解:函数=cos2(x-),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.由条件利用函数y=Asin(ωx+φ)的图象变换规率可得结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.5.【答案】D【解析】解:△ABC中,=,∴=,∴cos<,>=cos<,>,∴B=C,△ABC是等腰三角形;又,∴1×1×cosA=,∴cosA=,A=,∴△ABC是等边三角形.故选:D.根据=得出B=C,得出A=,由此判断△ABC是等边三角形.本题考查了平面向量的数量积运算问题,也考查了三角形形状的判断问题,是基础题.6.【答案】C【解析】解:“①最小正周期是π,可得ω=2,排除选项A;②图象关于直线x=对称,可得:2×+=,cos=-,排除选项B,2×+=,cos=-,排除选项D;对于C,函数y=sin(2x-),最小正周期为π,且2×-=,sin=1,函数图象关于x=对称;x∈[,]时,2x-∈[,],∴y=sin(2x-)是单调增函数,C满足条件.故选:C.根据三角函数的图象与性质,判断满足条件的函数即可.本题考查了三角函数的图象与性质的应用问题,是基础题.7.【答案】A【解析】解:根据题意,定义在R上的偶函数f(x)满足f(x+2)=f(x),则有f(-x)=f(x+2),即函数f(x)的图象关于直线x=1对称,又由函数f(x)在[1,2]上是减函数,则其在[0,1]上是增函数,若α,β是锐角三角形的两个内角,则α+β>,则有α>-β,则有sinα>sin(-β)=cosβ,又由函数f(x)在[0,1]上是增函数,则f(sinα)>f(cosβ);故选:A .根据题意,分析可得f (-x )=f (x+2),即函数f (x )的图象关于直线x=1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sinα>cosβ,从而根据f (x )在(0,1)上是增函数即可得出f (sinα)>f (cosβ),即可得答案.本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性. 8.【答案】C【解析】解:令x 1=x 2=0得f (0)=2f (0)-2017,∴f (0)=2017, 令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2017=2017, ∴f (-x 2)+f (x 2)=4034,令g (x )=f (x )-2017,则g max (x )=M-2017,g min (x )=m-2017, ∵g (-x )+g (x )=f (-x )+f (x )-4034=0, ∴g (x )是奇函数,∴g max (x )+g min (x )=0,即M-2017+m-2017=0, ∴M+m=4034. 故选:C .计算f (0)=2017,构造函数g (x )=f (x )-2017,判断g (x )的奇偶性得出结论.本题考查了奇偶性的判断与性质,考查函数的最值求法,注意运用赋值法,属于中档题.9.【答案】2√23;-4√29【解析】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(-)×=-.故答案为:,-.由已知利用同角三角函数基本关系式可求cosθ,进而利用二倍角的正弦函数公式可求sin2θ的值.本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.10.【答案】√32【解析】解:∵A+C=2B ,A+B+C=π, ∴B=,由余弦定理得cosB===,解得c=2或c=-1(舍). ∴S △ABC =sinB==.故答案为:.利用三角形的内角和解出B ,使用余弦定理解出c ,代入三角形的面积公式计算. 本题考查了余弦定理在解三角形中的应用,三角形的面积公式,属于中档题. 11.【答案】15【解析】解:∵tanx=2,则cos2x+sin (π+x )cos (+x )=cos2x-sinx•(-sinx )=+=+=+=,故答案为:.利用诱导公式,同角三角函数的基本关系,求得cos2x+sin (π+x )cos (+x )的值.本题主要考查诱导公式,同角三角函数的基本关系,属于基础题.12.【答案】−2√23;√3+2√26【解析】解:∵α∈(0,π),∴α+∈(), 又sin (α+)=,∴cos (α+)=; 则sinα=sin[()-]=sin ()cos-cos ()sin==.故答案为:;.直接利用同角三角函数基本关系式求cos(α+);再由sinα=sin[()-],展开两角差的正弦求解.本题考查两角和与差的三角函数,考查同角三角函数基本关系式的应用,是基础题.13.【答案】[-4,6]【解析】解:∵AB//DC,∠ABC=90°,AB=3,BC=DC=2,且E,F分别是线段DC和BC上的动点,∴=λ(0≤λ≤),=μ(-1≤μ≤0),又=+,=+,∴=(+)•(+)=(+)•(λ+μ)=λ+μ=9λ+4μ.∵0≤λ≤,∴0≤9λ≤6①,又-1≤μ≤0,∴-4≤4μ≤0②,①+②得:-4≤9λ+4μ≤6.即的取值范围是[-4,6],故答案为:[-4,6].依题意,设=λ(0≤λ≤),=μ(-1≤μ≤0),由=+,=+,可求得=(+)•(+)=λ+μ=9λ+4μ;再由0≤λ≤,-1≤μ≤0,即可求得-4≤9λ+4μ≤6,从而可得答案.本题考查平面向量数量积的坐标运算,设=λ(0≤λ≤),=μ(-1≤μ≤0),并求得=9λ+4μ是关键,考查平面向量加法的三角形法与共线向量基本定理的应用,考查运算求解能力,属于中档题.14.【答案】[−1−√5,√5−1];2√55【解析】解:f(x)=2sin2x-2sin2x-a=2sin2x-(1-cos2x)-a=2sin2x+cos2x-1-a=-1-a.其中tanθ=①f(x)=0在x∈R上有解,则sin(2x+θ)=a+1有解,∵∴≤a+1.则a的取值范围是[,],故答案为:[,]②∵x1,x2是函数y=f(x)在[0,]内的两个零点,那么x1,x2是关于在[0,]内的对称轴是对称的.由f(x)=-1-a.其中tanθ=其对称轴2x+θ=+kπ,k∈Z.x1,x2是关于在[0,]内的对称轴是对称的.∴对称轴x==∴x1+x2=.则sin(x1+x2)=sin()=cosθ.∵tanθ=,即,∴cosθ=,则sin(x1+x2)=.故答案为:.①利用三角函数的公式化简,f(x)=0在x∈R上有解,转化为两个函数图象有交点问题即可求解;②x1,x2是函数y=f(x)在[0,]内的两个零点,即么x1,x2是关于在[0,]内的对称轴是对称的.即可求解 本题主要考查了三角函数的图象及性质的应用,同角三角函数间的基本关系式,属于中档题. 15.【答案】解:函数f (x )=4sin x (cos x cos π6-sin x sin π6)+1,=2√3sin x cosx-2sin 2x +1,=√3sin2x +cos2x ,=2sin (2x +π6),(1)f (π12)=2sin (2×π12+π6)=2sin π3=√3(2)周期T =2π2=π;(3)由x 在[0,π2]上,∴2x +π6∈[π6,7π6],当2x +π6=7π6,即x =π2,f (x )取得最小值为-1;当2x +π6=π2,即x =π6,f (x )取得最大值为2.【解析】 (1)根据两角和的余弦公式、二倍角公式及辅助角公式将f (x )化简为f (x )=2sin (2x+),即可计算;(2)根据周期公式求解即可;(3)由x 在[0,]上,求解内层函数的范围,结合三角函数的性质可得最值.本题考查三角函数的恒等变换、三角形面积公式、余弦定理以及三角函数图象与性质的综合应用,熟练掌握相关定理及公式是解题的关键,属于中档题16.【答案】解:(1)不共线向量a ⃗ ,b ⃗ 满足|a ⃗ |=3,|b ⃗ |=5,(a ⃗ -3b ⃗ )•(2a ⃗ +b ⃗ )=20.所以:2a ⃗ 2−5a ⃗ ⋅b ⃗ −3b ⃗ 2=20,解得:a⃗ ⋅b ⃗ =775, 所以:a ⃗ •(a ⃗ -b ⃗ )=a ⃗ 2−a ⃗ ⋅b ⃗ =9−775=-325. (2)存在实数λ=12使λa⃗ +b ⃗ 与(a ⃗ -2b ⃗ )共线. 由于:λa ⃗ +b ⃗ =λ(a ⃗ −2b ⃗ ),故:(1-2λ)b ⃗ =0⃗ ,所以:λ=12. (3)若(k a ⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ),则:18k −775k 2+2⋅775−50k =0, 整理得:k 2+16077k +2=0,由于△<0,故方程无解.所以不存在实数,使(k a ⃗ +2b ⃗ )⊥(a ⃗ -k b ⃗ ).【解析】(1)直接利用向量的数量积的应用求出结果.(2)利用向量的共线求出λ的值.(3)利用向量垂直的充要条件求出结果.本题考查的知识要点:向量的数量积的应用,向量垂直和共线的充要条件的应用.17.【答案】解:(1)设锐角三角形中,sin A -cos C =cos (A -B ),即sin A +cos (A +B )=cos (A -B ), 即sin A +cos A cos B -sin A sin B =cos A cos B +sin A sin B ,即sin A =2sin A sin B ,∴sin B =12,∴B =π6.(2)cos A +sin C =cos A +sin (π-A -B )=cos A +sin (5π6-A )=cos A +sin (π6+A )=cos A +12cos A +√32sin A =√3sin (A +π3). ∵B =π6,∴A ∈(π3,π2),A +π3∈(2π3,5π6),∴sin (A +π3)∈(12,√32),∴√3sin (A +π3)∈(√32,32), 即cos A +sin C 的取值范围为(√32,32). 【解析】(1)利用诱导公式,两角和差的三角公式,化简所给的式子,求得sinB 的值,可得B 的值. (2)化简要求的式子sin (A+),根据A ∈(,),利用正弦函数的定义域和值域,求得cosA+sinC 的取值范围.本题主要考查诱导公式,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.18.【答案】解:(1)∵向量a ⃗ =(cosθ,sinθ),b ⃗ =(cosβ,sinβ), ∴a ⃗ -b ⃗ =(cosθ-cosβ)+(sinθ-sinβ),∴|a ⃗ -b ⃗ |2=(cosθ-cosβ)2+(sinθ-sinβ)2=2-2cos (θ-β)=2-2cos π3=2-1=1,∴|a ⃗ -b ⃗ |=1;(2)a ⃗ •b ⃗ =cosθcosβ+sinθsinβ=cos (θ-β)=cos (2θ-π3),∴|a ⃗ +b ⃗ |=√2+2cos(θ−β)=2|cos (θ-π6)|=2cos (θ-π6),∴f (θ)=cos (2θ-π3)-2λcos (θ-π6)=2cos 2(θ-π3)-2λcos (θ-π6)-1令t =cos (θ-π6),则t ∈[12,1],∴f (t )=2t 2-2λt -1=2(t -λ2)2-λ24-1, 又1≤λ≤2,12≤λ2≤1,∴t =λ2时,f (t )有最小值-λ24-1, ∴f (θ)的最小值为-λ24-1. 【解析】(1)根据向量的坐标运算和向量的模以及两角和差即可求出答案,(2)根据向量的数量积和二倍角公式化简得到f (θ)=2cos 2(θ-)-2λcos (θ-)-1,令t=cos (θ-),根据二次函数的性质即可求出.本题考查了向量的坐标运算和向量的数量积以及三角函数的化简,以及二次函数的性质,属于中档题.19.【答案】解:(1)当x >1时,x -1>0,1-x <0,可得f (x )=(x 2-2x +3)+0•(1-x 2)=x 2-2x +3; 当x =1时,f (x )=2;当x <1时,x -1<0,1-x >0,可得f (x )=1-x 2.即有f (x )={x 2−2x +3,x >12,x =11−x 2,x <1;(2)G (x )=[(3a -1)x +4a ]h (1-x )+log a x ⋅h (x -1)={log ax,x >1(3a−1)x+4a,x≤1, 由y =G (x )是R 上的减函数,可得{3a −1<03a −1+4a ≥00<a <1,解得17≤a <13;(3)F (x )=(x 2+x -a +1)h (x -a )+(x 2-x +a +1)h (a -x ),当x >a 时,x -a >0,可得F (x )=x 2+x -a +1;若a ≥-12,可得F (x )在x >a 递增,可得F (x )>F (a )=a 2+1;若a <-12,可得F (x )的最小值为F (-12)=34-a ;当x =a 时,可得F (x )=2(a 2+1);当x <a 时,x -a <0,a -x >0,则F (x )=x 2-x +a +1.若a ≥12,可得F (x )在x <a 的最小值为F (12)=a +34;若a <12,可得F (x )在x <a 递减,即有F (x )>F (a )=a 2+1.①当a ≥12时,F (x )在区间(-∞,-12)上单调递减,在区间(-12,a )上单调递增,在区间(a ,+∞)上单调递增,可得F (-12)为最小值,且为14-12+a +1=a +34;②当-12<a <12时,F (x )在区间(-∞,a )上单调递减,在区间(a ,+∞)上单调递增.F (x )的最小值为F (a )=a 2+1;③当a ≤-12时,在区间(-∞,a )上单调递减,在区间(a ,-12)上单调递减,在区间(-12,+∞)上单调递增.所以F (x )的最小值为F (12)=-a +34;综上所述,得当a ≤-12时,F (x )的最小值为-a +34;当a ≥12时,F (x )的最小值为为a +34;当-12<a <12时,F (x )的最小值为F (a )=a 2+1.【解析】(1)分当x >1、当x=1和当x <1时3种情况加以讨论,分别根据S (x )的对应法则代入,可得f (x )相应范围内的表达式,最后综合可得函数f (x )写成分段函数的形式;(2)运用分段函数形式表示G (x ),再由一次函数、对数函数的单调性,可得a 的范围;(3)由题意,讨论x >a ,x=a ,x <a ,求得F (x )的解析式,再结合二次函数的图象与性质,分a≥、-<a <和a≤-的4种情况进行讨论,最后综合可得F (x )的最小值.本题以分段函数和含有字母参数的二次函数为载体,讨论函数的单调性与最小值,着重考查了基本初等函数的图象与性质、函数解析式的求解及常用方法和单调性的综合等知识,属于难题.20.【答案】解:(1)不妨设a ≤c ,b ≤c ,由a +b >c ,可得f 1(a )+f 1(b )>f 1(c ),即有f 1(x )=x 为“保三角形函数”;由6+2sin x -cos 2x =sin 2x +2sin x +5=(sin x +1)2+4∈[4,8],可得f 2(x )∈[2,3],即有2+2>3,可得f 2(x )为“保三角形函数”;(2)函数g (x )=ln x (x ∈[M ,+∞))是“保三角形函数”,可得a ≥M ,b ≥M ,a +b >c ,即有a -1≥M -1;b -1≥M -1,则(a -1)(b -1)≥(M -1)2,即ab ≥a +b -1+(M -1)2>c -1+(M -1)2,只要-1+(M -1)2≥0,解得M ≥2,即M 的最小值为2;(3)A 的最大值是5π6.①当A >5π6时,取a =5π6=b ,c =π2,显然这3个数属于区间(0,A ),且可以作为某个三角形的三边长,但这3个数的正弦值12、12、1显然不能作为任何一个三角形的三边,故此时,h (x )=sin x ,x ∈(0,A )不是保三角形函数.②当A =5π6时,对于任意的三角形的三边长a 、b 、c ∈(0,5π6),若a +b +c ≥2π,则a ≥2π-b -c >2π-5π6-5π6=π3,即a >π3,同理可得b >π3,c >π3,∴a 、b 、c ∈(π3,5π6),∴sin a 、sin b 、sin c ∈(12,1].由此可得sin a +sin b >12+12=1≥sin c ,即sin a +sin b >sin c ,同理可得sin a +sin c >sin b ,sin b +sin c >sin a , 故sin a 、sin b 、sin c 可以作为一个三角形的三边长.若a +b +c <2π,则a+b 2+c 2<π, 当a+b 2≤π2时,由于a +b >c ,∴0<c 2<a+b 2≤π2, ∴0<sin c 2<sin a+b 2≤1. 当a+b 2>c 2时,由于a +b >c ,∴0<c 2<a+b 2<π2, ∴0<sin c 2<sin a+b2<1.综上可得,0<sin c 2<sina+b2≤1. 再由|a -b |<c <5π6,以及y =cos x 在( 0,π)上是减函数,可得cos a−b2=cos |a−b|2>cos c 2>cos 5π12>0,∴sin a +sin b =2sin a+b2cos a−b2>2sin c 2cos c2=sin c , 同理可得sin a +sin c >sin b ,sin b +sin c >sin a ,故sin a 、sin b 、sin c 可以作为一个三角形的三边长.故当A =5π6时,h (x )=sin x ,x ∈(0,A )是保三角形函数,故A 的最大值为5π6.【解析】(1)不妨设a≤c ,b≤c ,由函数的值域,即可得到结论;(2)由对数函数的性质和对数的运算性质,可得M 的最小值;(3)A 的最大值是,讨论①当A >时;②当A=时;结合新定义和三角函数的恒等变换,即可得到最大值.本题考查新定义的理解和运用,考查转化思想和运算能力、推理能力,属于综合题.。

北京师大附中2018-2019学年上学期高一年级期末考试数学试题(含精品解析)

北京师大附中2018-2019学年上学期高一年级期末考试数学试题(含精品解析)

北京师大附中2018-2019学年上学期高一年级期末考试数学试卷(AP)本试卷第一部分有三道大题,考试:120分钟,满分100分.第一部分:中文卷(80分)一、选择题:本大题共10小题,每小题4分,共40分。

1.()A. B. C. D.【答案】A【解析】分析:根据终边相同的角正弦值相等,将的正弦化成的正弦,,即可求出结果.详解:由诱导公式可得,,,故选A.点睛:本题着重考查了终边相同的角、诱导公式,特殊角的三角函数值等知识,属于简单题.2.下列区间中,使函数为增函数的是()A. B. C. D.【答案】C【解析】解:因为使函数为增函数,则结合正弦函数图像可知,选C3.下列函数中,最小正周期为的是()A. B. C. D.【答案】D【解析】【分析】利用周期公式T,求解C选项,利用周期公式T,求解A、B、D选项,即可作出判断.【详解】A、,∵ω=1,∴2π,本选项不满足题意;B、,∵ω=2,∴T=π,本选项不满足题意;C、y=tan,∵ω,∴T2π,本选项不满足题意;D、,∵ω,∴T,本选项满足题意;故选:D.【点睛】本题考查了三角函数的周期性及其求法,涉及的知识有正切函数及正余弦函数的周期,熟练掌握周期公式是解本题的关键.4.如果,,那么等于().A. B. C. D.【答案】A【解析】【分析】由已知先求得再根据的范围开方取舍,即可求值.【详解】∵,可解得:.又,∴∴故选:A.【点睛】本题主要考查了同角基本关系式中的平方关系,其中开方注意正负的取舍,属于基础题.5.若直线是函数图象的一条对称轴,则a的值可以是()A. B. C. D.【答案】A【解析】试题分析:由题,对称轴方程为:则当考点:三角函数的性质(对称性).6.要得到函数的图象,只要将函数的图象()A. 向左平行移动个单位B. 向左平行移动个单位C. 向右平行移动个单位D. 向右平行移动个单位【答案】B【解析】【分析】由,解得,从而可得结果.【详解】设将函数的图象平移个单位后,得到函数的图象,则,解得,函数的图象向左平移动个单位长度,可得到函数的图象,故选B.【点睛】本题考查的知识点是函数的图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.7.的值是()A. 1B. 2C. 0D.【答案】B【解析】【分析】原式利用诱导公式化简,即可得到结果.【详解】原式.故选B.【点睛】本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.8.的大小关系是()A. B.C. D.【答案】A【解析】∵余弦函数在上单调递减,又,故选A.9.设,则a,b,c之间的关系是()A. B. C. D.【答案】A【解析】试题分析:由函数的图象可知,又由函数的图象可得该函数在上单调增,因为,则,综上所述选A.考点:1.对数函数;2.幂函数的单调性10.函数在一个周期内的图象如图所示,则此函数的解析式可能是()A. B.C. D.【答案】B【解析】【分析】由图知A=2,,可求得ω=2,再由ω+=2kπ(k∈Z)即可求得,从而可得此函数的解析式.【详解】由图知A=2,,∴T=π,∴ω2.又ω+=2kπ(k∈Z),∴=2kπ2=2kπ(k∈Z),∴函数的解析式是y=2sin(2x+2kπ)=2sin(2x).故选:B.【点睛】本题考查由y=A sin(ωx+)的部分图象确定其解析式,确定的值是关键,也是难点,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分。

2018-2019学年北京市清华附中高一(上)期中数学试卷(含解析)

2018-2019学年北京市清华附中高一(上)期中数学试卷(含解析)

2018-2019学年北京市清华附中高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1. 设全集,集合,,则集合A. B. C. D.【答案】B【解析】解:集合,,,,故选:B.求出集合A的补集,从而求出其和B的交集即可.不同考查了集合的运算,熟练掌握运算性质是解题的关键,不同是一道基础题.2. 命题“,使得”的否定是A. ,都有B. ,使得C. ,都有D. ,使得【答案】C【解析】解:命题是特称命题,则否命题的否定是:,都有,故选:C.根据特称命题的否定是全称命题进行判断即可.本题主要考查含有量词的命题的否定,比较基础.3. 下列函数中,既是奇函数又在R单调递减的是A. B. C. D.【答案】D【解析】解:根据题意,依次分析选项:对于A,,为反比例函数,其定义域为,不符合题意;对于B,,不是奇函数,不符合题意;对于C,,是对数函数,不是奇函数,不符合题意;对于D,,既是奇函数又在R单调递减,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.本题考查函数奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4. 已知,,,那么A. B. C. D.【答案】C【解析】解:,,,可得.故选:C.利用对数性质,判断三个数的范围,即可得到结果.本题考查对数值的大小比较,是基础题.5. “”是““的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:“”““,反之不成立.“”是““的充分不必要条件.故选:A.由“”可得““,反之不成立即可判断出关系.本题考查了不等式的基本性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6. 函数的零点所在的一个区间是A. B. C. D.【答案】C【解析】解:函数,在单调递增.,,根据函数的零点的判断方法得出:零点所在的一个区间是,故选:C.根据函数,在单调递增,,,可判断分析.本题考查了函数的性质,函数的零点的判断方法,属于容易题.7. 要得到的图象,只需将函数的图象A. 向上平移1个单位B. 向下平移1个单位C. 向左平移1个单位D. 向右平移1个单位【答案】A【解析】解:,故将函数的图象向上平移1个单位,即可得到,故选:A.利用对数的运算性质,可得,结合函数图象平移变换法则,可得答案.本题考查的知识点是函数图象的平移变换,对数的运算性质,难度中档.8. 函数,的图象为A.B.C.D.第1页,共4页【答案】C【解析】解:,的图象过第一、第二象限,且是单调减函数,经过,的图象可看成把的图象在y轴的右铡的不变,再将右侧的图象作关于y轴的图象得到的,的图象可看成把的图象向右平移个单位得到的,故选:C.先考查的图象特征,的图象可看成把的图象向右平移个单位得到的,即可得到的图象特征.本题考查函数图象的变换,指数函数的图象特征,体现了转化的数学思想.二、填空题(本大题共5小题,共25.0分)9. 函数的定义域是______.【答案】【解析】解:由,解得.函数的定义域是.故答案为:.由对数式的真数大于0,分式中根式内部的代数式大于0,联立不等式组求解即可.本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.10. 若为R上的奇函数,当时,,则______.【答案】【解析】解:为R上的奇函数,则,即有,,当时,,,则.故答案为:.运用奇函数的定义,已知解析式,可得,,即可得到结论.本题考查函数的奇偶性的运用:求函数值,考查运算能力,属于基础题.11. 已知函数对任意的满足,且当时,,若有4个零点,则实数a的取值范围是______.【答案】【解析】解:,函数是偶函数,,根据偶函数的对称轴可得当时函数有2个零点,即,或,解得,即实数a的取值范围,故答案为:由,可知函数是偶函数,根据偶函数的对称轴可得当时函数有2个零点,即可得到结论.本题主要考查函数奇偶的应用,以及二次函数的图象和性质,利用偶函数的对称性是解决本题的关键.12. 已知函数,若,则x的取值范围是______.【答案】【解析】解:函数,故函数在上单调递增,在上单调递增,由于,且,则有,由,可得,,不等式在成立,则的解集为.故答案为:.由题意可得函数在上单调递增,在上单调递增,由,可得,,,由此求得x的范围.本题考查分段函数的应用:解不等式,函数的单调性的应用,属于中档题.13. 函数的值域是______注:其中表示不超过x的最大整数【答案】【解析】解:根据高斯函数的性质,,那么:,则由,函数的值域为.故答案为根据高斯函数的性质,,,结合不等式的性质即可求解;本题考查了表示不超过x的最大整数新定义的应用,其实是高斯函数的性质应用属于中档题.三、解答题(本大题共7小题,共85.0分)14. 已知,,则______.【答案】【解析】解:,,即解得,,故答案为:根据指数函数和对数函数的定义计算即可.本题主要考查了指数函数和对数函数的运算,属于基础题.15. 已知集合,.若,求;若集合中至少存在一个整数,求实数a的取值范围.【答案】解:时,集合,..集合,.集合中至少存在一个整数,,或,解得.实数a的取值范围是.【解析】时,集合,,由此能求出.集合,由集合中至少存在一个整数,得,由此能求出实数a的取值范围.本题考查交集的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.16. 已知函数若,求的值;若函数在区间的最大值与最小值的差为,求实数a的值.【答案】解:,可得,两边平方可得,即有;当时,在递增,可得,解得;当时,在递减,可得,解得.综上可得或.【解析】由题意可得,两边平方即可得到所求值:讨论和,运用指数函数的单调性,可得a的方程,解方程即可得到所求值.本题考查指数函数的单调性和运用:求最值,考查方程思想和运算能力,属于基础题.17. 已知函数,,若在区间上有最大值5,最小值2.求a,b的值;若,在上为单调函数,求实数m的取值范围.【答案】解:由于函数,,对称轴为,当时,函数在区间上单调递增,由题意可得,解得.当时,函数在区间上单调递减,由题意可得,解得.综上可得,,或.若,则由可得,,再由函数在上为单调函数,可得,或,解得,或,故m的范围为.【解析】由于函数,,对称轴为,分当时、当时两种情况,分别依据条件利用函数的单调性求得a、b的值.由题意可得可得,,根据条件可得,或,由此求得m的范围.本题主要考查求二次函数在闭区间上的最值,二次函数的性质应用,体现了分类讨论的数学思想,属于中档题.18. 设函数是R上的增函数,对任意x,,都有求;求证:是奇函数;若,求实数x的取值范围.【答案】解:对任意x,,都有,可令,,可得,即;证明:由任意x,,都有,可令,可得,可得,由,可得,即有为奇函数;奇函数是R上的增函数,由,即,即有,解得.实数x的取值范围为.【解析】可令,,计算可得所求;可令,结婚酒函数的奇偶性的定义,即可得证;由奇函数是R上的增函数,将已知不等式移项,可得,由二次不等式的解法,即可得到所求范围.本题考查抽象函数的奇偶性的判断和运用,考查不等式的解法,注意运用函数的单调性和奇偶性,考查运第3页,共4页算能力,属于中档题.19. 若函数满足:在区间内有且仅有一个实数,使得成立,则称函数具有性质M.判断函数是否具有性质M,说明理由;若函数具有性质M,求实数a的取值范围;若函数具有性质M,求实数m的取值范围.【答案】解:函数,由,可得,则函数具有性质M;函数具有性质M,可得,即,可得a的取值范围是;依题意,若函数具有性质M,即方程在上有且只有一个实根.设,即在上有且只有一个零点,由得,,解得或.同时需要考虑以下三种情况:由解得;由解得,不等式组无解;由解得,解得.综上所述,若函数具有性质M,实数m的取值范围是或或.【解析】解方程可得想x,可判断是否具有性质M;由题意可得,解方程可得,再由性质M即可得到所求范围;依题意,若函数具有性质M,即方程在上有且只有一个实根设,即在上有且只有一个零点讨论m的取值范围,结合零点存在定理和二次函数的图象,即可得到m的范围.本题考查函数的零点的判断和求法,考查零点存在定理的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20. 已知函数.当时,求函数在上的值域;若不等式在区间上恒成立,求实数a的取值范围.【答案】解:当时,,令,则原函数化为,,则,当时,.函数在上的值域为;由知,在区间上恒成立,即在上恒成立,令,则,解得:.实数a的取值范围是.【解析】把代入函数解析式,利用换元法结合二次函数求最值;令,把问题转化为在上恒成立,得到关于t的不等式组求解.本题考查函数值域的求法,考查恒成立问题的求解方法,训练了换元法,体现了数学转化思想方法的应用,是中档题.。

北京市2018年高一上学期期末考试数学试卷

北京市2018年高一上学期期末考试数学试卷

北京市2018年高一上学期期末考试数学试卷【三角函数与平面向量】一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知sinα<0,且tanα>O,则α的终边所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 函数f(x)=sin2x的最小正周期为( )A. B. π C. 2π D. 4π3. 如果向量a=(1,2),b=(3,4),那么2a-b=( )A. (-1,0)B. (-1,-2)C. (1,O)D. (1,-2)4. 计算sin(π-α)+ sin(π+α)=( )A. 0B. 1C. 2sinαD. -2sinα5. 如图,在矩形ABCD中,=( )A. B.C. D.6. 已知向量a,b满足|a|=2,|b|=1,a·b=,则向量a,b的夹角为( )A. B. C. D.7. 已知m是函数f(x)=cosx图象一个对称中心的横坐标,则f(m)=( )A. -1B. 0C.D. 18. 要得到函数的图象,只需将函数y=sin2x的图象( )A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度9. 函数f(x) =A sinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=( )A. 3B.C. D. 110. 已知在直角三角形ABC中,A为直角,AB =1,BC=2,若AM是BC边上的高,点P 在△ABC内部或边界上运动,则的取值范围是( )A. [-1,0]B. [ ,0]C. [ ,]D. [,0]二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. =_____________.12. 已知向量a=(1,2),b=(x,-2),若a∥b,则实数x=____________.13. 角θ的始边与x轴正半轴重合,终边上一点坐标为(-1,2),则tanθ=___________.14. 函数f(x)=sinx+cosx的最大值为____________.15. 已知点A(0,4),B(2,0),如果,那么点C的坐标为_____________;设点P(3,t),且∠APB是钝角,则t的取值范围是___________________.16. 已知函数f(x)=sinxtanx.给出下列结论:①函数f(x)是偶函数;②函数f(x)在区间(,0)上是增函数;③函数f(x)的最小正周期是2π;④函数f(x)的图象关于直线x=π对称.其中正确结论的序号是_______________.(写出所有正确结论的序号)三、解答题:本大题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.17. 已知αa∈(,π),且cosα=.(I)求tanα的值;(Ⅱ)求的值.18. 已知函数.(I)请用“五点法”画出函数f(x)在一个周期上的图象;(Ⅱ)求f(x)在区间上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.19. 如图,已知AB⊥BC,AB=BC=a,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B上的动点,∥(且与同向),设∠BAE=θ(θ∈[0,π]).(I)当a= ,且θ=时,求的值;(Ⅱ)用a,θ表示出,并给出一组a,θ的值,使得最小.B卷【学期综合】四、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20. 设全集U=R,集合A={x|x<0),B={x|x>1},则AU(u B)=_____________.21. 函数___________________.23. sin2, , 三个数中最大的是____________.24. 某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为________________折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为___________________折(保留一位小数).五、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25. 已知函数是偶函数.(I)求a的值;(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用函数单调性的定义证明你的结论.26. 设a为实数,函数,x∈R.(I)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.27. 若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f (x)为“T函数”.(I)试判断函数f1(x)=x2与f2(x)=lg(x+1)是否是“T函数”,并说明理由;(Ⅱ)设f (x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0.求证:f (x0) =x0;(Ⅲ)试写出一个“T函数”f(x),满足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的个数最少.(只需写出结论)北京市2018年高一上学期期末考试数学试卷【三角函数与平面向量】一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知sinα<0,且tanα>O,则α的终边所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】<,的终边在第三、第四象限或在轴负半轴上,>,的终边在第一或第三象限,由此可得的终边所在的象限是第三象限角.故选C.2. 函数f(x)=sin2x的最小正周期为( )A. B. π C. 2π D. 4π【答案】B【解析】函数的最小正周期 .故选B3. 如果向量a=(1,2),b=(3,4),那么2a-b=( )A. (-1,0)B. (-1,-2)C. (1,O)D. (1,-2)【答案】A【解析】(,)(,)(,).故选A.4. 计算sin(π-α)+ sin(π+α)=( )A. 0B. 1C. 2sinαD. -2sinα【答案】A【解析】由诱导公式,()()故选A.5. 如图,在矩形ABCD中,=( )A. B.C. D.【答案】B故选B.6. 已知向量a,b满足|a|=2,|b|=1,a·b=,则向量a,b的夹角为( )A. B. C. D.【答案】D【解析】由向量的夹角公式可得故选D7. 已知m是函数f(x)=cosx图象一个对称中心的横坐标,则f(m)=( )A. -1B. 0C.D. 1【答案】B【解析】函数(),其对称中心的横坐标:,.当时,可得,则(),故选B.8. 要得到函数的图象,只需将函数y=sin2x的图象( )A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】C【解析】试题分析:,因此只需将函数y = sin2x的图象向左平移个单位考点:三角函数图像平移9. 函数f(x) =A sinx(A>0)的图象如图所示,P,Q分别为图象的最高点和最低点,O为坐标原点,若OP⊥OQ,则A=( )A. 3B.C. D. 1【答案】B【解析】由题意函数()(>),周期,由图像可知(,),(,).连接,过,作轴的垂线,可得:,,,由题意,是直角三角形,,即,解得: .故选B10. 已知在直角三角形ABC中,A为直角,AB =1,BC=2,若AM是BC边上的高,点P 在△ABC内部或边界上运动,则的取值范围是( )A. [-1,0]B. [ ,0]C. [ ,]D. [,0]【答案】D【解析】如图,由,,可得,以所在直线为轴,以所在直线为轴,建立平面直角坐标系,则(,),(,),直线方程为,则直线AM方程为,联立,解得:(,),由图可知,当在线段上时,有最大值为0,当在线段上时,有最小值,设(,)(),(,)(,).∴的范围是[,0]故选D.【点睛】本题考查平面向量的数量积运算,数量积的坐标运算,以及数形结合的思想方法,其中建立平面直角坐标系并利用数形结合的思想是解答该题的关键.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. =_____________.【答案】【解析】即答案为.12. 已知向量a=(1,2),b=(x,-2),若a∥b,则实数x=____________.【答案】-1【解析】由(,),(,),且,得(),解得.即答案为:-1.13. 角θ的始边与x轴正半轴重合,终边上一点坐标为(-1,2),则tanθ=___________.【答案】-2【解析】∵角的始边与轴正半轴重合,终边上一点坐标为(,),∴x=-1,y=2,则,即答案为:-2.14. 函数f(x)=sinx+cosx的最大值为____________.【答案】【解析】,故的最大值为. 即答案为15. 已知点A(0,4),B(2,0),如果,那么点C的坐标为_____________;设点P(3,t),且∠APB是钝角,则t的取值范围是___________________.【答案】(1). (3,-2)(2). (1,3)【解析】根据题意,设的坐标为(,),又由点(,),(,),则(,),(,),若,则有(,)(,),则有(),,解可得,,则的坐标为(,),又由(,),则(,),(,),若是钝角,则()()()()<,且()()()(),解可得<<,即的取值范围为(,);即答案为(1). (3,-2) (2). (1,3)【点睛】本题考查向量数量积的坐标计算公式,涉及向量平行的坐标表示方法,其中解题的关键是掌握向量坐标计算的公式.16. 已知函数f(x)=sinxtanx.给出下列结论:①函数f(x)是偶函数;②函数f(x)在区间(,0)上是增函数;③函数f(x)的最小正周期是2π;④函数f(x)的图象关于直线x=π对称.其中正确结论的序号是_______________.(写出所有正确结论的序号)【答案】①③④【解析】对于(),其定义域为,,关于原点对称,且()()(),∴函数()是偶函数,故①正确;当时,()()(),当时,()()(),<,而()>(),故②错误;()()(),∴函数()的最小正周期是,故③正确;()()(),()()(),()(),即函数()的图象关于直线对称,故④正确.∴正确结论的序号是①③④.即答案为①③④.三、解答题:本大题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.17. 已知αa∈(,π),且cosα=.(I)求tanα的值;(Ⅱ)求的值.【答案】(I). (II) -7.【解析】试题分析:(Ⅰ)利用同角三角函数的基本关系,求得的值.(Ⅱ)由题意利用二倍角公式求得的值.试题解析:(I)因为,,所以所以.(II)由(I) ,,所以.所以.18. 已知函数.(I)请用“五点法”画出函数f(x)在一个周期上的图象;(Ⅱ)求f(x)在区间上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.【答案】(I)见解析;(II)见解析(III).【解析】试题分析:(Ⅰ)利用列表、描点、连线法画出()在一个周期上的图象;(Ⅱ)利用正弦函数的性质求出()在上的最大、最小值;(Ⅲ)根据函数的图象写出()的单调递增区间.试题解析:(I)f(x)在上的图象如图所示.(II).因为,所以,当,即时,最大值等于1,即的最大值等于1;当,即时,最小值等于,即的最小值等于.所以在区间上的最大值为1,最小值为.(III)函数的单调递增区间为.19. 如图,已知AB⊥BC,AB=BC=a,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B上的动点,∥(且与同向),设∠BAE=θ(θ∈[0,π]).(I)当a= ,且θ=时,求的值;(Ⅱ)用a,θ表示出,并给出一组a,θ的值,使得最小.【答案】(I). (II).【解析】试题分析:(Ⅰ)建立平面直角坐标系,根据向量的数量积公式计算即可,(Ⅱ)设,,(,),,,利用坐标计算得到关于的三角函数,利用三角函数的性质求出最值.试题解析:(I)如图,以点A为原点,AB所在直线为x轴,与AB垂直的直线为y轴建立平面直角坐标系.则,.(II),因为,所以,以a为变量的二次函数的对称轴.因为,所以当时,的最小值为,又,所以的最小值为,此时.所以,当,时,的最小值为.B卷【学期综合】四、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20. 设全集U=R,集合A={x|x<0),B={x|x>1},则AU(u B)=_____________.【答案】【解析】>,,则(),即答案为.21. 函数的定义域为___________________.【答案】【解析】由,得,即.∴函数的定义域为. 即答案为.【答案】(1). 4(2).【解析】由题,则若(),若>,可得,解得(舍去);若<,可得,解得,综上可得.即答案为(1). 4(2).23. sin2, , 三个数中最大的是____________.【答案】【解析】(,),<,>,可得其中最大值为.即答案为.24. 某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为________________折.在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为___________________折(保留一位小数).【答案】(1). 7.5(2). 6.7【解析】由,故,由,故打折,显然三件商品价格一致时折扣最大,设购买3件商品均为元,则,故商品实际折扣力度最大约为折,即答案为(1). 7.5 (2). 6.7五、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25. 已知函数是偶函数.(I)求a的值;(Ⅱ)判断函数f(x)在区间(0,+∞)上的单调性,并用函数单调性的定义证明你的结论.【答案】(I). (II)见解析.【解析】试题分析:(Ⅰ)根据函数的奇偶性求出a的值即可;(Ⅱ)根据函数的单调性的定义证明即可.试题解析:(I)函数的定义域为.由得.所以.因为对于定义域中任意的x都成立,所以.(II)函数在区间上是减函数证明:在上任取,,且,则,由,的,,,于是,即.所以函数在区间上是减函数.26. 设a为实数,函数,x∈R.(I)当a=0时,求f(x)在区间[0,2]上的最大值和最小值;(Ⅱ)求函数f(x)的最小值.【答案】(I)见解析;(II)当时,的最小值为;当时,的最小值为【解析】试题分析:(Ⅰ)根据时,在,上,取绝对值,根据二次函数的单调性即可求解在区间,上的最大值和最小值;(Ⅱ)利用零点分段去绝对值,根据对称轴分情况讨论即可求函数()的最小值试题解析:(I)当,时,函数,因为的图象抛物线开口向上,对称轴为,所以,当时,值最小,最小值为;当时,值最大,最大值为3.(II)①当时,函数.若,则在上单调递减,在上的最小值为;若,则函数在上的最小值为;②当时,.若,则在上的最小值为;若,则在上单调递增,.所以,当时,,的最小值为.当时,,的最小值为.当时,的最小值为与中小者.所以,当时,的最小值为;当时,的最小值为.综上,当时,的最小值为;当时,的最小值为【点睛】本题主要考查函数最值的求解,利用零点分段思想以及一元二次函数的性质是解决本题的关键.27. 若函数f(x)满足:对于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),则称函数f (x)为“T函数”.(I)试判断函数f1(x)=x2与f2(x)=lg(x+1)是否是“T函数”,并说明理由;(Ⅱ)设f (x)为“T函数”,且存在x0∈[0,+∞),使f(f(x0))=x0.求证:f (x0) =x0;(Ⅲ)试写出一个“T函数”f(x),满足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的个数最少.(只需写出结论)【答案】(I)见解析;(II) 见解析;(III)(注:答案不唯一)【解析】试题分析:(Ⅰ)直接利用定义判断函数=与()()是否是“T函数”即可;(Ⅱ)设,,),>,,>.()()()()()(),所以,对于,,),<,一定有()().即可证明;(Ⅲ)根据(),且使集合(),中元素的个数最少,以及新定义即可确定.试题解析:(I)对于函数,当时,都有,,又,所以.所以是“T函数”.对于函数,当时,,,因为,所以.所以不是“T函数”.(II)设,,.则所以,对于,,一定有.因为是“T函数”,,所以.若,则,不符合题意.若,则,不符合题意.所以.(III)(注:答案不唯一)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018北京市清华附中高一(上)期末
数 学 2018.1
一、选择题(每小题5分,共40分)
1. 下列各角中,与50°的角终边相同的角是( )
A. 40°
B. 140°
C. -130°
D. -310°
2. 设向量)
,(20=a ,),(13=b ,则a ,b 的夹角等于( ) A.
3π B. 6π C. 32π D. 6
5π 3. 角α的终边过点)(3-,4P ,则)2
sin(απ+的值为( ) A. 54- B. 54 C. 53- D. 5
3 4. 要得到函数)3
2cos(π-=x y 的图像,只需将x y 2cos =的图像( ) A. 向右平移6π个单位长度 B. 向左平移6
π个单位长度 C. 向右平移3π个单位长度 D. 向左平移3π个单位长度 5. 已知非零向量与
=2
1=,则ABC ∆为( )
A. 三边均不相等的三角形
B. 直角三角形
C. 等腰非等边三角形
D. 等边三角形
6. 同时具有性质“①最小正周期是π;②图像关于直线3π-
=x 对称;③在⎥⎦⎤⎢⎣⎡ππ326,上是增函数”的一个函数是( ) A. )32sin(π-
=x y B. )62cos(π+=x y C. )62sin(π
+=x y D. )3
22cos(π+=x y 7. 定义在R 上的偶函数()x f 满足()()x f x f =+2,且在[]21,
上是减函数,若α,β是锐角三角形的两个内角,则( )
A. ()αsin f >()βcos f
B. ()αsin f <()βcos f
C. ()αsin f >()βsin f
D. ()αcos f <()βcos f
8. 若定义[]20182018,-上的函数()x f 满足:对于任意1x ,[]2018,20182-∈x 有()()()20172121-+=+x f x f x x f ,且x >0时,有()x f >2017,()x f 的最大值、最小值分别为M ,N ,则N M +的值为( )
A. 0
B. 2018
C. 4034
D. 4036
二、填空题(每小题5分,共30分)
9. 若θ为第四象限的角,且31sin -=θ,则 =θcos ;=θ2sin 。

10. 已知a ,b ,c ,分别是ABC ∆的三个内角A ,B ,C 所对的边,若1=a ,3=
b ,B C A 2=+,则ABC ∆的面积=∆ABC S 。

11. 已知2tan =x ,则()=⎪⎭
⎫ ⎝⎛+++x x x 2cos sin 2cos ππ 。

12. 已知()πα,0∈且316sin =⎪⎭⎫ ⎝⎛
+πα,则=⎪⎭⎫ ⎝
⎛+6cos πα ;=αsin 13. 如图,在直角梯形ABCD 中,AB ∥DC ,o 90=∠ABC ,若3=AB ,2==DC BC ,若E ,F 分别是线段DC
和BC 上的动点,则EF AC ⋅的取值范围是 。

14. 已知函数()a x x x f --=2
sin 22sin 2 ①若()0=x f 在R x ∈上有解,则a 的取值范围是 ;
②若1x ,2x 是函数()x f y =在⎥⎦⎤⎢⎣⎡2
0π,内的两个零点,则=+)sin(21x x 。

三. 解答题(共6小题,共80分).
15. (13分)已知函数()1)6cos(sin 4++
=πx x x f . (1)求⎪⎭
⎫ ⎝⎛12πf 的值; (2)求函数()x f 的单调递减区间;
(3)求()x f 在区间⎥⎦⎤⎢⎣⎡2
0π,上的最大值和最小值.
16. (13分)已知不共线向量a ,b 满足3=a ,2=b ,()()
.20232=+⋅-b a b a
(1) 求()
b a a -⋅; (2) 是否存在实数λ,使b a + λ与b a 2-共线?
(3) 若()()
b k a b a k -⊥+2,求实数k 的值。

17. (13分)设锐角三角形的内角A ,B ,C 的对边分别为a ,b ,c ,且)cos(cos sin B A C A -=-.
(1) 求B 的大小;
(2) 求C A sin cos +的取值范围.
18. (13分)已知向量()θθsin cos ,
=a ,()ββsin cos ,=b . (1) 若3π
βθ=-,求b a -的值;
(2) 若3π
βθ=+,记()b a b a f +-⋅=λθ,⎥⎦⎤⎢⎣⎡∈20πθ,,当21≤≤λ时,求()θf 的最小值.
19. (13分)借助计算机(器)作某些分段函数图像时,分段函数的表示有时可以利用函数()()()
⎩⎨⎧≥=<0001
x x x h ,
例如要表示分段函数()()()()⎪⎩
⎪⎨⎧-==<220>2x x x x x x g ,可以将()x g 表示为()()()()x h x x xh x g --+-=22.
(1) 设()()()()
()x h x x h x x x f --+-+-=1113222,请把函数()x f 写成分段函数的形式; (2) 已知()()[]()()1log 1413-⋅+-+-=x h x x h a x a x G a 是R 上的减函数,求a 的取值范围;
(3) 设()()()()
()x a h a x x a x h a x x x F -++-+-+-+=1122,求函数()x F 的最小值.
20. (14分)一个函数()x f ,如果对任意一个三角形,只要它的三边长a ,b ,c 都在()x f 的定义域内,就有()a f ,()b f ,()c f 也是某个三角形的三边长,则称()x f 为“保三角形函数”.
(1) 判断()x x f =1,())cos sin 26(log 2
22x x x f -+=中,哪些是“保三角形函数”,哪些不是,并说明理由; (2) 若函数()x x g ln =([)∞+∈,
M x )是“保三角形函数”,求M 的最小值; (3) 若函数()x x h sin =(()A x ,0∈)是“保三角形函数”,求A 的最大值.。

相关文档
最新文档