2020年北京市中考数学模拟试卷及答案
【精品】2020年北京市中考数学一模试卷及答案解析

2020年北京市中考数学一模试卷一、单选题(共0分)1.(本题0分)某几何体从三个不同方向看到的形状图如图,则该几何体是( )A.圆锥B.圆柱C.球D.长方体2.(本题0分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×1063.(本题0分)如图所示,BE,CF是直线,OA,OD是射线,其中构成对顶角的是( )A.∠AOE与∠COD B.∠AOD与∠BODC.∠BOF与∠COE D.∠AOF与∠BOC4.(本题0分)下列轴对称图形中,对称轴最多的图形是()A.B.C.D.5.(本题0分)将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180°C.减少360°D.增加360°6.(本题0分)数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为2015cm的线段AB,则线段AB盖住的整点的个数为()A.2015 B.2014 C.2015或2014 D.2015或20167.(本题0分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A .16B .13C .12D .23 8.(本题0分)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(共0分)9.(本题0分)要使分式有意义,则x 的取值范围是 .10.(本题0分)已知关于 x 的一元二次方程20x k -+= 有两个相等的实数根,则 k 的值为_____.11.(本题0分)若a 是一个含有根号的无理数,且3<a <4.写出任意一个符合条件的值____. 12.(本题0分)对于两个实数,m n ,定义一种新运算,规定2m n m n =+☆,例如3523511=⨯+=☆,若2a b ☆且21b a =☆,则b a =__________.13.(本题0分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点(-1,3)且与y 轴垂直,则l 也会经过的点是_____(填A 、B 、C 或D )14.(本题0分)如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件__________.15.(本题0分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)16.(本题0分)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(共0分)17.(本题0分)计算:11()4523---︒18.(本题0分)解不等式组()324211122x x x x ⎧--≥⎪⎨-++≥⎪⎩①②. 19.(本题0分)不解方程组23532x y x y +=⎧⎨-=-⎩,求(2x+y)(2x-3y)+3x(2x+y)的值 20.(本题0分)等角转化;如图1,已知点A 是BC 外一点,连结AB 、AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面的推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = ( )又∵∠EAB +∠BAC +∠DAC =180°∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.21.(本题0分)如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:ABCD是矩形;(2)若AD=cos∠,求AC的长.22.(本题0分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表达式.(2)动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?23.(本题0分)如图,ABC 中,ACB 90∠=,D 为AB 上一点,以CD 为直径的O 交BC 于点,连接AE 交CD 于点,交O 于点F ,连接DF ,CAE ADF ∠∠=.()1判断AB 与O 的位置关系,并说明理由.()2若PF :PC 1=:2,AF 5=,求CP 的长.24.(本题0分)在平面直角坐标系中,直线l 1:y=﹣12x+4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y=x 于点C .(1)如图①,求出B 、C 两点的坐标; (2)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式.(3)如图②,在(2)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.25.(本题0分)学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?26.(本题0分)在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示); (2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.27.(本题0分)如图,在平面直角坐标系中,点A(4,0),B(0,3),以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC =90°.若第二象限内有一点P 1,2a ⎛⎫ ⎪⎝⎭,且△ABP 的面积与△ABC 的面积相等.(1)求直线AB 的函数表达式.(2)求a 的值.(3)在x轴上是否存在一点M,使△MAC为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.28.(本题0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为1-4,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK 绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.。
北京市2020中考数学模拟试卷解析版

北京市2020中考数学模拟试卷一.选择题(每题2分,满分16分)1.﹣3的倒数是()A.﹣B.C.±3 D.32.电影《流浪地球》深受人们喜欢,截止到2019年2月17日,票房达到3650000000,则数据3650000000科学记数法表示为()A.0.365×1010B.36.5×108C.3.65×108D.3.65×1093.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm25.在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣1007.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是() A .5,5B .5,6C .6,6D .6,58.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .二.填空题(共8小题,满分16分,每小题2分) 9.如果在实数范围内有意义,则x 的取值范围是 .10.分解因式:a 3﹣a 2+a = . 11.化简÷= .12.如图,△ABC 中,点D 、E 分別在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 .13.不等式组的解集为 .14.(2分)如图,OC 是⊙O 的半径,AB 是弦,OC ⊥AB ,点P 在⊙O 上,∠APC =23°,则∠AOB = .15.如图,已知抛物线y=x2﹣1与x轴正半轴交于C点,顶点为D点过O点任作直线交抛物线于A、B,过点B作BE⊥x轴于E,则OB﹣BE的值为.16.不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,则抽取的卡片上数字是偶数的概率是.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解方程:2x(x﹣y)+2xy=8.19.(5分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD =DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.(5分)如图,在平行四边形ABCD中,AM⊥BC,AN⊥CD,垂足分别为M.M,求证:△AMN ∽△DCA.21.(5分)已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a = ,b = . (2)估计乙部门生产技能优秀的员工人数为 ;(3)可以推断出 部门员工的生产技能水平较高,理由为:① ;② .(从两个不同的角度说明你推断的合理性)25.(6分)如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D(1)求证:PC 是⊙O 的切线; (2)求证:=;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,连接BE ,若sin ∠P =,CF =5,求BE 的长.26.(6分)已知抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.27.(7分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D 连DE并延长交BC于F,CE2=CF•CB.(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=2,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.28.(7分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB 及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.参考答案一.选择题1.解:﹣3的倒数是﹣,故选:A.2.解:将3650000000用科学记数法表示为:3.65×109.故选:D.3.解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.4.解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.5.解:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是=.故选:C.6.解:设学校购买文学类图书平均每本书的价格是x元,可得:,故选:B.7.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.8.解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.二.填空题(共8小题,满分16分,每小题2分)9.解:∵在实数范围内有意义,∴x+8≥0,∴x的取值范围是x≥﹣8,故答案为:x≥﹣8.10.解:原式=a(a2﹣a+1),故答案为:a(a2﹣a+1)11.解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为:x+1.12.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE :S△ABC=1:9.故答案为:1:9.13.解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.14.解:∵OC是⊙O的半径,AB是弦,OC⊥AB,∴=,∴∠AOC=∠BOC,∵∠APC=23°,∴∠AOC=2∠APC=46°,∴∠BOC=46°,∴∠AOB=46°+46°=92°,故答案为:92°.15.解:设B(m, m2﹣1),则OB==+1.∵BE⊥x轴,∴BE=m2﹣1.∴OB﹣BE=2.故答案为2.16.解:∵有四张完全相同的卡片,把它们分别标上数字1、2、3、4,其中卡片上数字是偶数的有2张,∴抽取的卡片上数字是偶数的概率是=;故答案为:.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:2x2﹣2xy+2xy=8,x2=8,x=±2,19.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20.解:∵AM⊥BC,AN⊥CD,∴∠AMC=∠ANC=90°,∴A ,M ,N ,C 四点共圆, ∴∠ACM =∠ANM ,∠MAN =∠MCN , ∵在平行四边形ABCD 中,AD ∥BC ,∴∠D =∠MCN ,∠DAC =∠ACM , ∴∠DAC =∠ANM ,∠D =∠MAN , ∴△AMN ∽△DCA .21.【解答】解:(1)将x =﹣1,n =1代入原方程,得:(﹣1)2﹣m +12+1=0, 解得:m =3.(2)当m =2时,原方程为x 2+2x +n 2+1=0, ∴△=22﹣4×1×(n 2+1)=﹣4n 2.当n =0时,△=﹣4n 2=0,此时原方程有两个相等的实数根; 当n ≠0时,△=﹣4n 2<0,此时原方程无解.22.解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.23.(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;(2)解:∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∵AD=5,∴OC=.24.解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.25.解:(1)如图所示,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,∴PC是⊙O的切线;(2)∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴=,∵CG⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴=,∴=;(3)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴=,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴FA=FC,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,∴FD=3,AD=4,CD=8,在Rt△COD中,设CO=r,则有r2=(r﹣4)2+82∴r=10,∴AB=2r=20,∵AB是直径,∴∠AEB=90°,∴sin∠EAB=,∴=,∴=,∴EB=12.26.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为:y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).27.解:(1)∵CE2=CF•CB,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°∴△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°,∴x=30°,∴∠ABE=60°∴,∴⊙A的面积为(3)由(1)知:∠BDF=∠CEF=∠CBE,∵tan∠CBE=,设EF=a,BE=2a,∴,∴AD=AB=,∴DE=2BE=4a,过F作FK∥BD交CE于K,∴∵∴,∴∴∴28.解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB 上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH ⊥AB 交直线AB 于点H ,则h =NH =NP sin α=,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠ON ′P ′=α,ON ′==(2+2),S 四边形OBPN =BP •h =×=6,则:S 四边形OBP ′N ′=S △OP ′N ′+S △OBP ′=6+6,同理:S 四边形OBN ″P ″=6﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6或6﹣6.。
2020年北京中考数学模拟试卷解析版

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共8小题,共40.0分)1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( )A. 5.8×1010B. 5.8×1011C. 58×109D. 0.58×10112.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( )A. 千里江山图B. 京津冀协同发展C. 内蒙古自治区成立七十周年D. 河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是( )A. 三棱柱B. 圆柱C. 六棱柱D. 圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A. a<-5B. b+d<0C. |a|-c<0D. c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于( )A. 45°B. 60°C. 72°D. 90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是( )A. 惊蛰B. 小满C. 秋分D. 大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是( )A. B.C. D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项( )A. 图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量B. 图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C. 图2显示意大利当前的治愈率高于西班牙D. 图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(本大题共8小题,共40.0分)9.若代数式的值为0,则实数x的值为______.10.若a-b=2,则代数式(-b)•=______.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=______.12.比较大小:______1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=______,b=______.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=______.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,-1),C(-1,-1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,-2),C(4,-2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是______.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为______.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买______(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题(本大题共7小题,共56.0分)17.计算:+()-1-2cos45°-|2-3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x <60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7、62.4、63.6、65.9、66.4、68.5、69.1、69.3、69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m-1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:将580 00000000用科学记数法表示应为5.8×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】C【解析】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.根据中心对称图形的概念求解.本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.3.【答案】C【解析】【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由俯视图可知有六个棱,再由主视图及左视图分析可知为六棱柱,故选C.4.【答案】D【解析】【分析】本题考查了实数与数轴、实数加减的符号法则及算术平方根.解决本题的关键是掌握实数加减的符号法则:减法:大数-小数>0,小数-大数<0;加法:正数+正数>0,负数+负数<0,正数+负数的符号与绝对值较大的加数的符号相一致.根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择作出判断.【解答】解:由数轴知:-5<a<-4,a<b<0<d,|b|<|d|,|a|>|c|∵-5<a<-4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|-c>0.故选项C错误;∵0<c<1,,所以c<.故选项D正确.故选D.5.【答案】B【解析】【分析】本题考查了正多边形的内角和与外角和,掌握多边形内角和公式:(n-2)•180°,外角和等于360°是解题的关键.根据正多边形的内角和公式(n-2)×180°列方程求出多边形的边数,再根据正多边形外角和为360°,且每个外角相等求解可得.【解答】解:多边形内角和(n-2)×180°=720°,∴n=6.则正多边形的一个外角=,故选B.6.【答案】D【解析】解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【答案】C【解析】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】C【解析】解:A、图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.根据所给图表和折线图针对每个选项进行分析即可.本题主要考查了统计表和折线统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.9.【答案】x=1【解析】【分析】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.分式的值为零,分子等于零.【解答】解:依题意得:,所以x-1=0,解得x=1.故答案为1.10.【答案】【解析】解:(-b)•===,当a-b=2时,原式==,故答案为:.根据分式的减法和乘法可以化简题目中的式子,然后将a-b的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.11.【答案】2【解析】【分析】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理找出△DEC∽△ABC 是解题的关键.由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.【解答】解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为2.12.【答案】>【解析】解:∵2<<3,∴1<-1<2,故>1.故答案为:>.直接估计出的取值范围,进而得出答案.此题主要考查了实数大小比较,正确得出的取值范围是解题关键.13.【答案】1答案不唯一 -2【解析】解:当a=1,b=-2时,>,得出a>b,故答案为:答案不唯一,1,-2.通过实例说明命题不成立即可.本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.14.【答案】45°【解析】解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.15.【答案】甲,丙,丁【解析】解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,-1),C(1,-1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.本题主要考查对正方形的性质及坐标系的特点,正确画图确定平面直角坐标系是关键.16.【答案】0.2 丙【解析】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】解:+()-1-2cos45°-|2-3|=3+5-2×-(3-2)=3+5--3+2=4+2.【解析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:解不等式3(x+2)≥x+4,得:x≥-1,解不等式<1,得:x<3,∴原不等式解集为-1≤x<3,∴原不等式的非负整数解为0,1,2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)证明:当m=0时,方程变形为x+3=0,解得x=-3;当m≠0时,△=(3m+1)2-4m•3=(3m-1)2,∵(3m-1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=-,x2=-3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(-,0),(-3,0),而m为正整数,-也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.【解析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m-1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=-,x2=-3,根据抛物线与x轴的两交点问题得到交点坐标为(-,0),(-3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.本题考查了一元二次方程根的判别式(△=b2-4ac):一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了抛物线与x轴的交点问题.20.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.【解析】此题主要考查了矩形的性质以及勾股定理的逆定理,得出BC=EF是解题关键.(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.21.【答案】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元;故答案为:2.7;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【解析】本题考查了频数分布直方图、统计图、近似数等知识;读懂频数分布直方图和统计图是解题的关键.(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.22.【答案】解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m-1),∵y=mx2+2mx+m-1=m(x+1)2-1,∴抛物线G的顶点D的坐标为(-1,-1),对于直线:y=mx+m-1(m≠0),当x=0时,y=m-1,当x=-1时,y=m×(-1)+m-1=-1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m-1),(-1,-1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤-或m≥,∴m的取值范围是m≤-或m≥.【解析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x ,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,两函数交点坐标的求法,函数的图象,都是基础知识,需熟练掌握.23.【答案】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②∵△ADC是等边三角形,∴∠ACP=60°,∵PC=CQ,∴∠PQC=∠CPQ=30°,∴∠PAC=∠PQC=30°,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.【解析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②根据①中得结论:∠PAC=∠PQC=30°,则PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.本题是三角形的综合题,考查三角形全等的性质和判定、等边三角形、等腰直角三角形、勾股定理等知识,解题的关键是作辅助线,构建等边三角形和三角形全等,难度适中,属于中考常考题型.。
北京市2020年中考数学模拟试卷四含答案

北京市2020年中考数学模拟试卷四学校 姓名 准考证号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 下面的多边形中,内角和与外角和相等的是(A ) (B ) (C ) (D )2.已知实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .a >bB .|a |<|b |C .ab >0D .﹣a >b3.2019年春运期间,全国铁路有23天旅客发送量每天超过1000万人次,那么这23 天约发送旅客总人次是(A )2.3×103 (B )2.3×104 (C )2.3×107 (D )2.3×1084.右图是某几何体的三视图,该几何体是(A )三棱锥 (B )三棱柱 (C )长方体 (D )正方体5.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是A .50°B .60°C .70°D .80° 6.如果2320a a +-=,那么代数式2231-3()93a a a a +•-+的值为A .1B .12 C .13 D . 147.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从 长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 A.7512x x +=+ B. 2175x x ++= C. 7512x x -=+ D. 275x x+= 8.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛.其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示,甲、乙、丙表示三名男选手,下面有3个推断: ①甲的一百米跑成绩排名比10项总成绩排名靠前; ②乙的一百米跑成绩排名比10项总成绩排名靠后; ③丙的一百米跑成绩排名比跳远成绩排名靠前. 其中合理的是 (A )①(B )②(C )①②(D )①③二、填空题(本题共16分,每小题2分)9.若2x -在实数范围内有意义,则实数x 的取值范围是 .10.为了解同学们对网络游戏的喜好和作业量多少的相关性,小明随机对年级50名同学进行了调查,并将调查的情况进行了整理,如下表:O跳远成绩排名10项总成绩排名100100丙O一百米跑成绩排名 10项总成绩排名100甲乙如果小明再随机采访一名同学,那么这名同学是“喜欢网络游戏并认为作业多”的可能性 .“不喜欢网络游戏并认为作业不多”的可能性. (填“>”,“=”或 “<”) 11.分解因式:22xy xy x -+= .12.如图,将△ABC 沿BC 所在的直线平移得到△DEF .如果AB =7,GC =2,DF =5,那么GE = .(第12题图) (第13题图)13.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD=2,△ABC的周长为14,则BC 的长为 .14.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国; 乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 .15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为 .16.如图,方格纸中每个小正方形的边长都是1,A ,B ,C ,D 均落在格点上.(1)S △BDC :S △BAC =________;(2)点P 为BD 的中点,过点P 作直线l ∥BC ,分别过点B 作BM ⊥l 于点M ,过点C 作CN ⊥l 于点N ,则矩形BCNM 的面积为________.认为作业多认为作业不多合计 喜欢网络游戏18 9 27 不喜欢网络游戏8 15 23 合计262450BAGCE DF作业量多少网络游戏的喜好三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:213tan 60()12233---+-°.18.解不等式组:()+2124132x x x x -≥-⎧⎪⎨+>⎪⎩19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:直线l 及直线l 上一点A . 求作:直线AB ,使得AB ⊥l .作法:①以点A 为圆心,任意长为半径画弧,交直线l 于C ,D 两点;②分别以点C 和点D 为圆心,大于21CD 长为半径画弧, 两弧在直线l 一侧相交于点B ; ③作直线AB .所以直线AB 就是所求作的垂线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AC = ,BC = ,∴AB ⊥l ( ).(填推理的依据).20.已知关于x 的方程2220x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.22.如图,AB 是⊙O 的直径,AE 是弦,C 是AE 的中点,过点C 作⊙O 的切线交BA 的延长线于点G ,过点C 作CD ⊥AB 于点D ,交AE 于点F . (1)求证:GC ∥AE ;(2)若sin ∠EAB =53,OD AE 的长.23.如图,在平面直角坐标系xOy 中,直线l :y =x +1与y 轴交于点A ,与函数xky =(x >0)的图象交于点B (2,a ).(1)求a 、k 的值; (2)点M 是函数xky =(x >0)图象上的一点,过点M 作平行于y 轴的直线,交直线l 于点P ,过点A 作平行于x 轴的直线交直线MP 于点N ,已知点M 的横坐标为m . ①当23=m 时,求MP 的长; ②若MP ≥PN ,结合函数的图象, 直接写出m 的取值范围.24.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下. 收集数据 20名大学生对两部电影的打分结果如下:《流浪地球》 78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99 《绿皮书》 88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92 整理、描述数据 绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论),25.如图,点E 在弦AB 所对的优弧上,且»BE为半圆,C 是»BE 上一动点,连接CA ,CB , 已知AB =4cm ,设B ,C 两点间的距离为x cm ,点C 到弦AB 所在直线的距离为1y cm , A ,C 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y ,随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2)并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:①连结BE ,则BE 的长约为 cm .②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线c bx ax y ++=2过原点和点A (-2,0). (1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点B (0,23),记抛物线与直线AB 围成的封闭区域(不含边界)为W .①当=1a 时,求出区域W 内的整点个数;②若区域W 内恰有3个整点,结合函数图象,直接写出的取值范围.27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.28.对于平面直角坐标系xoy 中的点P 和图形G 上任意一点M ,给出如下定义:图形G 关于原点O 的中心对称图形为G′,点M 在G′上的对应点为M′,若∠MP M′=90°,则称 点P 为图形G ,G′的“直角点”,记作Rt(G ,P ,G′). 已知点A (-2,0),B (2,0),C (0, 32).(1) 如图1,在点P 1(1,1),P 2(0,3),P 3(0,-2)这三个点中,Rt(OA,P,OA′)是 ;(2) 如图2,⊙D 的圆心为D (1,1),半径为1,在直线b x y +=3上存在点P ,满足Rt(⊙D ,P ,⊙D′),求b 的取值范围;(3)⊙T 的半径为3,圆心(t,t 33),若⊙T 上存在点P ,满足 Rt(△ABC ,P ,△ABC′),直接写出⊙T 的横坐标的取值范围.数 学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.x ≥2 10.>11.x (y-1)212.145. 13.5 14.1 15.2175x x++= 16.5:1,152; 三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式392=-………………………………… 4分. ………………………………… 5分18.(本小题满分5分)7=-()+2124(1)13(2)2x x xx -≥-⎧⎪⎨+>⎪⎩由(1)得,x ≤2 ………………………………… 2分 由(2)得,x >-1 ………………………………… 4分∴不等式的解集为-1<x ≤2 ……………………………… 5分 19.(本小题满分5分)(1)略; ………………………………2分 (2)AD ,BD ;依据:“到线段两个端点距离相等的点在这条线段的垂直平分线上”或“三线合一”. ………………………………5分20.(本小题满分5分)解:(1)∵方程有两个不相等的实数根.∴4420m ∆=-->(). ∴ 3m <. ……………………… 2分(2)∵ 3m <且m 为正整数, ∴ 1m =或2. ……………………… 3分 当1m =时,原方程为2210x x --=.它的根不是整数,不符合题意,舍去; 当2m =时,原方程为220x x -=.∴ (2)0x x -=.∴ 120,2x x ==.符合题意. 综上所述,2m = …………………………… 5分 21.(本小题满分5分)(1)证明:∵EG 垂直平分DC ∴DE =CE ,∴EDC ECD ∠=∠. ∵CD 平分ECG ∠, ∴ECD DCG ∠=∠. ∴EDC DCG ∠=∠.∴DE ∥GC . ………………………………1分 同理DG ∥EC .∴四边形DGCE 是平行四边形. ∵DE =CE ,∴四边形DGC E 是菱形. ……………………………… 2分 (2)解:Q 四边形DGCE 是菱形, ∴DG =DE =6. ∵DG //EC ,∴030DGB ACB ∠=∠=. ……………………………… 3分 如图,过点D 作DH ⊥BG 于点H ,∴13DH DG ==. ∴HG = ……………………………… 4分 ∵45B ∠=︒,∴BH =DH =3.∴3BG =+ ……………………………… 5分22.(本小题满分5分)(1)证明:连接OC ,交AE 于H.∵C 是弧AE 的中点,∴OC ⊥AE . ............ ......1分 ∵GC 是⊙O 的切线, ∴OC ⊥GC .∴∠OHA=∠OCG =90°.∴GC ∥AE . .............. .....2分(2)解: ∵OC ⊥AE ,CD ⊥AB ,∴∠OCD =∠EAB .∴3sin sin 5OCD EAB ∠=∠=.在Rt △CDO 中,OD∴OC =∴AB =连接BE.∵AB 是⊙O 的直径,∴∠AEB =90°.在Rt △A EB 中,∵3sin 5BE EAB AB ∠==,∴BE =∴AE = ...................….........5分23.(本小题满分6分)解:(1)由题意,得A (0,1) .∵直线l 过点B (2,a ),∴3a =. .................…..........1分 ∵反比例函数(0)k y x x=>的图象经过点B (2,3),∴6k =. .................…..........2分 (2)①由题意,得335(,4),(,)222M P .∴32MP =; .................…..........4分②3062m m <≤≥或. .................…..........6分24.(本小题满分6分)……………………………4分(1)720 …………………………………5分 (2)答案不唯一,如: 喜欢《流浪地球》理由:在被调查者中,喜欢《流浪地球》的众数高于喜欢《绿皮书》的众数.喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数;为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在80分以上的只有12人 …………………………………6分流浪地球25.(本小题满分6分)解:(1)5.70. ………………………1分(2)画出2y 的图象.……………………….3分(3)①6;………………………4分 ②6,4.47.……………………….6分 26.(本小题满分6分)解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分 (2)① 不妨设点M 在点N 的左侧.∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27.(本小题满分7分)解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE .在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP+DP.……………………………………………………3分如图,作AP′⊥AP交PD延长线于P′,∴∠P AP′=90°.在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP′=∠BAP.由(1)可知∠APD=45°,∴∠P′=45°.∴AP=AP′……………………………………………………4分在△BAP和△DAP′中,BA DABAP DAP AP AP=⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP≌△DAP′(SAS)……………………………………………………5分∴BP=DP′.∴DP+BP=PP′.(31……………………………………………………7分PBAP'PBA28.(本小题满分7分)解:(1)P 1,P 3. …………………………………2分(2)当b >0时,点O 到直线的距离为时,.…………………………4分当b <0时,.∴.………6分(3).………………………7分b x y +=312+222+=b 222--=b 222222+≤≤--b 2929≤≤-t。
2020年北京中考数学模拟试卷(一)

∴CE=10,∴AE=6,∴BD=6.
22.(6分)如图,在Rt△ABE中,∠B=90°,以AB为直径的☉O交AE于点C,CE的垂直平分线FD交BE于点D,连接 CD. (1)判断CD与☉O的位置关系,并证明; (2)若AC·AE=12,求☉O的半径长.
解析 (1)答:CD与☉O相切.
证明:如图1,连接OC. ∵FD是CE的垂直平分线,
答案 A 58 000 000 000=5.8×1010.故选A.
5.若正多边形的一个外角是120°,则该正多边形的边数是 ( ) A.6 B.5 C.4 D.3
答案 D 由多边形外角和为360°,可得360°÷120°=3.故选D.
6.如果x+y=4,那么代数式
2x x2 y
2
-
2y x2 y
∴在Rt△CDB中,sin∠CBD= CD = 4 .
CB 5
∴CB= 5 .∴CE=CB+BE=11 .
2
2
∴点C的纵坐标为11 .当点C在直线AB下方时,如图,
2
同理可求得CB=
5 2
,则CE=BE-CB=
1 2
.
∴点C的纵坐标为
1 2
.综上所述,点C的纵坐标为
11 2
或
1 2
.
24.(6分)阅读下面材料: 小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
20.(5分)解方程:
x
x 1Βιβλιοθήκη -2x x21 1
=1.
解析 去分母,得x(x+1)-(2x-1)=x2-1,解得x=2. 经检验,x=2是原方程的解, ∴原方程的解为x=2.
2020年北京市中考数学预测试题(含答案)

北京市2020年中考数学模拟检测试题含答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2B.7.14×104m2C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC ∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= ,b= ,c= .12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= .13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= ,CB= ,∴PQ∥l()(填推理的依据).18.(5.00分)计算4si n45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm 0 1 2 3 4 5 6y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11 (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k 的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2B.7.14×104m2C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC >∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0 .【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= 1 ,b= 2 ,c= ﹣1 .【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= 70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB ﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计公交车用时的频数线路A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐 C (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A 线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为390 元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用为150×2+90=390元,而810>490>390,∴租3艘六人船或2艘八人船1艘两人船费用最低是390元,故答案为:390.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第 3 .【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= AP ,CB= CQ ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm 0 1 2 3 4 5 6y1/cm 5.62 4.67 3.76 3 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11 (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77 cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 B (填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;。
2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。
2020年北京市中考数学模拟试卷及答案解析

2020年北京市中考数学模拟试卷一、选择题(每题5分,共30分)1.(5分)2019年2月,美国宇航局(NASA)的卫星监测数据显示地球正在变绿,分析发现是中国和印度的行为主导了地球变绿,尽管中国和印度的土地面积加起来只占全球的9%,但过去20年间地球三分之一的新增植被两国贡献的,面积相当于一个亚马逊雨林,已知亚马逊雨林的面积为6560000m2,则过去20年间地球新增植被的面积约为()A.6.56×106m2B.6.56×107m2C.2×107m2D.2×108m22.(5分)下列运算正确的是()A.2a+3b=5ab B.a1•a4=a6C.(a2b)3=a6b3D.(a+2)2=a2+43.(5分)若﹣1<x<0,则﹣=()A.2x+1B.1C.﹣2x﹣1D.﹣2x+14.(5分)一个试验室在0:00﹣4:00的温度T(单位:℃)与时间t(单位:h)的函数关系的图象如图所示,在0:00﹣2:00保持恒温,在2:00﹣4:00匀速升温,则开始升温后试验室每小时升高的温度为()A.5℃B.10℃C.20℃D.40℃5.(5分)代数式x2﹣4x+5的最小值是()A.﹣1B.1C.2D.56.(5分)以方程组的解为坐标,点(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每题5分,共30分)7.(5分)如果二次根式有意义,那么x的取值范围是.8.(5分)分解因式:2x2﹣18=.9.(5分)当a取时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)10.(5分)一次函数y=kx+b的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是.11.(5分)如图1,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为.12.(5分)抛物线y=x2﹣6x+5的顶点坐标为.三、解答题(共40分)13.计算:()﹣2+|﹣2|﹣(3﹣π)0﹣3tan30°.14.解下列方程(组)或不等式组:(1)解方程组(2)解分式方程+1=:(3)求不等式组的整数解.15.已知x2﹣2x﹣1=0.求代数式(x﹣1)2+x(x﹣4)+(x﹣2)(x+2)的值.16.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.17.在平面直角坐标系xOy中,直线y=x+b与双曲线y=的一个交点为A(m,2),与y轴分别交于点B.(1)求m和b的值;(2)若点C在y轴上,且△ABC的面积是2,请直接写出点C的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年北京市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共16分)1.今年3月12日,支付宝蚂蚁森林宣布2019春种正式开启,称“春天,是种出来的”。
超过4亿人通过蚂蚁森林在地球上种下了超过5500万棵真树,总面积超76万亩,大约相当于7.6万个足球场.数据“5500万”用科学记数法表示为()A. B. C. D.2.下面四个图形中,可以看作是轴对称图形的是()A. B. C. D.3.若正n边形的一个外角为60°,则n的值为()A. 4B. 5C. 6D. 84.数轴上与表示-1的点距离10个单位的数是()A.10 B. ±10 C. 9 D. 9或-115.如图,∠CAB=∠DBA,AC=BD,则下列结论中,不正确的是()A. BC=ADB. CO=DOC. ∠C=∠DD.∠AOB=∠C+∠D6.如果a-b=5,那么代数式(-2)•的值是()A. -B.C. -5D. 57.给出下列命题:①若-3a>2a,则a<0;②若a<b,则a-c<b-c;③若a>b,则ac2>bc2;④若ab>c,则,其中正确命题的序号是()A. ①②B. ①③C. ③④D. ②④8.已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A. 7B. 6C. 5D. 4二、填空题(本大题共8小题,共16分)9.若分式的值为零,则x的取值为______ .10.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积:______ cm2.11.请写出三种视图都相同的两种几何体_________、_________.12.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为______13.点A(x1,y1),点B(x2,y2)是双曲线上的两点,若x1<x2<0,则y1______y2(填“=”、“>”、“<”).14.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACFE的周长是______.15.已知一组数据1、2、、3、4的平均数是3,则这组数据的方差是________。
16.在平行四边形中,对角线与相交于点.要使四边形是正方形,还需添加一组条件.下面给出了五组条件:①,且;②,且;③,且;④,且;⑤,且.其中正确的是 .(填写序号)三、解答题(本大题共12小题,共68分)17.计算:(-2)2-2sin45°+|1-|+(π-3.14)0.18.解不等式组:.19.已知关于x的方程mx2-mx+2=0有两个相等的实数根,求m的值.20.已知菱形ABCD中,点R是CD上的一个动点,过A,R的直线交BD于O,交BC的延长线于S.(1)若R为CD的中点,求证:AR=SR;(2)若AD=2,∠DCB=60°,BS=6,求AS的长.21.某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:(1)第四组的频数为______ .(2)若将得分转化为等级,规定:得分低于59.5分评为D,59.5~69.5分评为C,69.5~89.5分评为B,89.5~100.5分评为A.那么这200名参加初赛的学生中,参赛成绩评为D的学生约有______ 个.22.如图,圆O是△ABC的外接圆,AE平分∠BAC交圆O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与圆O的关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=5,DF=3,求AF的长.23.观察下面三行数:2,-4,8,-16,…①-1,2,-4,8,…②3,-3,9,-15,…③(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)每组取第6个数,计算这三个数的和.24.如图,P为⊙O的直径AB上的一个动点,点C在上,连接PC,过点A作PC的垂线交⊙O于点Q.已知AB=5cm,AC=3cm.设A、P两点间的距离为xcm,A、Q两点间的距离为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当AQ=2AP时,AP的长度均为______cm.25.在平面直角坐标系xOy中,已知一次函数y=-x+1的图象与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(-1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.26.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象的解析式为y=x2-2x-3.(1)b=____________,c=______________;(2)求原函数图象的顶点坐标:(3)求两个图象顶点之间的距离.27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=______°,∠DEC=______°;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.28.如图1,在⊙O中,E为的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=2,⊙O的半径是3.(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.2020年北京市中考数学模拟试卷参考答案1. C2. A3. C4. D5. D6. D7. A8. A9.10. 411. 球正方体12. 513. >14. 2015. 216. ①②③⑤17. 解:原式=4-2×+-1+1=4-+=4.18. 解:,解①得:x≥-2,解②得x<1.故不等式组的解集是:-2≤x<1.19. 解:∵有两个相等的实数根,∴,解得m=0或m=8,∵m=0不是一元二次方程,∴m=8.20. (1)证明:∵四边形ABCD是菱形,∴AD∥CS,∴∠ADR=∠SCR,∵R为CD的中点,∴DR=CR,在△ADR和△SCR中,,∴△ADR≌△SCR(ASA);(2)过A作AT⊥BC,与CB的延长线交于T,如图,∵四边形ABCD是菱形,∠DCB=60°,∴AB=AD=2,∠ABT=60°,∴BT=AB=1,AT=BT=,∵BS=6,∴TS=TB+BS=7,∴AS===2.21. 2;6422. 解:(1)直线l与⊙O相切.理由:如图1所示:连接OE.∵AE平分∠BAC,∴∠BAE=∠CAE.∴=,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=8.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴=,即=,解得;AE=.∴AF=AE-EF=-8=.23. 解:(1)第①行数21,-22,23,-24,…;(2)把第①行中的各数都除以-2得到第②行中的相应的数;把第①行中的各数都加上1得到第③行中的相应的数;(3)第①行的第6个数为-26,第②行的第6个数为25,第③行的第6个数为-26+1,所以-26+25-26+1=-95.24. 2.9;2.4;3.4;4.5;3.0;2.4225. 解:(1)令y=0,则x=2,令x=0,则y=1,所以,点A的坐标为(2,0),点B的坐标为(0,1);(2)如图:;(3)∵-1<3,∴y1>y2.26. 解:(1)2;0;(2)由(1)得:原函数图象的顶点坐标为:(-1,-1);(3)由y=x2-2x-3=(x-1)2-4可知平移后的顶点(1,-4),∵原函数图象的顶点坐标为:(-1,-1),∴两个图象顶点之间的距离为.27. 25;11528. (1)证明:连接OC、OE,OE交AB于H,如图1,∵E是的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:如图3,连接BC,∵E是的中点,∴=,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴∴EF•EC=BE2=22=4;(3)解:如图2,连接OA,AE,BC,OE,OE交AB于H,∵=,∴AE=BE=2设OH=x,则EH=3-x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=9,在Rt△EAH中,AH2+EH2=EA2,即AH2+(3-x)2=4,∴9-x2+(3-x)2=4,即得x=,∴HE=3-=,在Rt△OAH中,AH==,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF==,∵EF•EC=4,∴•EC=4,∴EC=2.。