模电实验报告

合集下载

元件模拟电路实验报告(3篇)

元件模拟电路实验报告(3篇)

一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。

2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。

3. 培养实验操作技能,提高分析问题、解决问题的能力。

二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。

电阻元件的伏安特性曲线为直线,其斜率即为电阻值。

2. 电容元件:电容元件的特性表现为储存电荷的能力。

电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。

3. 电感元件:电感元件的特性表现为储存磁场能量的能力。

电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。

4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。

阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。

三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。

2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。

3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。

4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。

(2)根据测量的电压和电流值,计算电路的阻抗。

大学模电实验报告

大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。

2. 掌握模拟电路的搭建和调试方法。

3. 培养实验操作能力和数据分析能力。

二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。

本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。

2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。

3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。

- 调整偏置电阻,使晶体管工作在放大区。

- 使用函数信号发生器输入正弦波信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。

- 输入不同电压信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。

- 输入不同频率的信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。

- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。

2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。

- 同相比例放大电路:输入电压为1V,输出电压为2V。

- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。

- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。

3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。

- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。

模电综合设计实训报告

模电综合设计实训报告

模电综合设计实训报告一、实验目的本次实验旨在通过模拟电路的设计和实现,加深对模拟电路原理的理解,并掌握相关的设计方法和技巧。

具体目标如下:1. 了解模拟电路的基本概念和常用器件的特性;2. 掌握模拟电路的基本设计方法和步骤;3. 进一步了解运放的工作原理和相关应用;4. 实践并巩固模拟电路的设计和调试能力。

二、实验设备本次实验所用的器件和设备有:1. 电源供应器2. 可变电阻器3. 电容器4. 电感器5. 非线性电阻器6. 示波器7. 麦克风8. 背光液晶显示器三、实验内容及步骤本实验主要分为三个部分:集成运放的基本特性测试、信号处理电路(语音放大电路)设计和实现、以及显示电路设计和实现。

1. 集成运放的基本特性测试首先进行了对集成运放的基本特性进行测试。

通过分别连接电源和示波器,验证了运放的放大倍数、输入电阻、输入偏置电流等性能参数。

实验结果表明运放的性能参数较为理想,符合设计需求。

2. 信号处理电路(语音放大电路)设计和实现在此部分,我们需要设计一个能够将麦克风输入的语音信号放大的电路。

首先进行了信号处理电路的设计,确定了运放的增益、电容和电阻等参数。

然后进行了电路的实现,连接了麦克风、运放等器件,并使用示波器对输出信号进行检测。

经过调试和优化,成功实现了对输入语音信号的放大。

3. 显示电路设计和实现最后一部分是设计一个显示电路,可以将放大后的信号通过背光液晶显示器进行显示。

我们根据液晶显示器的特性和需求,选择了适当的电阻和电容值,成功地将放大的信号传递到了显示器上,并完成了整体的电路设计。

四、实验结果与分析经过实验,我们成功地完成了模拟电路的综合设计实训任务。

基于对模拟电路原理和器件特性的理解,我们完成了集成运放的基本特性测试、语音放大电路的设计和实现,以及显示电路的设计和实现。

通过实验,我们进一步加深了对模拟电路设计方法和步骤的理解,并掌握了一些相关的设计技巧。

此外,我们还学会了使用示波器等仪器进行电路参数测量和信号观测。

模电实验报告——多级级联放大器的研究

模电实验报告——多级级联放大器的研究

实验报告 多级级联放大器的研究一、实验目的1、掌握用仿真软件研究多级负反馈放大电路;2、学习集成运算放大器的应用,掌握多级级联运放电路的工作特点;3、研究负反馈对放大电路性能影响,掌握负反馈放大器性能指标测试方法。

二、实验原理实验用电路图如下:实验原理图在电子电路中,将输出量的一部分或全部通过一定电路形式作用到输入回路,用来影响其输出量的措施称为反馈。

若反馈使得净输出量减小,称之为负反馈;反之,为征反馈。

引入交流负反馈之后,可以大大改善放大电路多方面性能:提高放大电路的稳定性、改变输入、输出阻抗、展宽通频带、减小非线性失真等。

实验电路图1由两级运放构成的反相比例运算器组成,在末级的输出端引入了反馈网络f C 、2f R 和1f R ,构成了交流电压串连负反馈。

放大器的基本参数开环参数:将反馈支路的A 点与P 点断开、与B 点连接,便可得到开环时的放大电路。

由此可测出开环时放大电路的电压放大倍数V A 、输入电阻i R 、输出电阻o R 、反馈网络的电压反馈系数V F 和通频带BW ,即1'(1)o Vii ii No o L of Vo H L V A V V R R V V V R R V V F V BW ff ⎧=⎪⎪⎪=⎪-⎪⎪⎪=-⎨⎪⎪⎪=⎪⎪=-⎪⎪⎩式中,N V 为N 点对地的交流电压;'o V 为负载开路时的输出电压;f V 为P 点对地的交流电压;H L f f 和分别为放大器的上下限频率。

闭环参数:通过开环时放大电路的电压放大系数V A 、输入电阻、输出电阻、反馈网络的电压反馈系数和上下限频率,可以计算求得多级级联负反馈放大电路的闭环电压放大倍数、输入电阻、输出电阻和通频带的理论值。

测量负反馈电路的闭环特性时,应将负反馈电路的A 点与B 点断开、与P 点相连以构成反馈网络。

此时需适当增大输入信号,使输出电压达到开环时的测量值,然后分别测出各量值的大小并与理论值比较找出误差的原因。

模拟电路实训报告

模拟电路实训报告

模拟电路实训报告实验一常用电子仪器的使用一、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。

2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。

二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。

它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。

接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。

信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。

现着重指出下列几点:1)、寻找扫描光迹将示波器y轴显示方式置“y1”或“y2”,输入耦合方式置“gnd”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。

②触发方式开关置“自动”。

③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。

(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。

)2)、双踪示波器一般有五种显示方式,即“y1”、“y2”、“y1+y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。

“交替”显示一般适宜于输入信号频率较高时使用。

“断续”显示一般适宜于输入信号频率较底时使用。

3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的y通道。

4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。

模电实验实训结果分析报告

模电实验实训结果分析报告

一、实验目的本次模电实验实训旨在通过实际操作和理论分析,加深对模拟电子技术基本原理的理解,提高电路分析和设计能力。

通过实验,学生能够熟练掌握基本模拟电路的设计、搭建、测试和分析方法,为后续的专业学习和实践打下坚实基础。

二、实验内容本次实训主要包含以下几个实验:1. 晶体二极管伏安特性实验2. 晶体三极管共射极放大电路实验3. 集成运算放大器基本应用实验4. 滤波电路实验5. 电源电路实验三、实验结果以下是对各个实验结果的分析:1. 晶体二极管伏安特性实验实验中,我们使用了Multisim软件对二极管进行伏安特性仿真,并使用示波器观察实际电路中的伏安特性。

实验结果显示,二极管的伏安特性曲线符合理论分析,即在正向电压作用下,电流随电压增加而迅速增大;在反向电压作用下,电流几乎为零。

通过实验,我们验证了二极管单向导通的特性。

2. 晶体三极管共射极放大电路实验在共射极放大电路实验中,我们搭建了基本放大电路,并使用示波器观察输入信号和输出信号的变化。

实验结果显示,放大电路能够将输入信号放大,且放大倍数与电路参数相关。

通过调整电路参数,我们可以实现不同的放大倍数和带宽。

实验过程中,我们还分析了电路的输入阻抗、输出阻抗和增益带宽等特性。

3. 集成运算放大器基本应用实验在集成运算放大器实验中,我们搭建了基本的运算电路,如反相比例放大器、同相比例放大器、加法器和减法器等。

实验结果显示,这些运算电路能够实现相应的数学运算,且运算精度较高。

通过实验,我们掌握了集成运算放大器的基本应用方法。

4. 滤波电路实验滤波电路实验中,我们搭建了低通滤波器和高通滤波器,并使用示波器观察滤波效果。

实验结果显示,滤波电路能够有效滤除高频或低频信号,实现对信号的分离。

通过调整电路参数,我们可以实现不同的滤波效果。

5. 电源电路实验电源电路实验中,我们搭建了简单稳压电路和开关稳压电路,并使用示波器观察输出电压的稳定性。

实验结果显示,稳压电路能够有效稳定输出电压,使其不受输入电压波动的影响。

模拟电子技术实验报告

模拟电子技术实验报告

一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。

二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。

三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。

2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。

3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。

4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。

四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。

2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。

2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。

模电的实验报告

模电的实验报告

模电的实验报告模电的实验报告模电这门课程,它是一门综合应用相关课程的知识和内容来解决书本上定理的课程以及锻炼学生们的动手操作能力。

下面是模电的实验报告,欢迎阅读!模电的实验报告1在本学期的模电实验中一共学习并实践了六个实验项目,分别是:①器件特性仿真;②共射电路仿真;③常用仪器与元件;④三极管共射级放大电路;⑤基本运算电路;⑥音频功率放大电路。

实验中,我学到了PISPICE等仿真软件的使用与应用,示波器、信号发生器、毫伏表等仪器的使用方法,也见到了理论课上学过的三极管、运放等元件的实际模样,结合不同的电路图进行了实验。

当学过的理论知识付诸实践的时候,对理论本身会有更具体的了解,各种实验方法也为日后更复杂的实验打下了良好的基础。

几次的实验让我发现,预习实验担当了不可或缺的作用,一旦对整个实验有了概括的了解,对理论也有了掌握,那实验做起来就会轻车熟路,而如果没有做好预习工作,对该次实验的内容没有进行详细的了解,就会在那里问东问西不知所措,以致效率较低,完成的时间较晚。

由于我个人对模电理论的不甚了解,所以在实验原理方面理解起来可能会比较吃力,但半学期下来发现理论知识并没有占过多的比例,而主要是实验方法与解决问题的方法。

比如实验前先要检查仪器和各元件(尤其如二极管等已损坏元件)是否损坏;各仪器的地线要注意接好;若稳压源的电流示数过大,证明电路存在问题,要及时切断电路以免元件的损坏,再调试电路;使用示波器前先检查仪器是否故障,一台有问题的示波器会给实验带来很多麻烦。

做音频放大实验时,焊接电路板是我新接触的一个实验项目,虽然第一次焊的不是很好,也出现了虚焊的情况,但技术都是在实践中成熟,相信下次会做的更好些。

而这种与实际相结合的`电路,在最后试听的环节中,也给我一种成就感,想来我们的实验并非只为证实理论,也可以在实际应用上小试身手。

对模电实验的建议:①老师在讲课过程中的实物演示部分,可以用幻灯片播放拍摄的操作短片,或是在大屏幕上放出实物照片进行讲解,因为用第一排的仪器或元件直接讲解的话看的不是很清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术基础实验报告
姓名:蒋钊哲
学号:2014300446
日期:2015、12、21
实验1:单极共射放大器
实验目的:
对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。

实验原理:
静态工作点的测量就是指在接通电源电压后放大器输入端不加信号(通过隔直电容
将输入端接地)时,测量晶体管集电极电流I
CQ 与管压降V
CEQ。

其中集电极电流有两种测量
方法。

直接法:将万用表传到集电极回路中。

间接法:用万用表先测出R
C 两端的电压,再求出R
C
两端的压降,根据已知的R
E
的阻值,计
算I
CQ。

输出波底失真为饱与失真,输出波顶失真为截止失真。

电压放大倍数即输出电压与输入电压之比。

输入电阻就是从输入端瞧进去的等效电阻,输入电阻一般用间接法进行测量。

输出电阻就是从输出端瞧进去的等效电阻,输出电阻也用间接法进行测量。

实验电路:
实验仪器:
(1)双路直流稳压电源一台。

(2)函数信号发生器一台。

(3)示波器一台。

(4)毫伏表一台。

(5)万用表一台。

(6)三极管一个。

(7)电阻各种组织若干。

(8)电解电容10uF两个,100uF一个。

(9)模拟电路试验箱一个。

实验结果:
经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频
实验目的:
测量放大电路的频率特性。

实验原理:
放大器的实际信号就是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。

但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容与晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。

放大器的幅频特性就是指放大器的电压放大倍数与输入信号的频率之间的关系。

在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。

在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0、707倍时,对应的低频与高频频率分别对应下限频率与上限频率。

通频带为: f BW=f H-f L
实验电路:
实验结果:
理论估算值实际计算值参考f L f H f L f H R
L
=2k欧17、98H Z53、13MH Z17、88H Z53、09MH Z
BW=A
V
(f h-f l)=4、5*107
实验3:反向加法器
实验目的:
(1)加深对集成运算放大器的基本应用电路与性能参数的理解
(2)掌握反向比例电路,反向加法电路。

(3)设计电路满足:V
O =-(3V
1
+2V
2
)。

实验原理:
集成运算放大器就是一种具有高放大倍数,高输入阻抗,低输出阻抗的多级直接耦合集成电路,可以在很宽的信号的频率范围内对信号进行运算、处理。

引入负反馈,形成特定的功能电路。

实验仪器:
(1)双路直流稳压电源一台。

(2)函数信号发生器一台。

(3)示波器一台。

(4)毫伏级电压表一台。

(5)万用表一块。

(6)集成运算放大器一片。

(7)电阻若干。

(8)电容0、01Uf两个、
(9)模拟电路实验箱一台。

实验电路:
实验结果:
由实验结果可知,V
O 的数值在误差允许范围内,基本上等于-(3V
1
+2V
2
),即反向比例
加法器。

实验四:多级负反馈放大电路
实验目的:
(1):学会用Multisim仿真研究多级负反馈放大电路
(2):学习集成运算放大器的应用,掌握多级运放电路的工作特点
(3):研究负反馈对放大器性能的影响,掌握了负反馈放大电路性能指标的测试方法
(4):测试开闭环的电压放大倍数,输入输出电阻,反馈网络的电压反馈系数与通频带
(5):比较放大器的放大倍数,输入输出电阻,反馈网络在开闭环时的差别
(6):观察负反馈对非线性失真的改善作用
实验仪表及元器件:
双路直流稳压电源一台
示波器一台
毫伏级电压表一台
万用表一台
集成运算放大器两片
电阻若干
电解电容三个
模拟电路实验箱一台
实验电路:
实验结果:
1:开闭环波特图对比及分析
开环:
闭环:
相比较来瞧,闭环波特图中的带宽更宽,但增益却有所降低,所以通过引入负反馈我盟改善了放大器的带宽却同时也降低了放大器的增益,但增益带宽积不变。

2:
开环v
i v
o
A 反馈深度
=1+AF
9、727mV 1、962V 201
闭环v
if V
of
A
f
9、776mV 515、647mV 52
v ip /mV v
Np
/mV V
fp
/mV V
op
/mV v
Lp
/mV A
V
/A
V
f
R
i
/R
if
R
o
/R
of
F
V
开环测试9、789 0、174 0 1962 1673 3、86 0、28 3、5 0
理论计算10 0、18 6、7 520 500 3、68 0、277 3、613 0、012 闭环测试9、788 6、58 6、58 515、6 486、5 3、86 0、28 3、5 0、012
在如图本实验中,引入的反馈为电压串联负反馈,放大倍数会有所降低,除此以外,输入电阻提高,输出电阻降低,通频带得到展宽,均为有利改变。

5:负反馈对失真的影响与改善作用
开环输出波形:
闭环输出波形:
实验五:RC正弦波振荡电路
实验目的:
(1):连接正弦波振荡电路,观察电路特点
(2):调节电阻,使波形从无到有直至失真,绘制输出波形,记录临界起振、正弦波输出及

出现失真情况下的R
P
(3):调节可变电阻,分别测量以上三种情况下,输出电压与反馈电压的值,分析负反馈强弱对起振条件及输出波形的影响
(4):学习运算放大器在对信号处理、变换与产生等方面的应用
(5):学习用集成运算放大器组成波形发生器的工作原理
实验仪表及元器件:
双路直流稳压电源一台
函数信号发生器一台
示波器一台
万用表一块
集成运算放大器两片
电阻若干
电容若干
二极管两个
模拟电路实验箱一个
实验电路:
实验结果:
起振振幅最大且不失真临界失真
可变电阻R
P
/kΩ6、6 9、4 9、5
反馈电压v
ip
/mV 4、1 2、586 2、678
输出电压v
op
/mV 124 7、759 8、105
理论值实测值
输出电压v
op /V 频率f/Hz 输出电压v
op
/V 频率f/Hz
C 1=C
2
=0、01uF 7、77 1、6k 7、759 1、577k
C 1=C
2
=0、02uF 7、77 800 7、764 792
实验六:有源滤波器
实验目的:
(1):学习运算放大器在对信号处理,变换与产生等方面的应用
(2):学习用运算放大器组成波形发生器的工作原理
(3):熟悉RC有源滤波器的设计方法
(4):观察研究四种有源滤波器的波特图
实验仪器及元件:
双路直流稳压电源一台
函数信号发生器一台
示波器一台
万用表一块
集成运算放大器两片
电阻若干
电容若干
二极管两个
模拟电路实验箱一个
实验电路:
二阶带通:
二阶带阻:
二阶低通:
二阶高通:
实验结果: 二阶带通:
二阶带阻:
二阶低通:
二阶高通:
温度控制电路设计
实验目的:
(1) 了解传感器的基本知识,掌握温度传感器的基本用法。

(2) 了解有关控制的基本知识。

(3) 掌握根据温度传感器来设计控制电路的基本思路。

、 实验原理:
温度传感器将温度信号转化为电信号,经过信号处理电路对其进行处理,最后通过报警控制电路来控制发光二极管。

本实验采用直流电源来代替温度传感器,直流电源的温度变化与温度传感器相同,即10mV/℃,温度为0℃时电压为0V 。

实验电路要求:
(1) 放大器的输出电压不超过5V 。

(2) 上限
温度30℃,下限温度23 (3) 超过30℃亮
红灯,低于23℃亮蓝灯。

实验电路:
环境温
度 温




信号处理 报警控制
测试温度/℃实测温度/℃输入电压/mV 输出电压/mV 二极管17至20 18 180m 1768 蓝灯亮
25至27 26 260m 2537 不亮
55至80 70 700m 6920 红灯亮18
26℃时:
70℃时:
完毕
姓名:蒋钊哲
学号:2014300446
日期:2015、12、21。

相关文档
最新文档