《平行线》练习题

合集下载

(完整版)小学四年级数学平行线的认识练习题

(完整版)小学四年级数学平行线的认识练习题

(完整版)小学四年级数学平行线的认识练习题一、判断题1. 平行线是指在同一个平面内永远不相交的两条直线。

()2. 如果两条直线相交成一个角,那么这两条直线一定不平行。

()3. 只有平行线才能构成平行四边形。

()4. 平行线之间的夹角是180度。

()5. 两条平行线之间的距离在任何地方都是相同的。

()二、选择题1. 下列图形中,能构成平行线的是()A. B. C. D.2. 下列直线中,与直线L平行的是()A. B. C. D.3. 以下哪个是平行四边形?()A. B. C. D.4. 平行线之间的夹角是()A. 90度B. 120度C. 180度D. 360度三、填空题1. 两条直线在平面上不相交,我们可以说这两条直线是()。

2. 在平行四边形中,对角线之间的夹角度数是()。

3. 在下图中,直线a与直线b是()。

四、解答题1. 请你举出一个例子,说明两条直线相交成一个角,那么这两条直线一定不平行。

2. 如果两条直线平行,那么它们之间的夹角应该是多少度?3. 画出一个平行四边形,并标明其对角线。

答案:判断题:1. √2. ×3. √4. √5. √选择题:1. C2. B3. A4. C填空题:1. 平行线2. 180度3. 平行解答题:1. 举例:直线AB与直线CD相交成角ACD,但直线AB与直线CD不平行。

2. 180度。

3. (示意图,标注对角线的线段)。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

平行线判定大题30道

平行线判定大题30道

平行线判定大题1. 什么是平行线?平行线是在同一个平面上,永远不会相交的直线。

如果两条直线在平面上没有任何交点,那么它们就是平行线。

2. 平行线的判定方法判定两条直线是否平行有多种方法,下面介绍常用的几种方法:2.1 利用角度关系判定如果两条直线的斜率相等,并且它们不重合,则这两条直线是平行的。

步骤:1.计算两条直线的斜率。

2.如果斜率相等,则这两条直线是平行的;否则,它们不是平行的。

2.2 利用向量关系判定如果两条直线上的向量方向相同,则这两条直线是平行的。

步骤:1.将两条直线表示为一般式方程。

2.提取出方程中的系数作为向量。

3.如果两个向量方向相同或反向,则这两条直线是平行的;否则,它们不是平行的。

2.3 利用距离关系判定如果一条直线与另一条直线上任意一点之间的距离都相等,则这两条直线是平行的。

步骤:1.计算两条直线上任意一点到另一条直线的距离。

2.如果距离相等,则这两条直线是平行的;否则,它们不是平行的。

3. 平行线判定大题练习下面是30道平行线判定大题,供你练习和巩固所学知识。

1.判断直线y = 2x + 3和y = -3x + 5是否平行。

2.判断直线3x - 4y = 6和6x - 8y = 12是否平行。

3.判断直线2x + y - 3 = 0和4x + 2y - 6 = 0是否平行。

4.判断直线2x - y + 1 = 0和4x - 2y + 2 = 0是否平行。

5.判断直线y = x + 1和y = x - 1是否平行。

6.判断直线2x + y + 5 = 0和4x + y + k = 0是否平行,k为常数。

7.判断直线3x - ky - k^2 = k和6x - ky - k^2 = k是否平行,k为常数。

8.判断过点A(1,2)且斜率为-3的直线和过点B(5,8)且斜率为-3的直线是否平行。

9.判断过点A(2,3)且斜率为2的直线和过点B(4,7)且斜率为-0.5的直线是否平行。

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案
一、我会填。

1、在同一个平面内不相交的两条直线的位置关系是( )。

2、长方形的每组对边互相( ),每组邻边互相( )。

3、教室中黑板的长边和短边互相( )。

4、数学书中的两条长边互相( )。

5、五线谱的五条横线互相( )。

二、判断。

1、 不相交的两条直线叫做平行线。

( )
2、长方形相对的两条边是一组平行线。

( )
3、
中两条线没有相交,就可以看作一组平行线。



4、互相平行的两条直线,无论怎样延长都不会相交。

( ) 三、是平行线的在( )里画“√”。

( ) ( ) ( ) ( ) ( ) ( )
四、
互相平行的有:( ) 互相垂直的有:( )
b c d e f g a
答案:
一、1、平行2、平行垂直3、垂直4、平行5、平行
二、 1.× 2. √ 3. √
三、
四、 d 和e c和f c和a f和a。

数的平行线与垂直线练习题

数的平行线与垂直线练习题

数的平行线与垂直线练习题题目一:平行线1. 请判断以下直线是否平行:a) AB与CDb) EF与GHc) IJ与KL2. 已知折线ABCDEF,其中AB∥CD,EF∥GH,请判断以下直线是否平行:a) AD与GHb) EF与KJc) BC与DE3. 在平面直角坐标系中,已知直线y=2x+3和y=-3x+5,请判断它们是否平行。

4. 已知线段AB和线段CD,其中AB∥CD。

若线段EF∥AB且EF 与CD相交于点G,请问线段EF与CD是否平行。

题目二:垂直线1. 请判断以下直线是否垂直:a) AB与CDb) EF与GHc) IJ与KL2. 已知线段AC和线段BD,其中AC⊥BD。

若线段EF⊥AC且EF与AB相交于点G,请问线段EF与AB是否垂直。

3. 在平面直角坐标系中,已知直线y=2x+3和y=-1/2x+2,请判断它们是否垂直。

4. 已知线段AB和线段CD,其中AB⊥CD。

若线段EF⊥AB且EF与CD相交于点G,请问线段EF与CD是否垂直。

题目三:平行线和垂直线的综合运用1. 在直角坐标系中,已知点A(-1, 2),B(3, 5),C(6, 7),D(3, 1),请判断线段AB和线段CD是否平行,线段AB是否垂直于线段CD。

2. 在平面直角坐标系中,已知直线y=-2x+3,点E(-4, -5)和点F(1, 1),请判断直线EF与直线y=-2x+3是否平行,直线EF是否垂直于直线y=-2x+3。

3. 在平面直角坐标系中,已知点A(2, 4),B(5, 6),C(7, 8),D(4, 2),请判断线段AB和线段CD是否平行,线段AB是否垂直于线段CD。

4. 在直角坐标系中,已知直线y=x+1与直线y=-x+1,请判断这两条直线是否平行,是否垂直。

注意:题目中的直线均指直线段,平行线指两条直线段在同一平面内没有交点,垂直线指两条直线段的斜率乘积为-1。

平行线判定大题30道

平行线判定大题30道

平行线判定大题30道摘要:一、引言1.问题背景及重要性2.文章目的与结构二、平行线判定方法1.同位角相等2.内错角相等3.同侧角相等4.两直线平行,同位角相等5.两直线平行,内错角相等6.两直线平行,同侧角相等三、平行线判定大题解析1.例题1:同位角相等判定2.例题2:内错角相等判定3.例题3:同侧角相等判定4.例题4:两直线平行,同位角相等判定5.例题5:两直线平行,内错角相等判定6.例题6:两直线平行,同侧角相等判定四、平行线判定大题练习1.练习1:同位角相等判定2.练习2:内错角相等判定3.练习3:同侧角相等判定4.练习4:两直线平行,同位角相等判定5.练习5:两直线平行,内错角相等判定6.练习6:两直线平行,同侧角相等判定五、总结与展望1.平行线判定方法总结2.平行线判定大题技巧概述3.后续学习建议正文:一、引言1.问题背景及重要性在初中数学几何部分,平行线的判定与性质是重点内容。

掌握平行线的判定方法,对于解决各类几何问题具有重要意义。

本文将为大家详细解析平行线判定大题30道,帮助大家更好地理解和应用平行线判定方法。

2.文章目的与结构本文旨在通过解析平行线判定大题,使大家对平行线的判定方法有更深刻的理解。

文章共分为五个部分,分别为:引言、平行线判定方法、平行线判定大题解析、平行线判定大题练习和总结与展望。

二、平行线判定方法1.同位角相等若两条直线被第三条直线所截,且有同位角相等,则这两条直线平行。

2.内错角相等若两条直线被第三条直线所截,且有内错角相等,则这两条直线平行。

3.同侧角相等若两条直线被第三条直线所截,且有同侧角相等,则这两条直线平行。

4.两直线平行,同位角相等若两条直线平行,则它们被第三条直线所截时的同位角相等。

5.两直线平行,内错角相等若两条直线平行,则它们被第三条直线所截时的内错角相等。

6.两直线平行,同侧角相等若两条直线平行,则它们被第三条直线所截时的同侧角相等。

三、平行线判定大题解析1.例题1:同位角相等判定已知直线AB与CD被直线EF所截,若∠AEF = ∠CED,证明AB平行于CD。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

平行线的判定与性质练习题

平行线的判定与性质练习题

平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。

从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。

在几何学中,我们需要学会判定平行线,并掌握它们的性质。

下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。

练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。

A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。

A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。

A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。

2. 若两条平行线被一条横线所截,那么对应的外角相等。

3. 若两条直线分别与一条平行线相交,那么对应的内角相等。

4. 若两条直线分别与一条平行线相交,那么同旁内角互补。

练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。

2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。

3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。

4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。

通过以上练习题,我们可以加深对平行线的判定与性质的理解。

判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。

而平行线的性质则是通过观察线段之间的关系得出的。

掌握这些性质可以帮助我们解决更复杂的几何问题。

在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:略
知识点2:平行线的基本事实及推论
7.过一点画已知直线的平行线,则( D ) A.有且只有一条 B.可能有两条
C.不存在 D.不存在或只有一条
8.若直线a∥b,b∥c,则a∥c的依据是( D ) A.平行线的基本事实
B.等量代换
C.等式的性质 D.平行于同一条直线的两条直线平行
9 . 如图 , PC∥AB , QC∥AB , 则点 P , C , Q 在一条直线上.理由是
经过直线外一点,有且只有一条直线与这条直线平行 _______________________________________________________ .
10.如图,P,Q分别是直线EF外两点,画图并回答问题:
(1)过点P画直线AB∥EF,过点Q画直线CD∥EF; (2)AB与CD有怎样的位置关系?为什么?
是__________ 平行 ,其理由是
如果两条直线都与第三条直线平行,那么这两条直线也互相平行 . __________________________________________________________
13.观察如图所示的正方体,用符号表示下列两棱的位置关系:
AA1____AB ;BB1____DD ⊥ ∥ 1;
解:(1)画图略 (2)∠CPD=60°或120°,它与∠AOB相等或互补
17.在同一平面内,三条直线有多少个交点?
甲:在同一平面内,三条直线有0个交点,因为a∥b∥c,如图①; 乙:在同一平面内,三条直线只有1个交点,因为a,b,c交于同一点,
如图②.
以上说法谁对谁错?为什么?
解:都不对,因为除了甲、乙两种说法外,在同一平面内,三条直线交 点的个数还有两种情况,即有 2 个交点或 3 个交点,如图:
行. 易错提示:
在同一平面内,不重合的两条直线只有两种位置关系,其中“在同一
平面内”这一条件不能少.
解:其理由是:如果两条直线都与第三条直线平行,那么这两条直线 也互相平行;这样的直线只能作1条,因为经过直线外一点,有且只有 一条直线与这条直线平行
15 . 如图 ,将一张长方形硬纸片对折 , MN 是折痕 ,把面 ABNM 平放 在桌面上,另一个面 CDMN 任意改变位置 ,试探索AB与 CD的位置关 系,并说明理由.
解:(1)图略 (2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以 AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也
互相平行)
11.如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少 有( B ) A.4条 B.3条 C.2条 D.1条
12.如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的位置关系
AB∥CD 行于CD,可表示为_____________ .
3.(思考变式)在同一平面内,直线a与b满足下列条件,写出其对应的位 置关系: (1)a与b没有公共点,则a与b___________ ; 平行 (2)a与b有且只有一个公共点,则a与b_________ 相交 ; 重合 (3)a与b有两个公共点,则a与b___________ . 4.在同一平面内,不重合的两条直线的位置关系可能是( C ) A.平行 B.垂直或平行 C.相交或平行 D.相交或垂直
5.下列说法正确的是( C ) A.同一平面内没有公共点的两条线段平行
B.两条不相交的直线是平行线
C.同一平面内没有公共点的两条直线平行 D.同一平面内没有公共点的两条射线平行
6.(习题9变式)如图,完成下列各题: (1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过点C画 直线垂直于CD; (2)用符号表示上面①,②中的平行、垂直关系.
A1C1____AC ;AD1____BC ∥ ∥ 1; CC1____A ⊥ 1D1. ⊥ 1C1;B1C1____C
14.( 思考变式 )如图,直线AB,CD 是一条河的两岸,并且AB∥CD ,
点E为直线AB,CD外一点,若要过点E作河岸CD的平行线,则只需
过点E作河岸AB的平行线即可,其理由是什么?这样的直线能作多少 条?为什么?
第五章
相交线与平行线
5.2 平行线及其判定
5.2.1 平行线
知识点1:平行线 1.下列生活实例: ①交通路口的斑马线 ;②天上的彩虹;③百米跑 ①③④ . 道线;④一段平直的火车铁轨线.其中属于平行线的有________
不相交 2.在同一平面内,____________ 的两条直线叫做平行线.如图,AB平
,所以在同一平面内,三条直线有 0 个或 1 个或 2 个或 3 个交点
方法技能: 1.在同一平面内,不相交的两条直线互相平行.
2 .在同一平面内 ,不重合的两条直线只有两种位置关系 :相交和平
行. 3.经过直线外一点,有且只有一条直线与这条直线平行.
4 . 如果两条直线都与第三条直线平行 , 那么这两条直线也互相平
解:因为MN为长方形纸片对折折痕,所以MN∥AB,MN∥CD,所以
AB∥CD,理由:如果两条直线都与第三条直线平行,那么这两条直 Nhomakorabea线也互相平行
16.(练习变式)如图,在∠AOB的内部有一点P,∠AOB=60°. (1)过点P作PC∥OA,PD∥OB; (2)量出∠CPD的度数,说出它与∠AOB的关系.
相关文档
最新文档