数学平行线PPT课件
合集下载
平行线(课件)(共23张PPT)四年级上册数学冀教版

画两条直线,即一组平行线。 两条直线,即一组平行线。
①固定三角板,沿着一 条直角边画出一条直 线。
②用直尺紧靠三角板的另 一条直角边,固定直尺,向 下平移三角坂。
③沿着三角板最初画 直线的那条直角边画 出另一条直线。
利用直尺和三角板画平行线时,直尺和三角板让须紧靠,才能保证作图的准确性。
你能根据“两条平行线之间所有垂直线段的长度都相等” 这一性质,说明长方形、正方形的对边分别平行吗?
1.从课后习题中选取; 2.完成练习册本课时的习题。
a
h1=
h2=
h1 h2 h3 h4 h5 h6
h3=
h4=
b
h5=
h6=
两条平行线之间,所有垂直线段的长度都相等。
你能画出一组平行线吗?小组交流讨论一下, 看看你们一共能想出多少种方法。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
沿方格纸的横向(或竖向)
沿直尺的上下两条-边画
②
③ ④ ⑤⑥ ⑦
②与⑤互相平行;③与④互相平行;⑥与⑦互相平行 ①与②互相垂直;②与⑤互相垂直
5. 工人师傅在施工时,经常用铅锤来观测建筑物
是否和地面垂直。
【选自教材P84页 问题讨论】
活 学 活 用
5. 工人师傅在施工时,经常用铅锤来观测建筑物
是否和地面垂直。
【选自教材P84页 问题讨论】
活 学 活 用
平行线
冀教版四年级上册
动手小能手
自己动手试一试吧,与同桌交流一下你是怎样做的?
40cm
40cm
(1)根据画框上的吊 扣,先确定在墙上钉钉 子的位置。 (2)调整画框,使两 个吊扣的位置距离房顶 一样高,做好标记。 (3)在标记位置钉好 钉子后,把风景画挂上, 这样才能把风景画挂得 端正、美观。
人教版七年级数学下册《平行线的判定》课件ppt

思考:根据平行线的定义,如果同一平面内的两条直线不相交,就可以判断 这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所 以难以直接根据两条直线是否相交来判定是否平行,那么有没有其他判定方 法呢?
1.放 2.靠 3.推
4.画
平行线画法
E C
A
D B
F
思考 (1)画图过程中,什么角始终保持相等? (2)直线a,b位置关系如何?
图1
2.如图2
∵∠B=∠_C__G__F__,∴ AB∥ CD(同位角相等,两直线平行.)
∵∠BGC=∠__F_____,∴ CD∥ EF(同位角相等,两直线平行.)
∵AB∥ CD ,CD∥ EF,
∴ AB∥___E__F__(如果两条直线都与第三条直线平行,那么这 )
图2
两条直线也互相平行.
3.下图中若∠1=55° ,∠2=55°,直线AB、CD平行吗?为什么?
也互相平行.)
已知∠3=45 °,∠1与∠2互余,试说明 AB//CD ?
解:∵∠1=∠2(对顶角相等)
A C
∠1+∠2=90°(已知Байду номын сангаас ∴∠1=∠2=45°
3
1
2
∵ ∠3=45°(已知) ∴∠ 2=∠3
B
D
∴ AB∥CD(内错角相等,两直线平行)
做一做
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
c
a 3 2
1 b
3.如图.(1)从∠1=∠4,可以推出 AB ∥ CD ,理由是内错角相等,两直线平行 . (2)从∠ABC +∠BCD =180°,可以推出AB∥CD ,理由是同旁内角互补,两直线平行. (3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是 内错角相等,两直线平行 . (4)从∠5=∠ ABC ,可以推出AB∥CD,理由是 同位角相等,两直线平行 .
7.3 平行线的判定课件(30张PPT)北师大版八年级数学上册

(4) 从∠5 =∠ ABC ,可以推出 AB∥CD, 理由是 同位角相等,两直线平行 .
A
D
3
1
4
2
5
B
C
5. 如图,已知∠1 =∠3,AC 平分∠DAB,你能判定
哪两条直线平行?请说明理由.
解:AB∥CD. 理由如下:
D
∵ AC 平分∠DAB (已知),
C 3
∴∠1 =∠2 (角平分线的定义).
A
2 54 DB
∴ __C_E__∥__A_B__ (同旁内角互补,两直线平行).
④ ∵∠4 +_∠__3__= 180°(已知),
∴ AB∥CE (同旁内角互补,两直线平行).
例2 如图,已知∠MCA =∠A,∠DEC =∠B,那么 M
DE∥MN 吗?为什么?
AD C
解:∵∠MCA =∠A(已知),
2. 如图所示,∠1 = 75°,要使 a∥b,则∠2 等于
( C) A. 75° B. 95°
1
a
C. 105° D. 115°
2
b
【解析】∠1 的同位角与∠2 互为补角,所以∠2 =
180° - 75° = 105°.
3. 如图,已知∠1 = 30°,若∠2 或∠3 满足条件 _∠__2_=__1_5_0_°_或__∠__3__=__3_0_°,则 a∥b.
想一想
我们可以用下图的方法作出平行线,你能说说其 中的道理吗?
典例精析 例1 根据条件完成填空.
① ∵∠2 =∠6(已知),
E
∴ _A_B_∥_C_D_ (同位角相等,两直线平行).
21
② ∵∠3 =∠5(已知),
A 34 B
数学七年级人教版 5.3.1 平行线的性质 课件(共16张PPT)

如图:已知a//b, 那么2与 3有什么关系呢?
c
a
2
3
b
1
平行线的性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质 (1)两条平行线被第三条直线所截,同位角相等; (2)两条平行线被第三条直线所截,内错角相等; (3)两条平行线被第三条直线所截,同旁内角互补。
平行线的性质
:
讲
授 者
路 井
朱
镇
王 杰
中 学
问题1:判定两条直线平行,我们学过 的方法有哪几种?
方法1:同位角相等,两直线平行.
方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.
问题2:根据同位角相等可以判定两 直线平行,反过来如果两直线平行同 位角之间有什么关系呢?内错角,同 旁内角之间又有什么关系呢?
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月2021/8/112021/8/112021/8/118/11/2021
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021/8/112021/8/11August 11, 2021
得到
判定
得到
两直线平行
性质 已知
小结
平行线的性质
图形
同 位
a
角b
1 2 c
内 错
a3
角b
2
c
同 旁
a
内
42
角b
c
北师大版数学八年级上册平行线的性质课件

线平行,同旁内角互补;②同位角相等,两直线
平行;③内错角相等,两直线平行;④两直线平行,同
位角相等.
其中是平行线特征的是( D )
A. ①
B. ②③
C. ④
D. ①④
2.如图所示,A,C两地之间要修一条公路,在A地测得公路的
走向为北偏东50°,如果A,C两地同时开工,那么在C地应按
B
M D
F
例2.如图,AB∥DE,已知∠B=40°,∠BCD=20°,则 ∠D=__2_0_°_.
解析:过点C作GH∥AB.
GH//AB, AB//DE GH∥DE
∠B=∠BCH ∠B=40°
∠BCH=40° ∠BCD=20°
∠D=∠DCH ∠DCH=20°
∠D=20°
例3.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.
来证明这个定理吗?
已知:如图,直线l1 //l2,∠1和∠2是直线l1,l2被直线l截出
的内错角. 求证:∠1=∠2.
l
1
l1
证明:∵ l1//l2(已知),
2
3
l2
∴∠1=∠3(两直线平行,同位角相等).
又∵∠2=∠3(对顶角相等),
∴∠1=∠2(等量代换).
定理 两条平行直线被第三条直线所截,同旁内角互补. 简述为:两直线平行,同旁内角互补.
解:∵∠1=∠2 (已知) , ∴AB∥CD (内错角相等,两直线平行). ∵∠3+∠4=180° (已知), ∴CD∥EF (同旁内角互补,两直线平行). ∴AB∥EF.
课堂小结
平行线的判定与性质的区分 1.平行线的判定是根据两角的数量关系得到两条直线 的位置关系,而平行线的性质是由两条直线的位置关 系得到两角的数量关系. 2.平行线的判定的条件是平行线的性质的结论, 而平行线的判定的结论是平行线的性质的条件.
平行;③内错角相等,两直线平行;④两直线平行,同
位角相等.
其中是平行线特征的是( D )
A. ①
B. ②③
C. ④
D. ①④
2.如图所示,A,C两地之间要修一条公路,在A地测得公路的
走向为北偏东50°,如果A,C两地同时开工,那么在C地应按
B
M D
F
例2.如图,AB∥DE,已知∠B=40°,∠BCD=20°,则 ∠D=__2_0_°_.
解析:过点C作GH∥AB.
GH//AB, AB//DE GH∥DE
∠B=∠BCH ∠B=40°
∠BCH=40° ∠BCD=20°
∠D=∠DCH ∠DCH=20°
∠D=20°
例3.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.
来证明这个定理吗?
已知:如图,直线l1 //l2,∠1和∠2是直线l1,l2被直线l截出
的内错角. 求证:∠1=∠2.
l
1
l1
证明:∵ l1//l2(已知),
2
3
l2
∴∠1=∠3(两直线平行,同位角相等).
又∵∠2=∠3(对顶角相等),
∴∠1=∠2(等量代换).
定理 两条平行直线被第三条直线所截,同旁内角互补. 简述为:两直线平行,同旁内角互补.
解:∵∠1=∠2 (已知) , ∴AB∥CD (内错角相等,两直线平行). ∵∠3+∠4=180° (已知), ∴CD∥EF (同旁内角互补,两直线平行). ∴AB∥EF.
课堂小结
平行线的判定与性质的区分 1.平行线的判定是根据两角的数量关系得到两条直线 的位置关系,而平行线的性质是由两条直线的位置关 系得到两角的数量关系. 2.平行线的判定的条件是平行线的性质的结论, 而平行线的判定的结论是平行线的性质的条件.
华东师大版七年级数学上册 5.2.2 平行线的判定课件(共24张PPT)

∠2 = ∠3 ,则____//____.
>
m
<
>
/m
<
>
m
<
>
m
<
>
/m
<
>
/m
<
>
m
<
>
/m
<
7.如图:∠1 和 ∠2 分别为直线 3 与直线
1 和 2 相交所成的角.如果 ∠2 = 60∘ ,那
么当 ∠1 = ____时,可判定
1 //2 .
60∘
>
m
<
>
/m
<
8.小明把一副三角板摆放在桌面上,如图所示,其中边
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
文字语言:
图形语言:
同旁内角互补,两直线平行.
符号语言:
∵∠1 + ∠2 = 180° (已知),
∴ a∥b (同旁内角互补,两直线平行).
a
1
2
b
小试牛刀:
根据图形填空:
(1) ∵ ∠1 = ∠2 (已知)
∴ ____//____(内错角相等,两直线平行)
华 东 师 大 版 七 年 级 上 册
第5章相交线与平行线
5.2.2平行线的判定
学习目标:
知识和
技能
情感态
度与价
值观
过程与
方法
掌握平行线的
判定方法
经历探究直线
平行的条件的
过程,掌握直
线平行的条件
经历观察、操
作、交流等活
>
m
<
>
/m
<
>
m
<
>
m
<
>
/m
<
>
/m
<
>
m
<
>
/m
<
7.如图:∠1 和 ∠2 分别为直线 3 与直线
1 和 2 相交所成的角.如果 ∠2 = 60∘ ,那
么当 ∠1 = ____时,可判定
1 //2 .
60∘
>
m
<
>
/m
<
8.小明把一副三角板摆放在桌面上,如图所示,其中边
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
文字语言:
图形语言:
同旁内角互补,两直线平行.
符号语言:
∵∠1 + ∠2 = 180° (已知),
∴ a∥b (同旁内角互补,两直线平行).
a
1
2
b
小试牛刀:
根据图形填空:
(1) ∵ ∠1 = ∠2 (已知)
∴ ____//____(内错角相等,两直线平行)
华 东 师 大 版 七 年 级 上 册
第5章相交线与平行线
5.2.2平行线的判定
学习目标:
知识和
技能
情感态
度与价
值观
过程与
方法
掌握平行线的
判定方法
经历探究直线
平行的条件的
过程,掌握直
线平行的条件
经历观察、操
作、交流等活
七年级数学5.2.2平行线的判定PPT课件

如图:B= D=45°, C=135°,
问图中有哪些直线平行?
A
D
答:AB//CD,AD//BC B
C
∵ B=45°(已知)
C=135°(已知) B+ C=180° AB//CD(同旁内角互补,两直线平行) 同理:AD//BC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
纸条,
(点阵中相邻的四个点构成正方形).
E
G
A
B
C
D
F
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
画平行线的事 实
同位角相等, 两直线平行。
同旁内角互补, 两直线平行。
内错角相等, 两直线平行。
判定方法3 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行
简单说成:同旁内角互补,两直线平行
1a
几何语言: ∵∠1+∠4=1800(已知)
3
4
2b
∴a∥b(同旁内角互补,两直线平行)
想一想 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
简记为“垂直于同一直线的两直线平行”。
∵ a⊥b,a⊥c(已知) ∴ b//c(垂直于同一直线的两条直线平行)
a
1
c
2
b
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
《平行线》七年级初一数学下册PPT课件

A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
【答案】A
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依
据是对角线互相平分的四边形是平行四边形.
故选:A.
02
)
A.两条相交的直线叫做平行线
B.如果a∥b,b∥c,则a不与c平行
C.在直线外一点,只能画出一条直线与已知直线平行
D.两条不平行的射线,在同一平面内一定相交
【详解】
A.在同一平面内,不相交的两条直线叫平行线,故本选项错误;
B.如果a∥b,b∥c,则a与c平行,故本选项错误;
C.在直线外一点,只能画出一条直线与已知直线平行,故本选项正确;
也互相平行。
几何语言表达式:
∵ a∥n, m∥n (已知)
∴ a∥m (平行线的传递性)
c
b
a
随堂测试
1.在同一个平面内,两条直线的位置关系是(
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
)
【解析】在同一个平面内,两条直线的位置关系是平行或相交,故选C.
随堂测试
2.下列说法中正确的是(
∴a与c的距离=4-1=3(cm);
当直线c不在a、b之间时,
∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,
∴a与c的距离=4+1=5(cm),
综上所述,a与c的距离为3cm或5cm.故选:C.
课堂互动
课后回顾
01
02
03
探索并掌握平行公理
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
【答案】A
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依
据是对角线互相平分的四边形是平行四边形.
故选:A.
02
)
A.两条相交的直线叫做平行线
B.如果a∥b,b∥c,则a不与c平行
C.在直线外一点,只能画出一条直线与已知直线平行
D.两条不平行的射线,在同一平面内一定相交
【详解】
A.在同一平面内,不相交的两条直线叫平行线,故本选项错误;
B.如果a∥b,b∥c,则a与c平行,故本选项错误;
C.在直线外一点,只能画出一条直线与已知直线平行,故本选项正确;
也互相平行。
几何语言表达式:
∵ a∥n, m∥n (已知)
∴ a∥m (平行线的传递性)
c
b
a
随堂测试
1.在同一个平面内,两条直线的位置关系是(
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
)
【解析】在同一个平面内,两条直线的位置关系是平行或相交,故选C.
随堂测试
2.下列说法中正确的是(
∴a与c的距离=4-1=3(cm);
当直线c不在a、b之间时,
∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,
∴a与c的距离=4+1=5(cm),
综上所述,a与c的距离为3cm或5cm.故选:C.
课堂互动
课后回顾
01
02
03
探索并掌握平行公理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· · C
D
CD ∥AB
m∥n m
2020年10月2日
n∥m n
7
做一做
一个长方体如图,和AA'平行的 棱有多少条?和AB平行的棱有多 少条?请用符号把它们表示出来。
和AA'平行的棱有3条:
BB'∥AA', CC'∥AA',
D
DD'∥AA'.
A
和AB平行的棱有3条:
A'B'∥AB, C'D'∥AB,
10
性质:(平行公理)
一般地,经过直线外一点,有 且只有一条直线平行于已知直 线。
2020年10月2日
11
练习:
(1),平行
(2)如图,在 ΔABC中,P是AC 边上一点,过点P分别画AB,BC 的平行线。
B
2020年10月2日
A
·P
C
12
探究活动:
你能用所学的几何作图方法临摹下面的 图案吗?请试一试,并涂上你喜欢的颜 色。
2020年10月2日
13
2020年10月2日
14
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
D'
2020C年1D0月∥2日AB.
A'
C B
C' B' 8
自主学习
给你一条直线AB,如何画出它的平行线 呢?
A
B
可以画多少条平行线呢?
2020年10月2日
9
想一想
平行线的画法
给你一条直线AB,及直线外一点P,过 点P画出它的平行线。
.P
A
B
过点P能否再画一条直线与AB平行?
2020年10月2日
§5.2.1
2020年10月2日
1
2020年10月2日
高速公路
2
滑雪
2020年10月2日
3
双杆
2020年10月2日
铁轨
4
扶 梯
2020年10月2日
5
定义:
在同一个平面内, 不相交的两条直线 叫做平行线
m
a
n
b
2020年10月2日
6
平行线的表示:
我们通常用“//”表示平行。
· · A
B
AB ∥ CD
汇报人:XXX 汇报日期:20XX年10月10日
15