大学物理实验报告旋光物质溶液浓度测量

大学物理实验报告旋光物质溶液浓度测量

山东理工大学物理实验报告

实验名称旋光物质溶液浓度测量

姓名学号061219876 时间代码14256 实验序号19 院系

大一工作部专业理工级.班教师签名

实验目的

1 加深对偏振光的使用。

2 掌握旋光仪的结构原理学会用旋光仪测定旋光物质的浓度。

实验报告内容

原理预习、操作步骤、数据处理、误差分析、思考题解答

【实验原理】线偏振光通过旋光性物质后其振动面发生偏转。振动面旋转的角度φ与光所透过的晶体厚度成正比若为溶液则正比于

液柱的长度和溶液的浓度。此外旋转角还与入射光波长及溶液的温度

有关。如果当光的波长和溶液的温度一定时偏振光透过溶液后其振动

面旋转的角度φ为Clt 式中C为溶液的浓度通常用100ml溶液中含溶质的克数为单位l是光所透过的溶液的厚度以dm为单位t则是溶液对波长λ的光在温度t时的旋光率在数值上等于通过单位厚度、单位浓度的溶液所产生的旋转角。

【操作步骤】

1 接通电源点亮钠光灯。

2 测定旋光仪的零点。调节物目镜组使之三分视场分界线清晰然

后转动检偏器在暗视场条件下使三个区域亮度相同记录左右刻盘上

的读数于数据表中重复3次求其平均值作为旋光仪的零点位置θ0。

大学物理实验预习报告(力学基本测量)

大学物理实验预习报告

实验原理及仪器介绍: 圆柱体密度计算公式如式(1)所示。 H D m V m 2 4πρ== (1) 液体密度计算公式如式(2)所示。 水 水 待测液体待测液体水 水 待测液体 待测液体 m m m m ρρρρ?= ?= (2) 实验仪器: 1.游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺和一个套在主尺上并可以沿它滑动的副尺(游标)。游标卡尺的主尺为毫米分度尺,当下量爪的两个测量刀口相贴时,游标上的零刻度应和主尺上的零位对齐。 如果主尺的分度值为a ,游标的分度值为b ,设定游标上n 个分度值的总长与主尺上( n-1 )分度值的总长相等,则有 a n n b )1(-= (3) 图1 游标卡尺示意图

主尺与副尺每个分度值的差值即游标尺的分度值,也就是游标尺的精度(最小读数值): - =-a b a n a n a n =-)1( (4) 常用的三种游标尺有50,20,10=n ,即精度各为、、。 游标尺的读数方法是:先读出游标零线以左的那条线上毫米级以上的读数L 0,即为整数值;然后再仔细找到游标尺上与主尺刻线准确对齐的那一条刻线(该刻线的两边不对齐成对称状态),数出这条刻线是副尺上的第k 条,则待测物的长度(即为小数值)为 n a k L L ? +=0 (5) 图2是50=n 分度游标卡尺的刻度及读数举例。图上读数: 00.0215.00120.0515.60L L k mm =+?=+?= 图2 游标卡尺读数示意图 螺旋测微器 如图3所示,螺旋测微器是在一根测微螺杆上配一螺母套筒,上有分度的标尺。测微螺杆的后端连接一个有50个分度的微分套筒,螺距为50mm 。当微分套筒转过一个分度时,测微螺杆就会在螺母套筒内沿轴线方向改变。也就是说,螺旋测微器的精密度(分度值)是。由此可见,螺旋测微器是利用螺旋(测微螺杆的外螺纹和固定套筒的内螺纹精密配合)的旋转运动,将测微螺杆的角位移转变为直线位移的原理实现长度测量的量具。 图3 螺旋测微器示意图 在使用螺旋测微器时,应该检查零线的零位置,当螺杆的一端与测砧相接触时,往往会0

实验十五 用旋光仪测糖溶液的浓度

实验十五用旋光仪测糖溶液的浓度 实验内容 1.观察线偏振光通过旋光物质所发生的旋光现象。 2.学习旋光仪的使用方法,用旋光仪测定糖溶液的浓度。 教学要求 1.熟悉光的偏振的基本规律。 2.了解旋光物质的旋光性质。 实验器材 WXG-4小型旋光仪,烧杯,蔗糖,蒸馏水。 光是电磁波,它的电场和磁场矢量互相垂直,且又垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量与光的传播方向所构成的平面称为振动面。在传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。若光的矢量方向是任意的,且各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。若光矢量可以采取任何方向,但不同的方向其振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,则称为部分偏振光。若光矢量的方向始终不变,只是它的振幅随位相改变,光矢量的末端轨迹是一条直线,则称为线偏振光。 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、松节油等液体,还包括石英、朱砂等具有旋光性质的固体。不同的旋光性物质可使偏振光的振动面向不同方向旋转。若面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。 偏振光在国防、科研和生产中有着广泛应用:海防前线用于了望的偏光望远镜,立体电影中的偏光眼镜,分析化学和工业中用的偏振计和量糖计都与偏振光有关。激光光源是最强的偏振光源,高能物理中同步加速器是最好的X射线偏振源。随着新概念的飞跃发展,偏振光成为研究光学晶体、表面物理的重要手段。 实验原理 实验证明,对某一旋光溶液,当入射光的波长给定时,旋光度φ与偏振光通过溶液

大学物理实验:长度测量13页word文档

长度测量 长度是一个基本物理量,许多其他的物理量也常常化为长度量进行测量;如用温度计测量温度就是确定水银柱面在温度标尺上的位置;测量电流或电压就是确定指针在电流表或电压表标尺上的位置等。因此,长度测量是一切测量的基础。物理实验中常用的测量长度的仪器有:米尺、游标卡尺、螺旋测微器(千分尺)、读数显微镜等。通常用量程和分度值表征这些仪器的规格。量程表示仪器的测量范围;分度值表示仪器所能准确读到的最小数值。分度值的大小反映了仪器的精密程度。一般来说,分度值越小,仪器越精密。 【实验目的】 1. 掌握游标卡尺、螺旋测微器、读数显微镜的测量原理和使用方法; 2. 学习正确读取和记录测量数据; 3. 掌握数据处理中有效数字的运算法则及表示测量结果的方法; 4.熟悉直接和间接测量中的不确定度的计算. 【实验仪器】 不锈钢直尺,游标卡尺,螺旋测微器,读数显微镜,铁环、细金属丝、钢珠 【实验原理】 一、游标卡尺 用普通的米尺或直尺测量长度,只能准确地读到毫米位。毫米以下的1位要凭视力估计,实验中要使读数准确到0.1mm或更小时,一般采用游标

游标上分度格数 主尺上最小分度值== -=y m x y x 1δ卡尺和螺旋测微计。 1.游标卡尺的结构 游标卡尺又叫游标尺或卡尺,它是为了使米尺测量的更准确一些,在米尺上附加了一段能够滑动的有刻度的小尺,叫做游标。利用它可将米尺估读的那位数值准确地读出来。因此,它是一种常用的比米尺精密的测长仪器。利用游标卡尺可以用来测量物体的长度、孔深及内外直径等。 游标卡尺的外形如图4-1-1所示。它主要由两部分构成:与量爪AA ’相连的主尺D ;与量爪BB ’及深度尺C 相连的游 标E 。游标E 可紧贴着主尺D 滑动。量爪A 、B 用来测量厚度和外径,量爪A ’、B ’用来测量内径,深度尺C 用来测量槽的深度,他们的读数值都是由游标的0线于主尺的0线之间的距离表示出来。 2.游标卡尺的测量原理 游标卡尺在构造上的主要特点是:游标刻度尺上m 个分格的总长度和主刻度尺上的(m -1)个分格的总长度相等。设主刻度尺上每个等分格的长度为y ,游标刻度尺上每个等分格的长度为x ,则有 mx =(m -1)y (4-1-1) 主刻度尺与游标刻度尺每个分格的差值是 图4-1-1 游标卡尺 (4-1-2

旋光仪测定溶液的浓度及旋光度

实验二 旋光仪测定溶液的浓度及旋光度 【实验目的】 1、 加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象。 2、 掌握旋光仪的构造原理和使用方法。 3、 测定糖溶液的比旋光率及其浓度。 【实验仪器】 4、 1、WXG-4小型旋光仪 5、 2、烧杯 3、蔗糖 4、葡萄糖 5、蒸馏水 6、物理天平 7、玻璃棒 8、温度计 等。 【实验原理】 光是电磁波,它的电场和磁场矢量互相垂直,且又垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量与光的传播方向所构成的平面称为振动面。在传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。若光的矢量方向是任意的,且各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。若光 矢量可以采取任何方向,但不同的方向其振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,则称为部分偏振光。若光矢量的方向始终不变,只是其振幅随位相改变,光矢量的末端轨迹是一条直线,则称为线偏振光。 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、松节油等液体,还包括石英、朱砂等具有旋光性质的固体。不同的旋光性物质可使偏振光的振动面向不同方向旋转。若面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。 实验证明,对某一旋光溶液,当入射光的波长给定时,旋光度φ与偏振光通过溶液的长度l 和溶液的浓度c 成正比,即 cl φα= (1) 式中旋光度φ的单位为“度”,偏振光通过溶液的长度l 的单位为dm ,溶液浓度的单位为1 -?ml g 。α为该物质的比旋光率,它在数值上等于偏振光通过单位长度(m)单位浓度(1 -?ml g )的溶液后引起的振动面的旋转角度。其单位为度·ml ·dm-1·g-1由于测量时的温度及所用波长对物质的比旋光率都有影响,因而应当标明测量比旋光率时所用波长及测量时的温度。例如 C A ?505893][&α=66.5°, 它表明在测量温度为50°,所用光源的波长为5893A o 时,该旋光物质的比旋光率为66.5°。 若已知某溶液的比旋光率,且测出溶液试管的长度l 和旋光度φ,可根据式1求出待测溶液的浓度,即

密度测量实验报告

实验一、测固体的密度 姓名:班级: 一、实验目的:掌握测密度的一般方法 二、实验器材:托盘天平、滴管、细线、固体、烧杯、量筒、水 三、实验原理:ρ=m∕? 四、探究过程: 1、检查器材是否完全、完好 2、用天平测固体的质量 ①将天平放在水平桌面上 ②观察天平的最大量程 g,分度值 g ③取下保护圈 ④用镊子将游码归零 ⑤调节平衡螺母使天平衡量平衡 ⑥将物体轻放在左盘,估计被测物体质量,然后在右盘按由大到小的原则舔家砝码和移动游码使天平再次平衡 ⑦读出被测物体质量(注意游码读数) 3、向量筒内倒入适量水(1/2)以下,读出此时水的体积(视线齐平)并记录 4、用细线将物体拴好,轻放入量筒内,读出此时的总体积并记录;算出物体的 体积 5、利用公式ρ=m/v算出物体的密度 项目物体质 量 m/g 水的体积 V 1 /mL 物体和水的总体 积 V 2 /mL 物体的体积 V 3 /mL 物体的密度 ρ/(Kg/m3) 数据 6、实验完毕,整理器材保持桌面清洁 实验二测液体的密度 1. 主要器材:天平、量筒 2. 实验原理:ρ=m∕? 3、测量步骤: (1)在烧杯中装适量的未知液体放在调节好的天平上称出其质量m 1 ;( 2)将烧杯中的未知液体倒一些在量筒中测出其体积V; (3)将盛有剩下未知液体的烧杯放在天平上,测出它们的质量m 2 4、计算结果:根据得 项目烧杯和 水的总 质量 m 1 /g 倒入量筒 水的体积 V/mL 烧杯和剩余水的 总质量 m 2 /g 物体的密度 ρ/(Kg/m3)数据 5、实验完毕,整理器材保持桌面清洁 评分点操作考试内容满分 值1正确安装天平并调零。32物体和砝码放法正确。23用镊子取放砝码与移动游码。24量桶内倒入适量的水,水不溅出。记下刻度。2

大学物理实验教案4长度测量

大学物理实验教案

实验目的: 1.掌握游标卡尺、螺旋测微计和移测显微镜的测量原理和使用方法。 2.根据仪器的精度和有效数字的定义,正确记录原始数据。 3.掌握直接测量和间接测量的数据处理方法,并用不确定度报告测量结果。 实验仪器: 游标卡尺、螺旋测微计、移测显微镜、滚珠、圆管、毛细管、铝块。 实验原理: 1. 游标卡尺 普通测长度的尺子其准确度有一定的局限性,主要是由于其分度值(即仪器能准确鉴别的最小量值)较大。例如米尺的分度值为1mm 而不能更小,否则,刻度线太密将无法区分。为此,在主尺上装一个能够沿主尺滑动的带有刻度的副尺,称为游标,这样的装置称为游标卡尺。 游标卡尺的结构如图1 所示。主尺 D 是一根钢制的毫米分度尺,主尺头上附有钳口 A 和刀口A ′,游标E 上附有钳口 B 、刀口 B ′ 和尾尺 C ,可沿主尺滑动。螺丝F 可将游标固定在主尺上,当钳口AB 密接时,则刀口 A ′B ′对齐,尾尺C 和主尺尾部也对齐,主尺上的0线与游标上的0线重合。 图1 游标卡尺 钳口AB 用来测物体的长度及外径,刀口 A ′B ′用来测物体的内径,而尾尺C 则用来测物体的深度。它们的读数值,都是表示游标的0线与主尺的0线之间的距离。 游标卡尺的规格有多种,其精密程度各不相同,但不论哪一种,它的原理和读数方法都是一样的。常用游标尺的设计,在游标尺上刻有m 个分格,游标上m 个分格的总长,正好与主尺上(m –1)个分格的总长相等,如果用 y 表示主尺上最小分格的长度,x 表示游标上每一小格的长度,则 (m –1)y = mx 所以,主尺与游标上每个分格长度的差值是 m y x y = - 这个量就是游标卡尺的分度值。通常主尺最小分格y 都为1mm ,因此,游标的分格数越多,分度值就越小,卡尺的精密度就越高。 常用的游标卡尺的分度值有0.1mm 、0.05mm 、0.02mm 三种。 利用游标卡尺测物体的长度时,把物体放于钳口之间,游标右移。游标0线对准主尺上某一位置,毫米以上整数部分l 0可以从主尺上直接读出,毫米以下部分△l 从副尺上读出。

大学物理实验报告-基本测量

学实验报告 课程名称:_____ 大学物理实验(一)_________ 实验名称:实验1 基本测量______________ 学院:______________________________________ 专业:______ 课程编号: ________________________ 组号:16 指导教师: ________________ 报告人:__________ 学号_______________ 实验地点__________ 科技楼906 __________ 实验时间:______ 年_______ 月 ____ 日星期________ 实验报告提交时间:

四、实验容和步骤 五、数据记录 1用游标卡尺R测量圆筒的外径D径d、和高H 表1

2、用螺旋测微计测量粗铜丝、细铜丝的直径表2单位:________ 千分尺零点:____________ 千分尺基本误差:_____________ 六、数据处理: 1、计算圆筒的外径D ,并计算D(5分) 2、计算圆筒的径d ,并计算d(5 分)

2 3、计算圆筒的高 H ,并计算 H (5分) 4、计算粗铜丝直径 D 1及 D 1 (6分) 5、计算细铜丝直径 D 2及 D 2 (6分) 6、间接量B D 1D 2 D 1 D 2 ,计算B 的平均值、相对误差和绝对误差。 (5 分) 提示: D 2 D i D 2

七、实验结果与讨论 实验结果1: 圆筒的外径: D P = D D ( ) 实验结果2: 圆筒的径:d P = d d ( ) 实验结果3: 圆筒的高:H P = H H ( ) 实验结果4: 粗铜丝的直径: D i P = D i D i ( ) 实验结果5: 粗铜丝的直径: D2 P = D2 D2 ( ) 实验结果讨论:6: B P = B B ( )

密度的测定的实验报告

《固体密度的测定》 一、 实验目的: 1. 掌握测定规则物体和不规则物体密度的方法; 2. 掌握游表卡尺、螺旋测微器、物理天平的使用方法; 3. 学习不确定度的计算方法,正确地表示测量结果; 4. 学习正确书写实验报告。 二、 实验仪器: 1. 游表卡尺:(0-150mm,0.02mm ) 2. 螺旋测微器:(0-25mm,0.01mm ) 3. 物理天平:(TW-02B 型,200g,0.02g ) 三.实验原理:内容一:测量细铜棒的密度 根据 V m = ρ (1-1) 可得 h d m 24πρ= (1-2) 只要测出圆柱体的质量m 、外径d 和高度h ,就可算出其密度。 内容二:用流体静力称衡法测不规则物体的密度 1、待测物体的密度大于液体的密度 根据阿基米德原理: 0F Vg ρ=和物体在液体中所受的浮力:g m m W W F )(11-=-=

可得 01 ρρm m m -= (1-3) m 是待测物体质量, m 1是待测物体在液体中的质量,本实验中液体用水,0ρ即水的密 度,不同温度下水的密度见教材附录附表5(P305)。 2、待测物体的密度小于液体的密度 将物体拴上一个重物,加上这个重物后,物体连同重物可以全部浸没在液体中,这时进行称衡。根据阿基米德原理和物体在液体中所受的浮力关系可得被测物体的密度: 02 3ρρm m m -= (1-4) 如图1-1(a ),相应的砝码质量为m2,再将物体提升到液面之上,而重物仍浸没在液体中,这时进行称衡,如图1-1(b ),相应的砝码质量为m3,m 是待测物体质量, 0ρ即水的密度同上。 只有当浸入液体后物体的性质不会发生变化时,才能用此法来测定它的密度。 注:以上实验原理可以简要写。

大学物理实验长度测量

长度的测量和基本数据处理 【实验目的】 1、理解游标卡尺、螺旋测微计和读数显微镜的原理,掌握它们的使用方法; 2、练习有效数字运算和误差处理的方法。 【实验仪器和用品】 游标卡尺(0—125mm ,0.02mm )、螺旋测微计(0—25mm ,0.01mm )、读数显微镜(JCD 3,0.01mm )、空心圆管、小钢球等。 【实验原理】 1、游标卡尺的构造原理及读数方法 游标卡尺分主尺和游标(副尺)两部分。主尺上刻有标准刻度125mm 。游标上均匀刻有50个分度,总长度为49mm ,游标上50个分度比标准的50mm 短1mm ,1个分度比标准的1mm 短 1 50 mm ,即0.02mm ,这0.02mm 就是游标卡尺的最小分度值(即精度)。游标卡尺的卡口合并时,游标零线与主尺零线恰好对齐。卡口间放上被测物时,以游标零线为起点往前看,观察主尺上的读数是多少。假设读数是xmm 多一点,这“多一点”肯定不足1mm ,要从游标上读。此时,从游标上找出与主尺上某刻度最对齐的一条刻度线,设是第n 条,则这“多一点”的长度应等于0.02nmm ,被测物的总长度应为L=(x+0.02n)mm 。用这种规格的游标卡尺测量物体的长度时,以“mm ”为单位,小数点后必有两位,且末位数必为偶数。游标上每5小格标明为1大格,每小格读数作0.02mm ,每大格就应读作0.10mm 。从游标零线起往后,依次读作0.02mm ,0.04mm ,0.06mm ,……直至第5小格即第1大格读作0.10mm 。 再往后,依次读作0.12mm ,0.14mm ,0.16mm ,……直至第2大格读作0.20mm 。后面的读数依此类推。游标卡尺不需往下估读。如图1-5应读作61.36mm 或6.136cm 2、螺旋测微器的构造原理及读数方法 螺旋测微计主要由弓形体、固定套筒和活动套筒(微分套筒)三部分构成。螺旋测微计的测微原理是机械放大法。固定套筒上有一条水平拱线叫读数基线。基线上边是毫米刻度线,下边是半毫米刻度线。螺旋测微计的螺距是0.5mm ,活动套筒每转动一周,螺杆就前进或者后退0.5mm 。活动套筒的边缘上均匀刻有50个分度,每转动一个分度,螺杆就前进或者后退 0.5 50 mm 即0.01mm 。这0.01mm 就是螺旋测微计的最小分度值(即精度)。实际测量时,分度线不一定正好与读数基线对齐,因此还必须往下估读到0.001mm 。可见,用螺旋测微 6 7 0 3 4 5 主尺 游标 图1-5

测量金属块的密度实验报告

竭诚为您提供优质文档/双击可除测量金属块的密度实验报告 篇一:密度的测量实验报告 测量盐水和小石块的密度实验报告 课前回顾: 1、在使用量筒时应注意的问题 (1)量筒是实验室里用来测的仪器. (2)量筒的单位一般为“ml”表示,读数时要估读到最小刻度的下一位.1ml=cm=m(3)量筒一定要放置在水平面上,然后再将液体倒入量筒中. (4)观察量筒里液面到达的刻度时,视线要,若液面呈凹形,观察时要以凹形的底部为准;若液面呈 凸形,观察时要以凸形的顶部为准. (5)用量筒(杯)测固体体积的方法叫. 2、 ___________________________________________________ ___叫密度。3、密度的计算公式____________;密度的国际单位是____________。4、水的密度是____________千克/米

3,合____________克/厘米3。实验目的: 1.通过实验进一步巩固物质密度的概念; 2.学会量筒的使用方法。一是用量筒测量液体体积的方法;二是用量筒测量不规则形状物体体积的方法; 3.学会用量筒和天平测物质的密度。实验原理: 实验一:测量小石块的密度实验器材: 实验步骤:①用天平测出的质量记作m②在量筒中放入的水记作V1 ③用细线拴住金属块将其浸没于量筒中的水中,水的体积记作V2 石块密度的计算式为: 3 3 实验器材: 实验步骤:①用天平测出的质量记作m1②将烧杯中的液体倒入量筒中一部分,体积记作V③用天平测出 的质量记作m2 盐水密度的计算式为:实验记录表格: 第1页 思考: 1、测量盐水密度的实验中,如果测质量时先测空烧杯的质量,再测总质量,最后测得的密度值偏_。为什么?答:

大学物理实验答案

实验一物体密度的测定 【预习题】 1.简述游标卡尺、螺旋测微器的测量原理及使用时的注意事项。 答:(1)游标卡尺的测量原理及使用时的注意事项: 游标卡尺是一种利用游标提高精度的长度测量仪器,它由主尺和游标组成。 设主尺上的刻度间距为y,游标上的刻度间距为x,x比y略小一点。一般游标上的n个刻度间距等于主尺上(n-1)个刻度间距,即y (- =。由此可知,游标上 nx)1 n 1,这就是游标的精度。 的刻度间距与主尺上刻度间距相差 n 1,即主尺上49mm与游标上50格同教材P33图1-2所示的游标卡尺精度为mm 50 长,如教材图1-3所示。这样,游标上50格比主尺上50格(50mm)少一格(1mm),即游标上每格长度比主尺每格少1÷50 = 0.02(mm),所以该游标卡尺的精度为 0.02mm。 使用游标卡尺时应注意:①一手拿待测物体,一手持主尺,将物体轻轻卡住,才可读数。②注意保护量爪不被磨损,决不允许被量物体在量爪中挪动。③游标卡尺的外量爪用来测量厚度或外径,内量爪用来测量内径,深度尺用来测量槽或筒的深度,紧固螺丝用来固定读数。 (2)螺旋测微器的测量原理及使用时的注意事项: 螺旋测微器又称千分尺,它是把测微螺杆的角位移转变为直线位移来测量微小长度的长度测量仪器。螺旋测微器主要由固定套筒、测量轴、活动套筒(即微分筒)组成。如教材P24图1-4所示,固定套管D上套有一个活动套筒C(微分筒),两者由高精度螺纹紧密咬合,活动套筒与测量轴A相联,转动活动套筒可带动测量轴伸出与缩进,活动套筒转动一周( 360),测量轴伸出或缩进1个螺距。因此,可根据活动套筒转动的角度求得测量轴移动的距离。对于螺距是0.5mm螺旋测微器,活动套筒C的周界被等分为50格,故活动套筒转动1 格,测量轴相应地移动 0.5/50=0.01mm,再加上估读,其测量精度可达到0.001 mm。 使用螺旋测微器时应注意:①测量轴向砧台靠近快夹住待测物时,必须使用棘轮而不能直接转动活动套筒,听到“咯、咯”即表示已经夹住待测物体,棘轮在空转,这时应停止转动棘轮,进行读数,不要将被测物拉出,以免磨损砧台和测量轴。②应作零点校正。 2.为什么胶片长度可只测量一次? 答:单次测量时大体有三种情况:(1)仪器精度较低,偶然误差很小,多次测量读数相同,不必多次测量。(2)对测量的准确程度要求不高,只测一次就够了。(3)因测量条件的限制,不可能多次重复测量。本实验由对胶片长度的测量属于情况(1),所以只测量1次。 3.用用游标卡尺测量某物体长度时,游标上最前与最后的刻线都与主尺上

旋光法测溶液浓度

用旋光法测定糖溶液的浓度 一、简介 许多物质如石英晶体、氯酸钠、糖溶液、松节油等都有旋光性。利用旋光性测定糖溶液浓度的仪器称为旋光糖量计。除了在制糖工业中广泛应用外,在制药工业、药品检测及商品检测部门中也常用来测定一些药物和商品(如可卡因、尼古丁、樟脑等)的浓度。本实验主要是学习理解偏振光的产生和检测方法;观察旋光现象,了解旋光物质的旋光性质;测定糖溶液的旋光率和浓度的关系;熟悉旋光仪的原理和使用方法并学习自己组装旋光仪。 二、实验原理 线偏振光通过某些物质的溶液后,偏振光的振动面将旋转一定的角度,这种现象称为旋光现象,旋转的角度称为该物质的旋光度。通常用旋光仪来测量物质的旋光度。溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。当其它条件均固定时,旋光度θ与溶液浓度C 呈线性关系,即 C βθ= (1) 上式中,比例常数β与物质旋光能力、溶剂性质、样品管长度、温度及光的波长等有关,C 为溶液的浓度。 物质的旋光能力用比旋光度即旋光率来度量,旋光率用下式表示: []C l t ?=θαλ (2) 上式中,[]t λα右上角的t 表示实验时温度(单位:oC ), λ是指旋光仪采用的单色光源的波长(单位:nm),θ为测得的旋光度( o ),l 为样品管的长度(单位:d m),C 为溶液浓度(单位:g /100mL).

由(2)式可知:①偏振光的振动面是随着光在旋光物质中向前进行而逐渐旋转的,因而振动面转过角度θ透过的长度l成正比;②振动面转过的角度θ不仅与透过的长度l成正比,而且还与溶液浓度C成正比。 如果已知待测物质浓度C和液柱长度l,只要测出旋光度θ就可以计算出旋光率。如果已知液柱长度l为固定值,可依次改变溶液的浓度C,就可测得相应旋光度θ。并作旋光度θ与浓度的关系直线,从直线斜率、长度l及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性溶液的旋光度θ,确定溶液的浓度C。 旋光性物质还有右旋和左旋之分。当面对光射来方向观察,如果振动面按顺时针方向旋转,则称右旋物质;如果振动面向逆时针方向旋转,称左旋物质。表1给出了一些药物在温度t=20oC,偏振光波长为钠光λ589.3nm(相当于太阳光中的D线)时的旋光率. ≈ 表1某些药物的旋光率(单位:(o)·g—1·cm3·dm—1) 三、实验仪器及装置 实验仪器主要有偏振光旋光实验仪和半荫旋光仪(糖量计)两种类型。本实验中采用偏振光旋光实验仪. 偏振光旋光实验仪的结构如图2所示。它由光具座、带刻度转盘的偏振片2个、样品试管、样品试管调节架、光功率计等组成.

密度的测定的实验报告.docx

《固体密度的测定》 一、实验目的: 1.掌握测定规则物体和不规则物体密度的方法; 2.掌握游表卡尺、螺旋测微器、物理天平的使用方法; 3.学习不确定度的计算方法,正确地表示测量结果; 4.学习正确书写实验报告。 二、实验仪器: 1.游表卡尺:(0-150mm,0.02mm) 2.螺旋测微器:(0-25mm,0.01mm) 3.物理天平:(TW-02B型,200g,0.02g) 三.实验原理:内容一:测量细铜棒的密度 根据 V m = ρ(1-1)可得 h d m 2 4 π ρ=(1-2) 只要测出圆柱体的质量m、外径d和高度h,就可算出其密度。 内容二:用流体静力称衡法测不规则物体的密度 1、待测物体的密度大于液体的密度 根据阿基米德原理: F Vg ρ =和物体在液体中所受的浮力:g m m W W F) ( 1 1 - = - = 可得 1 ρ ρ m m m - =(1-3) m是待测物体质量, m1是待测物体在液体中的质量,本实验中液体用水, ρ即水的密度,不同温度下水的密度见教材附录附表5(P305)。 2、待测物体的密度小于液体的密度 将物体拴上一个重物,加上这个重物后,物体连同重物可以全部浸没在液体中,这时进行称衡。根据阿基米德原理和物体在液体中所受的浮力关系可得被测物体的密度: 2 3 ρ ρ m m m - =(1-4) 如图1-1(a),相应的砝码质量为m2,再将物体提升到液面之上,而重物仍浸没在液体中, 这时进行称衡,如图1-1(b),相应的砝码质量为m3,m是待测物体质量, ρ即水的密度同上。 只有当浸入液体后物体的性质不会发生变化时,才能用此法来测定它的密度。 图1-1 用流体静力称衡法称密度小于水的物体

(完整精品)大学物理实验报告之长度基本测量

大学物理实验报告 姓名 学号 学院 班级 实验日期 2017 年5 月23日实验地点:实验楼B411室 【实验原理】 1、游标卡尺构造及读数原理 游标卡尺主要由两部分构成,如(图1)所示:在一毫米为单位的主尺上附加一个能够滑动的有刻度的小尺(副尺),叫游标,利用它可以把主尺估读的那位数值较为准确地读出来。 图1

游标卡尺在构造上的主要特点是:游标上N 个分度格的总长度与主尺上(N -1)个分度格的长度相同,若主尺上最小分度为a ,游标上最小分度值为b ,则有 1()Nb N a =-(式1) 那么主尺与游标上每个分格的差值(游标的精度值或游标的最小分度值)是: 11 N a b a a a N N δ-=-=-=(式2) 图2 常用的游标是五十分游标(N =50),即主尺上49mm 与游标上50格相当,见图2–7。五十分游标的精度值δ=0.02mm 。游标上刻有0、l 、2、3、…、9,以便于读数。 毫米以上的读数要从游标“0”刻度线在主尺上的位置读出,毫米以下的数由游标(副尺)读出。 即:先从游标卡尺“0”刻度线在主尺的位置读出毫米的整数位,再从游标上读出毫米的小数位。 游标卡尺测量长度的普遍表达式为 l ka n δ=+(式3) 式中,k 是游标的“0”刻度线所在处主尺刻度的整刻度(毫米)数,n 是游标的第n 条线与主尺的某一条线重合,a =1mm 。图3所示的情况,即l =21.58mm 。 图3 在用游标卡尺测量之前,应先把量爪A 、B 合拢,检查游标的“0”刻度线是否与主尺的“0”刻度线重合。如不重合,应记下零点读数,加以修正,即待测量l=l 1-l 0。其中,l 1为未作零点修正前的读数值,l 0为零点读数。l 0可以正,也可以负。 使用游标卡尺时,可一手拿物体,另一手持尺,如图4所示。要特别注意保护量爪不被磨损。使用时轻轻把物体卡住即可读数。 图4

大学物理实验报告-基本测量

得分教师签名批改日期深圳大学实验报告 课程名称:大学物理实验(一) 实验名称:实验1 基本测量 学院: 专业:课程编号: 组号:16 指导教师: 报告人:学号: 实验地点科技楼906 实验时间:年月日星期 实验报告提交时间:

一、实验目的 二、实验原理 三、实验仪器 仪器名称组号型号量程△仪

四、实验内容和步骤 五、数据记录 1、用游标卡尺R测量圆筒的外径D、内径d、和高H 表1 单位:________ 卡尺零点:_________卡尺基本误差:___________ k D d H 1 2 3 4 5 6 7 8 9 10 平均

2、 用螺旋测微计测量粗铜丝、细铜丝的直径 表2 单位:________千分尺零点:____________千分尺基本误差:___________ k 1D 2D 1 2 3 4 5 6 7 8 9 10 平均 六、数据处理: 1、计算圆筒的外径D ,并计算D ?(5分) 2、计算圆筒的内径d ,并计算d ?(5分)

3、计算圆筒的高H ,并计算H ?(5分) 4、计算粗铜丝直径1D 及1D ?(6分) 5、计算细铜丝直径2D 及2D ?(6分) 6、间接量2 12 1D D D D B += ,计算B 的平均值、相对误差和绝对误差。(5分) 提示: ()() 2112 22112212 [][]B D D D D B D D D D D D ???=+++

七、实验结果与讨论 实验结果1:圆筒的外径: D = ± ( ) P = D D ?= 实验结果2:圆筒的内径: d = ± ( ) P = d d ?= 实验结果3:圆筒的高: H = ± ( ) P = H H ?= 实验结果4:粗铜丝的直径:1D = ± ( ) P = 1 1 D D ?= 实验结果5:粗铜丝的直径:2D = ± ( ) P = 2 2 D D ?= 实验结果6: B = ± ( ) P = B B ?= 讨论:

旋光仪测定溶液的浓度及旋光度

旋光仪测定溶液的浓度 及旋光度 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

实验二 旋光仪测定溶液的浓度及旋光度 【实验目的】 1、 加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象。 2、 掌握旋光仪的构造原理和使用方法。 3、 测定糖溶液的比旋光率及其浓度。 【实验仪器】 4、 1、WXG-4小型旋光仪 5、 2、烧杯 3、蔗糖 4、葡萄糖 5、蒸馏水 6、物理天平 7、玻璃棒 8、温度计 等。 【实验原理】 光是电磁波,它的电场和磁场矢量互相垂直,且又垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量与光的传播方向所构成的平面称为振动面。在传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。若光的矢量方向是任意的,且各方向上光矢量大小的时间平均值是相等的,这种光称 为自然光。若光矢量可以采取任何方向,但不同的方向其振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,则称为部分偏振光。若光矢量的方向始终不变,只是其振幅随位相改变,光矢量的末端轨迹是一条直线,则称为线偏振光。 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、松节油等液体,还包括石英、朱砂等具有旋光性质的固体。不同的旋光性物质可使偏振光的振动面向不同方向旋转。若面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。 实验证明,对某一旋光溶液,当入射光的波长给定时,旋光度φ与偏振光通过溶液的长度l 和溶液的浓度c 成正比,即 cl φα= (1) 式中旋光度φ的单位为“度”,偏振光通过溶液的长度l 的单位为dm ,溶液浓度的单位为1 -?ml g 。α为该物质的比旋光率,它在数值上等于偏振光通过单位长度(m)单位浓度(1 -?ml g )的溶液后引起的振动面的旋转角度。其单位 为度·ml ·dm-1·g-1由于测量时的温度及所用波长对物质的比旋光率都有影响,因而应当标明测量比旋光率时所用波长及测量时的温度。例如 C A ?505893][ α=°,它表明在测量温度为50°,所用光源的波长为5893A 时,该旋光物质的比旋光率为°。 若已知某溶液的比旋光率,且测出溶液试管的长度l 和旋光度φ,可根据式1求出待测溶液的浓度,即

大学物理实验:长度测量(陈涛)

实验一长度测量 1.【实验目的】 1. 掌握游标卡尺、螺旋测微器、移测显微镜的测量原理和使用方法; 2. 学习正确读取和记录测量数据; 3. 掌握数据处理中有效数字的运算法则及表示测量结果的方法; 4.熟悉直接和间接测量中的不确定度的计算. 2.【实验仪器】 米尺,游标卡尺,螺旋测微计,移侧显微镜,被测物(滚球,圆管,毛细管) 3.【实验原理】 一、游标卡尺 用普通的米尺或直尺测量长度,只能准确地读到毫米位。毫米以下的1位要凭视力估计,实验中要使读数准确到0.1mm或更小时,一般采用游标卡尺和螺旋测微计。 1.游标卡尺的结构 游标卡尺又叫游标尺或卡尺,它是为了使米尺测量的更准确一些,在米尺上附加了一段能够滑动的有刻度的小尺,叫做游标。利用它可将米尺估读的那位数值准确地读出来。因此,它是一种常用的比米尺精密的测长仪器。利用游标卡尺可以用来测量物体的长度、孔深及内外直径等。 游标卡尺的外形如 图4-1-1所示。它主要 由两部分构成:与量爪 AA’相连的主尺D;与 量爪BB’及深度尺C相 连的游标E。游标E可 图4-1-1 游标卡尺 紧贴着主尺D滑动。量

游标上分度格数 主尺上最小分度值 == -=y m x y x 1δ爪A 、B 用来测量厚度和外径,量爪A’、B’用来测量内径,深度尺C 用来测量槽的深度,他们的读数值都是由游标的0线于主尺的0线之间的距离表示出来。 2.游标卡尺的测量原理 游标卡尺在构造上的主要特点是:游标刻度尺上m 个分格的总长度和主刻度尺上的(m -1)个分格的总长度相等。设主刻度尺上每个等分格的长度为y ,游标刻度尺上每个等分格的长度为x ,则有 mx =(m -1)y (4-1-1) 主刻度尺与游标刻度尺每个分格的差值是 式中,x δ为游标卡尺所能准确读到的最小数值,即分度值(或称游标精度)。若把游标等分为10个分格(即m=10),这种游标卡尺叫做“十分游标”。“十分游标”的x δ=1/10mm 。这是由主刻度尺的刻度值于游标刻度值之差给出的,因此x δ不是估读的,它是游标卡尺所能准确读到的最小数值,即游标卡尺的分度值。若m=20,则游标卡尺的最小分度为1/20mm=0.05mm ,称为20分度游标卡尺;还有常用的50分度的游标卡尺,其分度值为1/50mm=0.02mm 。 3.游标卡尺的读数 游标卡尺的读数表示的是主刻度尺的0线与游标刻度尺的0线之间的距离。读数可分为两部分:首先。从主刻度尺上与游标刻度上0线对齐的位置读出整数部分L 1(整毫米位);然后,根据游标刻度尺上与主刻度尺对齐的刻度线读出不足毫米分格的小数部分L 2,则两者相加就是测量值,即L= L 1+ L 2。下面介绍实验室常用的10分度的游标卡尺的读数方法。 如图4-1-2所示,第一步从主刻度尺上可读出的准确数是30mm ,即L 1=30,第二步找到游标上的第7根刻线(不含0刻线)与主刻度尺上的某一刻度线对齐,则位数为L 2=7?0.1mm=0.7mm ,所以图4-1-2所示的游标卡尺的读数为L= (4-1-2) 10 3 4 cm 图4-1-2 1 2 3 4 5 0 10 20 30 40 50 cm 图4-1-3

用旋光仪测旋光性溶液的旋光率和浓度

用旋光仪测旋光性溶液的旋光率和浓度 [实验目的] 1.观察线偏振光通过旋光物质的旋光现象 2.学习用旋光仪测旋光性溶液的旋光率和浓度 [实验原理] 如图所示,线偏振光通过某些物质的溶液(特别是含有不对称碳原子物质的溶液,如蔗糖溶液)后,线偏振光的振动面将旋转一定的角度φ,这种现象称为旋光现象 ....。旋转的角度φ称为旋转角或旋光度。它与偏振光通过的溶液长度l和溶液中旋光性物质的浓度c成正比, 即φ=αc l 式中,α称该物质的旋光率,它在数值上等于偏振光通过单位长度(1分米)、单位浓度(1克/毫升)的溶液后引起振动面旋转的角度。c用克/毫升表示,l用分米表示。 图1-1 观测偏振光的振动面旋转的实验原理图 实验表明,同以旋光物质对不同波长的光有不同的旋光率;在一定温度下,它的旋光率与入射光波长λ的平方成反比,这个现象称为旋光色散。本实验我们采用钠黄线的D线(入=纳米)来测定旋光率。 若已知待测旋光性溶液的浓度c和液柱的长度l, 测出旋光度φ就可由上式计算出其旋光率。显然,在液柱的长度l不变时,依次改变浓度c, 测出相应的旋光度φ,然后画出φ~c 曲线—旋光曲线,利用最小二乘法处理数据,求出旋光率α。理论上,温度在14°~30°C 时,蔗糖的旋光率为:αt=+0.01267c-0.000376c2)[(t-20)] 。 利用求出的旋光率,测出旋光性溶液的旋光度,可确定溶液中所含旋光物质的浓度。[装置介绍] 1—光源;2—会聚透镜; 3—滤光片;4—起偏镜; 5—石英片;6—测试管; 7—检偏镜;8—望远镜物镜; 9—刻度盘;10—望远镜目镜; 图 2-1 旋光仪示意图 测量物质旋光度的装置称为旋光仪,其结 构如图2—1所示。测量时,先将旋光仪中起 偏镜(4)和检偏镜(7)的偏振轴调到相互正交,这时在目镜(10)中看到最暗的视场;然后装上测试管(6),转动检偏镜,使因振动面旋转而变亮的视场重新达到最暗,此时检偏镜的旋转角度即表示被测溶液的旋光度。 因为人的眼睛难以准确地判断视场是否最暗,故多采用半荫法,用比较视场中相邻两光束的强度是否相同来确定旋光度。具体装置见图3—1。在起偏镜后在加一石英晶体片,此石英片和起偏镜的一部分在视场中重叠。随石英片安放位置的不同,可将视场分为两部分[图3—1(a)]或者三部分[图3—1(b)]。同时在石英片旁装上一定厚度的玻璃片,以补偿由石英片产生的光强变化。取石英片的光轴平行于自身表面并与起偏镜的偏振轴成一角度θ(仅几度)。由光源发出的光经起偏镜后变成线偏振光,其中一部分光再经过石英片(其厚度恰使在石英片内分成的e光和o光的位相差为π的奇数倍,出射的合成光仍为线偏振光),其振动面相对于入射光的偏振面转过了θ2,所以进入测试管的光是振动面间的夹角为θ2 的两束线偏振光。

大学物理实验示范报告(以杨氏模量实验为例)

一 . 预习报告 1. 拉伸法测金属丝的杨氏模量 2.实验目的 1、掌握用光杠杆法测量微小长度变化的原理和方法; 2、学会用逐差法处理数据; 3、学习合理选择仪器,减小测量误差。 3.实验原理 1.根据胡克定律,在弹性限度内,其应力F/S 与应变ΔL/L 成正比,即L L E S F ?= 本实验的最大载荷是10kg ,E 称为杨氏弹性模量。 2.光杠杆测微原理, 由于α很小, 消去α角,就可得:) (201A A D x L -= ? ()0128A A x d F L D E -=π 式中L 为金属丝被拉伸部分的长度,d 为金属丝的直径,D 为平面镜到直尺间的距离,X 为光杠杆后 足至前两足直线的垂直距离,F 为增加一个砝码的重量(= mg ), A 1-A 0是增加一个砝码后由于金属丝伸长在望远镜中刻度的变化量。 4. 实验仪器 图1-1 光杠杆原理

5.实验内容 用拉伸法测量金属(碳钢)丝的杨氏模量 6.注意事项 (1)光杠杆...、望远镜和标尺所构成的光学系统一经调节好后....................,在实验过程中就不可再..........动. ,否则所测的数据无效,实验应从头做起。 (2)加减砝码要轻放轻取,并等稳定后再读数。 (3)所加的总砝码不得超过10kg 。 (4)如发现加、减砝码的对应读数相差较大,可多加减一、二次,直到二者读数接近为止。 (5)使用望远镜读数时要注意避免视差。 (6)注意维护金属丝的平直状态,在用螺旋测微器测其直径时勿将它扭折。 7.预习思考题回答 (1)实验中对L 、D 、X 、d 和ΔL 的测量使用了不同仪器和方法,为什么要这样处理?分析它们测量误差对总误差的贡献大小。 解:①L 、D 较长(m 数量级),用米尺量可得5位有效数字,L 的主要测量误差是端点的不确定,测量时卷尺难以伸直;D 的主要测量误差是卷尺中间下垂。这两个量只作单次测量即可; ②X 通常为4~8cm ,用游标尺量可得4位有效数字,也只作单次测量即可。测量的主要误差是垂直距离的作图误差(可利用游标尺两卡口尖,一端和光杠杆后足尖痕相合,并以此点为圆心,以另一端画园弧,调节长度使园弧和前两足连线相切,此时的读数即为X ); ③d 为0.6~0.8mm 量级,且上下的粗细不完全均匀,需多次测量,用螺旋测微器可得3位有效数字,而且在Y 中d 是平方项,对总误差的贡献占第二位,不可忽略。此外d 应在金属丝的平直处测量,否则会有附加误差; ④ΔL 约为0.2~0.6mm ,利用光杠杆法放大 X D 240~50倍,A 约为1~3cm ,是造 成总误差的主要因素,其主要测量误差有金属丝的弯曲、金属丝的弹性疲劳、光学系统的稳定性、视差、读数误差等,光学系统相对位置的不正,也会引起系统误差(见第3题)。 (2)为什么L 、D 、X 都只需测量一次,而d 的测量却较为复杂? 解:L 、D 、X 测量误差对总误差的贡献可忽略,故只需测量一次;而d 的误差较大,其贡献不可忽略,而且上下直径不匀,加载和不加载也有不同,故需在不同条件下作多次测量(但随机误差的计算则可近似地看作是在相同条件下的多次测量)。 8. 数据记录表格

相关文档
最新文档