第一章三极管基础知识

合集下载

三极管 讲解

三极管 讲解

三极管讲解三极管,也称为晶体三极管(Bipolar Junction Transistor,简称BJT),是一种半导体器件,用于放大和开关电信号。

它由三个半导体层组成,其中包括两个异种半导体材料(通常是N型和P型硅)和一个绝缘的基底。

三极管有三个电极,分别是发射极(Emitter,E)、基极(Base,B)和集电极(Collector,C)。

三极管的基本工作原理:1.PN结:三极管中的N型和P型半导体层形成两个PN结。

PN结是两种半导体之间的界面,具有整流性质。

2.工作状态:•当NPN三极管中的发射结极(N型)接通正电压,基极(P型)接通负电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。

•当PNP三极管中的发射极(P型)接通负电压,基极(N 型)接通正电压时,发射极-基极形成正向偏置,而集电极-基极形成反向偏置。

3.放大作用:当在发射极和基极之间加上一个小信号电压时,这个信号电压会影响PN结的电流,从而控制集电极和发射极之间的电流。

这种调控作用使得三极管可以作为放大器。

4.工作区域:•放大区域:在适当的工作偏置下,三极管可以进入放大工作区域,通过控制小信号电压来放大输入信号。

•截止区域:当三极管的基极电压太低时,三极管截至,电流无法通过,处于关闭状态。

•饱和区域:当三极管的基极电压适当时,电流可以通过,但达到最大值,三极管处于饱和状态。

三极管的类型:1.NPN型:N型发射极,P型基极,N型集电极。

2.PNP型:P型发射极,N型基极,P型集电极。

三极管的应用:1.放大器:用于放大小信号,如音频信号。

2.开关:用作数字和模拟电路中的开关元件。

3.振荡器:用于产生振荡信号。

4.放大电路:在无线通信和射频电路中使用。

三极管在电子领域中有广泛的应用,是许多电子设备和系统的基础元件之一。

二极管三极管的基础知识

二极管三极管的基础知识

二极管三极管的基础知识
1、二极管是一种双极型半导体器件,是由一个n型半导体和一个p型半导体夹层而成,并且由两个电极连接起来,形成了一个半导体导通元件。

二极管的特点是在正反向作用下具有很大的电阻性。

2、二极管有自发型和电控型。

自发型二极管可以单独工作,而电控型二极管依靠外加电压进行工作,又分半导体二极管、隔离二极管和中继二极管。

3、二极管的基本功能:
(1)可以作为电路的一个开关或分流器;
(2)可以对输入电压的放大作用;
(3)可以实现电子电路与电器的互联;
(4)可以实现信号的保护。

二、三极管
1、三极管是由三个电极(收集极、基极和发射极)连接而成的一种半导体器件,它们三个电极间的关系可以控制电子的流动,从而改变电路的电流。

三极管的特点是在正反向作用下具有很大的电阻性,但其中收发极处的电阻值要小于中间基极处的电阻值。

2、三极管通常以晶体管的形式出现,并可分为双极型晶体管和三极型晶体管两种。

3、三极管的基本功能:
(1)可以实现电子电路的功率放大;
(2)可以对输入信号进行阻塞和增益;
(3)可以实现电子电路的解耦;
(4)可以实现电子电路的节流;
(5)可以实现电子电路的低成本放大和控制。

三极管基础知识[1]

三极管基础知识[1]

27. 在放大电路中,输入电阻是怎样定义的?有什么含义? 解:输入电阻是表明放大电路从信号源吸取电流大小的参数,Ri 大,放大电路
.
从信号源吸取的电流则小,反之则大。Ri的定义为Ri= V(.) i/ Ii ,见下图所示。
28. 在放大电路中,输出电阻是怎样定义的?有什么含义? 解:输出电阻是表明放大电路带负载的能力,Ro 大,表明放大电路带负载的能
控于基极电流,所以BJT 是电流控制器件。
18. BJT 的电流放大系数α,β是如何定义的?能否从共射极输出特性上求得β值,
并算出α值?在整个输出特性上,β(α)值是否均一致?
答:α= 传输到集电极电流
,β= 传输到集电极电流
,所以,α= 1 。;可
发射极传入电流传输到基区电流1+β
更多技术文章,论文请登录
网络教材—《模拟电子技术》-半导体三极管及放大电路基础
Frequently Asked Question(FAQ)
1. 既然BJT 具有两个PN 结,可否用两个二极管相联以构成一只BJT,试说明其理
由。
解:BJT 要实现放大作用,首先满足其内部条件,即要求发射区杂质浓度要远
22. 放大器的应用相当广泛,有哪几种分类法,又分成哪些放大器?
解:①按工作频率分,可分为:直流放大器、低频放大器、高频放大器和宽带
放大器;②按放大器放大对象分,可分为:电压放大器、电流放大器、功率放大器;
③按放大器工作状态分,可分为:甲类放大器、乙类放大器、甲乙类放大器。
23. 为什么说当β一定时通过增大IE 来提高电压放大倍数是有限制的?试从IC 和
部条件为发射结必须正偏,集电结必须反偏。

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。

2. 掌握三极管的类型和符号。

教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。

2. 三极管的结构:三极管由发射极、基极和集电极组成。

3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。

4. 三极管的类型:NPN型和PNP型。

5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。

教学活动:1. 讲解三极管的定义、结构和工作原理。

2. 展示三极管的实物图和符号图。

3. 引导学生通过实验观察三极管的工作状态。

章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。

2. 掌握放大电路的基本组成和原理。

教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。

2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。

3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。

4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。

教学活动:1. 讲解放大电路的定义、作用和基本组成。

2. 展示放大电路的原理图和实际电路图。

3. 引导学生通过实验观察放大电路的工作状态。

章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。

2. 掌握三极管的放大原理。

教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。

2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。

教学活动:1. 讲解三极管的放大特性和放大原理。

2. 分析三极管放大电路的输入和输出特性曲线。

3. 引导学生通过实验观察三极管的放大特性。

章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。

2. 掌握三极管放大电路的应用。

教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。

三极管使用基础知识

三极管使用基础知识

三级管基础知识横向左侧的引脚叫做基极b,有一个箭头的是发射极e,剩下的一个引脚就是集电极c。

首先来说一下NPN型,这种型号的三极管在用于开关状态时,大都是发射极接地,集电极接高电平,基极接控制信号。

其次对于PNP型的三极管,用于开关状态时,一般都是发射极接高电平,基极接控制信号。

三极管导通时,电流从发射极流向集电极。

相关推荐:四句口诀,玩转三极管!三极管的开关原理三极管有截止、放大、饱和三种工作状态。

相关推荐:放下教科书,来看下三极管的应用电路。

放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。

而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态。

三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V 以上,这个三极管e 级和c 级之间就可以顺利导通。

同理,NPN 型三极管的导通条件是 b 极比e 极电压高0.7V。

总之是箭头的始端比末端高0.7V 就可以导通三极管的e 极和 c 极。

以上图PNP三极管为例,基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。

如果P1.0 由我们的程序给一个高电平1,那么e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。

如果程序给P1.0 一个低电平0,这时e 极还是5V,于是e 和b 之间产生了压差,三极管e 和b 之间也就导通了,三极管e 和b 之间大概有0.7V 的压降,那还有(5-0.7)V 的电压会在电阻R47 上。

这个时候,e 和c 之间也会导通了,那么LED 小灯本身有2V 的压降,三极管本身 e 和 c 之间大概有0.2V的压降,我们忽略不计。

三极管基础知识及测量方法

三极管基础知识及测量方法

三极管基础知识及测量方法三极管基础知识及测量方法一、晶体管基础双极结型三极管相当于两个背靠背的二极管PN 结。

正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。

在共发射极晶体管电路中 ,发射结在基极电路中正向偏置 , 其电压降很小。

绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。

由于 VBE 很小,所以基极电流约为IB= 5V/50 k Ω = 0.1mA 。

如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC=β*IB=10mA。

在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。

金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。

当栅 G 电压 VG 增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。

当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。

当VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。

使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。

当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压VGS 对源漏电流 IDS 的控制。

二、晶体管的命名方法晶体管:最常用的有三极管和二极管两种。

三极管以符号BG(旧)或(T)表示,二极管以D表示。

按制作材料分,晶体管可分为锗管和硅管两种。

按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。

三极管及放大电路基础


IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。

三极管基础知识

三极管基础知识1.三极管的封装形式和管脚识别方法一:常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

方法二:测判三极管的口诀四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”释吧。

一、三颠倒,找基极二、 PN结,定管型(NPN還是PNP)三、顺箭头,偏转大(1) 对于NPN型三极管,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大(電阻小),此时电流的流向一定是:黑表笔→c极→b极→e极f9.8→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c 极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。

四、测不出,动嘴巴:是一步,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。

具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。

其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

2.晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。

这是三极管最基本的和最重要的特性。

我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。

三极管基础知识教案

三极管基础知识教案教案名称:三极管基础知识一、教学目标1. 了解三极管的基本结构和工作原理;2. 掌握三极管的基本参数和特性;3. 能够分析三极管的工作状态和工作点。

二、教学重点和难点1. 三极管的基本结构和工作原理;2. 三极管的静态特性和动态特性。

三、教学内容1. 三极管的基本结构和工作原理(1)三极管的结构三极管由三个掺杂不同的半导体材料层叠而成,分别是发射区、基区和集电区。

其中,发射区和集电区是P型半导体,基区是N型半导体。

(2)三极管的工作原理三极管是一种受控电流源,通过控制输入端的电流来控制输出端的电流。

当在基极施加正向偏置电压时,发射结和基结之间的电压将变得很小,使得发射结极易导通,此时三极管处于放大状态;当在基极施加反向偏置电压时,发射结和基结之间的电压将变得很大,使得发射结极难导通,此时三极管处于截止状态。

2. 三极管的基本参数和特性(1)三极管的放大系数三极管的放大系数β是指输出电流与输入电流的比值,通常在数据手册中给出。

(2)三极管的最大耗散功率三极管在工作时会产生一定的热量,其最大耗散功率是指在规定的工作条件下,三极管能够耗散的最大功率。

(3)三极管的最大集电极-发射极电压三极管在工作时会有一定的电压放大效应,其最大集电极-发射极电压是指在规定的工作条件下,三极管能够承受的最大电压。

3. 三极管的工作状态和工作点(1)饱和状态当三极管的发射结和基结之间的电压足够小,使得发射结极易导通,此时三极管处于饱和状态,此时三极管的集电极-发射极电压较小,输出电流较大。

(2)截止状态当三极管的发射结和基结之间的电压足够大,使得发射结极难导通,此时三极管处于截止状态,此时三极管的集电极-发射极电压较大,输出电流较小。

(3)工作点三极管的工作点是指在输入特定的电压和电流条件下,三极管的静态工作状态。

在实际电路中,需要通过适当的电路设计来确定三极管的工作点,以保证其正常工作。

四、教学方法1. 讲授法:通过讲解三极管的基本结构、工作原理和特性,让学生掌握相关知识;2. 案例分析法:通过实际案例分析,让学生理解三极管的工作状态和工作点;3. 实验演示法:通过实际的实验演示,让学生直观地感受三极管的特性和工作原理。

三极管基本认识(教案)

三极管基本认识(教案)第一篇:三极管基本认识(教案)【教学内容】晶体三极管教案本课学习的是“中等职业教育规划教材”电子工业出版《电子技术基础》的第一章第三节的第一部分内容。

这节课内容包括三极管的结构,三极管的类型符号、三极管的分类方法和三极管的放大作用。

【地位和作用】这节课是在学生学习了半导体、PN结和二极管之后安排的,也是为今后学习三极管工作原理打下理论基础。

三极管是电子电路中最重要的电子元器件。

【教学目标】1.知识目标:①、了解三极管的概念、分类、符号。

②、掌握晶体三极管的结构及类型的判断。

③、了解三极管内部载流子的运动。

④、掌握晶体三极管的电流放大作用。

2.能力目标:①培养学生分析问题及解决问题的能力。

②培养学生的实际动手操作能力。

③激发学生创新精神和创造思维,以达到知识探索、能力培养、素质提高的目的。

3.情感目标:①激发学生学习这门课程的兴趣及热情,学以致用。

②培养学生事实求是的科学态度和一丝不苟的严谨作为和主动探索的精神【课堂类型】精讲型(理论基础课)【教学重/难点】重点:三极管的结构及类型的判断,三极管电流的放大条件。

难点:晶体三极管的电流放大作用及内部载流子的运动。

【学生情况分析】学生基础相对薄弱,初中刚刚毕业,且物理学习成绩很差。

【教学工具】教材电子元器件三极管若干个粉笔【教学方法】引导思考法互动教学法类比推理法【课时安排】二节课【教学过程】一、课前复习1、PN结①提问:什么是PN结?答:把P型半导体和N型半导体制作在同一硅片或锗片上,所形成的交接面。

②提问:PN结具有什么特性?答:单向导电性2、二极管③提问:二极管与PN结有什么联系?答:PN结用外壳材料封装起来,并加上电极引线就形成了二极管。

P区接阳极,N区接阴极。

④提问:二极管的导电性是否与PN结一样了?答:是二、新课导入如图所示是一个扩音器的示意图:声音信号转换为电信号声音放大电路电信号转换为声音信号声音话筒图 1 扩音器示意图扬声器其中如图所示:话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章三极管基础知识
共射放大
若 vI = 20mV 使 iB = 20 uA 设 = 0.98
则 iC iB
1 iB 0 .98 mA
IC +iC
+
IB +iB b
c
RL vO
+
+ VBE+vBE e
vI
-
-
1k VCC
VBB
IE +iE
共射极放大电路
vO = -iC• RL = -0.98 V,
IC IE
• 共基交流电流放大倍数定义为
iC iE
• 同样,一般情况下
• 和 的关系为



第一章三极管基=础知识
1
1
1.4.2三极管的电流放大倍数
为电流放大系数,它只与管子的结构尺 寸和掺杂浓度有关,与外加电压无关。一般
= 0.90.99
是另一个电流放大系数,同样,它也只
与管子的结构尺寸和掺杂浓度有关,与外加电
第一章三极管基础知识
1.4.2 BJT的放大系数
1. 电流放大系数
(2) 共发射极交流电流放大系数 =IC/IBvCE=const
第一章三极管基础知识
1.4.2三极管的电流放大倍数
• 集电极直流电流IC与基极直流电流IB之比称为共射直 流电流放大倍数 IC IB、发射极直流电
则 iC = iE = 0.98 mA, vO =iC• RL = 0.98 V,
电压放大倍数
AV第一 章vv三O I极管02基.础90知8V m 识 V49
4. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示。 共集电极接法,集电极作为公共电极,用CC表示;
压无关。一般 >> 1
第一章三极管基础知识
1.4.4三极管的工作状态
• 1. 放大状态
• 三极管处于放大VCC大于VBB,并且发射结正向偏置、集电结反 向偏置。此时称放大状态。
• 2. 饱和状态
• VCC小于VBB,并且发射结和集电结都是正向偏置。涌入到基区 的电子中只有极少部分与空穴复合,形成基极电流IB,绝大部 分扩散到基区的电子堆积在发射结和集电结附近,使发射结和 集电结上的势垒加宽,阻止了发射区和集电区的自由电子进一 步扩散到基区,由此可见,此时三极管没有放大能力。此种状 态称三极管处于饱和状态。
电压放大倍数
AV 第vv一O I章三极管2基0础.09知m 识8VV49
1.4 半导体三极管
三极管的电流放大表现为小的基极电流变化,引起 较大的集电极电流变化。
第一章三极管基础知识
1.4.2 BJT的放大系数
1. 电流放大系数 (1)共发射极直流电流放大系数 =(IC-ICEO)/IB≈IC / IB vCE=const
流 IE(+ 1)IB

集电极交流电流i C 与基极交流电流
流电流放大倍数,用表示
i
之比称为共射交
B
• 一般情况下
iC iB
第一章三极管基础知识
1.4.2三极管的电流放大倍数
• 当以发射极直流电流IE作为输入电流,以集电极直流 电流IC作为输出电流时,IC与IE之比称为共基直流电
流放大倍数,用 表示
1.4 半导体三极管(BJT)
第一章三极管基础知识
1.4 半导体三极管(BJT)
第一章三极管基础知识
结构特点:
• 发射区的掺杂浓度最高; • 集电区掺杂浓度低于发射区,且面积大; • 基区很薄,一般在几个微米至几十个微米,且
掺杂浓度最低。
第管一章芯三结极管构基剖础面知识图
1.4.1 BJT的电流分配与放大原理
第一章三极管基础知识
1.5 三极管的共射特性曲线及主要参数
1. 5.1 输入特性曲线
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
第一章三极管基础知识
1.4.4三极管的工作状态
• 3. 截止状态
• VBB小于发射结的开启电压,则发射结处于零偏置或反偏置, 集电结反向偏置。由于外加电压没有达到发射结的开启电压, 使发射区的自由电子不能越过发射结达到基区,不能形成电流, 从而发射极、集电极和基极的电流都很小,也就谈不上放大了。 此时称三极管处于截止状态。
以上看出,三极管内有两种载流子 (自由电子和空穴)参与导电,故称为双极 型三极管。或BJT (Bipolar Junction Transistor)。
第一章三极管基础知识
2. 电流分配关系

传输到集电极的电 发射极注入电流
流根据传输过程可知
IE=IB+ IC
则有 IC
IE
为电流放大系数,它
vCCEE = 0V vCE 1V
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
第一章三极管基础知识
1.5 三极管的共射特性曲线及主要参数
1. 5.1 输入特性曲线
(3) 输入特性曲线的三个部分 ①死区 ②非线性区 ③线性区
第一章三极管基础知识
只与管子的结构尺寸和掺 杂浓度有关,与外加电压
无关。一般 = 0.90.99
第一章三极管基础知识 载流子的传输过程
3. 放大作用
IE +iE e
c IC +iC
+
vI -
VEB+vEB
b IB +iB
+
vO RL 1k
-
VEE
VCC
图 03.1.05 共基极放大电路
若 vI = 20mV 使 iE = 1 mA, 当 = 0.98 时,
三极管的放大作用是在一定的外部条件控制下,通 过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
1. 内部载流子的传输过程
发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子
(以NPN为例)
第一章三极管基础知识 载流子的传输过程
第一章三极管基础知识
1.4.3 BJT的电流分配与放大原理
1.4 半导体三极管(BJT)
表发示射(极型E,m:半发Ni用tP导t射eNEr体)区型或三;和e 极PN管P的型结。集构电示区表意集示图电(如极C图o,所lle用示ctCo。r或)它c。有两种类
基区 基发极射,结用(BJe或) b表示集(电Ba结se()Jc)
三极管符号
两种类型的三极管
第一章三极管基础知识
相关文档
最新文档