2019-2020学年江苏省泰州市兴化市板桥中学八年级(上)第一次月考数学试卷 (含答案)
2020年江苏省泰州市兴化市八年级(上)第一次月考数学试卷

第一次月考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共18.0分)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个2.已知等腰三角形的一个角是100°,则它的顶角是()A. 40°B. 60°C. 80°D. 100°3.在下列各组条件中,不能说明△ABC≌△DEF的是()A. AB=DE,∠B=∠E,∠C=∠FB. AC=DF,BC=EF,∠A=∠DC. AB=DE,∠A=∠D,∠B=∠ED. AB=DE,BC=EF,AC=DF4.直角三角形三条边的垂直平分线的交点位于这个三角形的()A. 外部B. 内部C. 斜边上D. 不能确定5.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A. 如果∠C-∠B=∠A,则△ABC是直角三角形B. 如果c2=b2-a2,则△ABC是直角三角形C. 如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D. 如果a2+b2≠c2,则△ABC不是直角三角形6.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A. 1个B. 4个C. 7个D. 10个二、填空题(本大题共10小题,共30.0分)7.5、12、m是一组勾股数,则m=______.8.角是轴对称图形,______是它的对称轴.9.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=______.10.一个等腰三角形的两边长分别为2和5,则它的周长为______.11.已知三角形ABC中∠C=90°,AC=3,BC=4,则斜边AB上的高为______ .12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=______.13.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=18°,则∠C的度数为______.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于______.15.如图,点I为△ABC的三个内角的角平分线的交点,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为______.16.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是______.三、计算题(本大题共1小题,共10.0分)17.如图,在△ABC中,已知AB=AC=5,AD平分∠BAC,E是AC边的中点.(1)求DE的长;(2)若AD的长为4,求△DEC的面积.四、解答题(本大题共9小题,共92.0分)18.已知直线l及其两侧两点、B,如图.(1)在直线l上求作一点P,使PA=PB;(写出简单的作图过程)(2)在直线l上求作一点Q,使l平分∠AQB.(写出简单的作图过程)19.直角△ABC中,∠C=90°,AD是△ABC的一条角平分线.(1)若∠B=40°,求∠ADB的度数;(2)若DC=3,AB=5,求△ABD的面积.20.已知:如图,AD、BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.21.已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.22.如图,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4,(1)直接写出AC2=______,AB2=______;(2)△ABC是直角三角形吗?证明你的结论.23.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明以灵感,他惊喜地发现,当四个全等的直角三角形如图摆放时,可以用“面积法”来推导明a2+b2=c2.请你写出推导过程.25.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.26.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C、D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=28°,且EB=EC,则∠DEB=______°,∠AEC=______°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.答案和解析1.【答案】C【解析】解:第一个、第二个、第四个图形是轴对称图形,共3个.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】【分析】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.3.【答案】B【解析】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】C【解析】解:因为三条边的垂直平分线的交到三个顶点的距离相等,这个点是三角形的外心,直角三角形的外心是斜边的中点,故选:C.根据三条边的垂直平分线的交到三个顶点的距离相等,即可判断.本题考查线段的垂直平分线的性质,三角形的外心的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】D【解析】解:A、∠C-∠B=∠A,即∠A+∠B=∠C,又∵∠A+∠B+∠C=180°,则∠C=90°,那么△ABC是直角三角形,故说法正确;B、c2=b2-a2,即a2+c2=b2,那么△ABC是直角三角形且∠B=90,故说法正确;C、∠A:∠B:∠C=1:2:3,又∵∠A+∠B+∠C=180°,则∠C=90°,则△ABC是直角三角形,故说法正确;D、a=3,b=5,c=4,32+52≠42,但是32+42=52,则△ABC可能是直角三角形,故说法错误.故选:D.根据勾股定理的逆定理以及三角形的内角和定理即可作出判断.本题考查了勾股定理的逆定理和三角形的内角和定理,熟练掌握勾股定理,由三边满足的关系确定斜边、直角是解决问题的关键.6.【答案】D【解析】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.7.【答案】13【解析】解:当12是最长边时,52+m2=122,m=(舍去)当m是最长边时,m2=52+122,m=13.故答案是:13.分类讨论:12是最长边;m是最长边.考查了勾股数,欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.8.【答案】角平分线所在的直线【解析】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.根据角的对称性解答.本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.9.【答案】9【解析】解:∵两个三角形全等,∴x=4,y=5,∴x+y=4+5=9.故答案为:9.根据全等三角形对应边相等求出x、y的值,然后相加即可得解.本题考查了全等三角形的性质,比较简单,准确确定对应边是解题的关键.10.【答案】12【解析】【分析】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.11.【答案】【解析】解:在Rt△ABC中由勾股定理得:AB===5,由面积公式得:S△ABC=AC•BC=AB•CD∴CD===.故斜边AB上的高CD为.故答案为:.先用勾股定理求出斜边AB的长度,再用面积就可以求出斜边上的高.此题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.12.【答案】55°【解析】【分析】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为55°.13.【答案】36°【解析】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=18°,∴∠AEB=72°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=36°.故答案为36°.利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=18°,推出∠AEB,∠AEB=∠EAC+∠C=2∠C.此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.14.【答案】70°或20°【解析】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B===70°;②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,∴∠B=∠C==20°.故答案为:70°或20°.此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A 为钝角时,∠B等于20°.此题考查了等腰三角形的性质及线段垂直平分线的性质;分类讨论的应用是正确解答本题的关键.15.【答案】4【解析】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故答案为:4.连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.16.【答案】【解析】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=,故答案为首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.17.【答案】解:(1)∵AB=AC,AD平分∠BAC,∴AD⊥BC,又E是AC边的中点,∴DE=AC=2.5;(2)在Rt△ADC中,DC==3,∴△DAC的面积=×AD×DC=6,∵E是AC边的中点,∴△DEC的面积=×△DAC的面积=3.【解析】(1)根据等腰三角形的三线合一得到AD⊥BC,根据直角三角形的性质计算;(2)根据勾股定理求出DC,求出△DAC的面积,根据三角形的中线的性质计算.本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.【答案】解:(1)①分别以A,B为圆心大于AB为半径化弧,②两弧相交,再连接两交点,得出与直线l的交点P,即可得出答案;(2)①作点A关于l的对称点A′;②连接BA′并延长交l于点Q,点Q即为所求,此时使l平分∠AQB.【解析】(1)作线段AB的垂直平分线与l的交点即为所求;(2)作点A关于l的对称点A′,连接BA′并延长交l于点Q,点Q即为所求.本题主要考查了线段的垂直平分线及轴对称的运用,需用仔细分析题意结合图形才能解决问题.19.【答案】解:(1)∵∠C=90°,∠B=40°,∴∠BAC=50°,又∵AD是△ABC的一条角平分线,∴∠BAD=25°,∴△ABD中,∠ADB=180°-∠B-∠BAD=180°-40°-25°=115°;(2)如图所示,过D作DE⊥AB于E,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴CD=DE=3,又∵AB=5,∴S△ABD=AB×DE=×5×3=.【解析】(1)依据三角形内角和定理以及角平分线的定义,即可得到∠ADB的度数;(2)过D作DE⊥AB于E,依据角平分线的的性质即可得出DE的长,再根据三角形面积计算公式进行计算即可.本题主要考查了勾股定理以及角平分线的性质,解题时注意:角的平分线上的点到角的两边的距离相等.20.【答案】证明:∵AB∥CD,∴∠A=∠D在△AOB和△DOC中,,∴△AOB≌△DOC(ASA).∴AB=CD.【解析】只要证明△AOB≌△DOC(ASA),即可解决问题.本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.21.【答案】证明:法一:∵AD=AE,∴∠ADC=∠AEB,∵BD=CE,∴BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AB=AC.法二:过点A作AF⊥BC于F,∵AD=AE,∴DF=EF(三线合一),∵BD=CE,∴BF=CF,∴AB=AC(垂直平分线的性质).【解析】可由SAS求证△ABE≌△ACD,即可得出结论.本题主要考查了全等三角形的判定及性质问题,应熟练掌握.22.【答案】5 20【解析】解:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ACD中,AD=2,CD=1,∴AC2=AD2+CD2=5;在Rt△ABD中,AD=2,BD=4,∴AB2=AD2+BD2=20.故答案为:5;20.(2)BC=BD+CD=5.∵5+20=52,即AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形.(1)由AD⊥BC可得出∠ADC=∠ADB=90°,在Rt△ACD和Rt△ABD中,利用勾股定理可求出AC2,AB2的值;(2)由BC=BD+CD可求出BC的长,由各边的长度可得出AC2+AB2=BC2,进而可证出△ABC是直角三角形.本题考查了勾股定理以及勾股定理的逆定理,解题的关键是:(1)利用勾股定理求出AC2,AB2的值;(2)利用AC2+AB2=BC2,找出∠BAC=90°.23.【答案】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.【解析】连接BE、DE,根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=AC,再根据等腰三角形三线合一的性质证明.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线是解题的关键.24.【答案】证明:∵S五边形面积=S梯形面积1+S梯形面积2=S正方形面积+2S直角三角形面积,即:(b+a+b)•b+(a+a+b)•a=c2+2×ab,即ab+b2+a2+ab=c2+ab,即:a2+b2=c2.【解析】根据S五边形面积=S梯形面积1+S梯形面积2=S正方形面积+2S直角三角形面积即可求解.本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.25.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS);(2)①解:在△BCF和△DCG中,,∴△BCF≌△DCG(SAS);∴∠CBF=∠CDG,在△BCF和△DHF中,∵∠BFC=∠DFH,∴∠DHF=∠ACB=60°;②证明:如图(2)所示:由(1)得:△ABC≌△EDC,∴∠DEC=∠A,∵∠ACB=∠ECD=60°,∴∠ECM=60°,∵EB平分∠DEC,∴∠DEC=2∠1,∵∠ECM=∠2+∠1=60°,∠DCM=∠A+∠ABC=120°,∴∠A+∠ABC=2(∠2+∠1)=2∠2+2∠1=2∠2+∠A,∴∠ABC=2∠2,∴BE平分∠ABC.【解析】(1)由角平分线定义得出∠ACB=∠ECD,由SAS证明△ABC≌△EDC即可;(2)①由SAS证明△BCF≌△DCG,得出∠CBF=∠CDG,在△BCF和△DHF中,由三角形内角和定理得出∠DHF=∠ACB=60°即可;②由全等三角形的性质得出∠DEC=∠A,由三角形的外角性质得出∠ECM=∠2+∠1=60°,∠DCM=∠A+∠ABC=120°,得出∠A+∠ABC=2(∠2+∠1)=2∠2+2∠1=2∠2+∠A,即可得出结论.本题考查了全等三角形的判定与性质、三角形内角和定理、对顶角相等的性质以及三角形的外角性质等知识;本题综合性强,证明三角形全等是解决问题的关键.26.【答案】56 96【解析】(1)解:∵∠EBC=28°,EB=EC,∴∠EBC=∠ECB=28°,∵∠DEB是△BCE的外角,∴∠DEB=∠EBC+∠ECB=56°,∵CD平分∠ACB,∴∠ACE=∠BCE=28°,∵∠EAC=2∠EBC,∴∠EAC=56°,∴△ACE中,∠AEC=180°-∠EAC-∠ACE=96°,故答案为:56;96;(2)①证明:如图2,在CB上截取CF,使CF=CA,连接EF,∵CD平分∠ACB,∴∠ACE=∠FCE,在△ACE和△FCE中,,∴△ACE≌△FCE(SAS),∴∠EAC=∠EFC,AE=FE,∵∠EAC=2∠EBC,∴∠EFC=2∠EBC,∴∠EFC=∠EBC,∴BF=EF=AE,∴BC=BF+CF=AE+AC;②解:如图3,在CB上截取CF,使CF=CA,连接EF、AF,∵∠ECA=∠ECB=30°,∴∠ACF=60°,又AC=FC,∴△ACF是等边三角形,∴AF=AC,∠FAC=60°,∵AC=BE,∴BE=AF,在△BFE和△AEF中,,∴△BFE≌△AEF(SSS),∴∠EBC=∠FAE,∵∠FAE+∠CAE=60°,∴∠EBC+∠CAE=60°,∵∠EAC=2∠EBC,∴∠EBC=20°.(1)根据等腰三角形的性质得到∠EBC=∠ECB=28°,根据角平分线的定义得到∠DEB=∠EBC+∠ECB=56°,根据角平分线的性质得到∠ACD=∠ECB=28°,根据∠EAC=2∠EBC=56°、三角形内角和定理计算即可;(2)①在CB上截取CF,使CF=CA,连接EF,根据全等三角形的性质推出AE=FE,根据FB=FE,得到AE=FB,得出AE+AC=FB+FC=BC;②在CB上截取CF,使CF=CA,连接EF、AF,由∠ECB=30°,得到∠ACB=60°,得到△AFC 是等边三角形,通过三角形全等得到∠EBC=∠FAE,由∠FAC=60°,得到∠EAC=2∠EBC=2∠FAE,求出∠EBC的度数.本题考查的是全等三角形的判定与性质、角平分线的性质、等边三角形的性质、三角形的外角的性质,正确作出辅助线,构造全等三角形和等边三角形是解题的关键.。
2020年湖北省武汉市洪山区八年级(上)期中数学试卷

期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.第七届世界军人运动会在武汉(WUHAN)举行.下列代表武汉的字母图形中不是轴对称图形的是()A. WB. UC. HD. N2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 12cm,12cm,20cm3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A. 三条角平分线的交点B. 三边垂直平分线的交点C. 三条高的交点D. 三条中线的交点4.如图,给出下列四组条件,其中,不能使△ABC≌△DEF的条件是()A. AB=DE,BC=EF,AC=DFB. AB=DE,∠B=∠E,BC=EFC. ∠B=∠E,BC=EF,∠C=∠FD. AB=DE,AC=DF,∠B=∠E5.如图,要在三条交错的公路区域附近修建一个物流公司仓库,使仓库到三条公路的距离相等,则可以选择的地址有()处.A. 1B. 2C. 3D. 46.如图,在△ABC中,AB=AC,AD=AE,则∠1与∠2的关系是()A. ∠1=2∠2B. ∠1+∠2=90°C. ∠1+2∠2=180°D. 2∠1+∠2=180°7.等腰三角形的两边长为6cm和8cm,则它的周长为()A. 20cmB. 22cmC. 20cm或22cmD. 18cm、20cm或22cm8.如图,平面直角坐标系中,已知定点A(3,0)和B(0,4),若动点C在y轴上运动,则使△ABC为等腰三角形的点C有()个.A. 3B. 4C. 5D. 69.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADB=30°,EH=2cm,则BC的长度为()cm.A. 8B. 7C. 6D. 510.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是()A. 16B. 19C. 20D. 21二、填空题(本大题共6小题,共18.0分)11.在平面直角坐标系中,点P(-2,3)关于x轴对称的点P1的坐标是______.12.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.13.等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为______°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边的中点,M为线段EF上一动点,则BM+DM的最小值为______.15.如图Rt△ACB中,∠ACB=90°,AC=6,BC=8,AI平分∠CAB,BI平分∠ABC,过点I作IG⊥AB于G,若BG=6,则△ABI的面积为______.16.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为______.三、解答题(本大题共8小题,共72.0分)17.如图,AC∥BD,AC=BD,点E、F在AB上,且AE=BF,求证:DE=CF.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图,在四边形ABCD中,已知∠BAD=∠BCD=90°,AB=AD,点E在CD的延长线上,∠BAC=∠DAE,探究AC与AE的数量关系与位置关系,并说明理由.20.如图所示,在平面直角坐标系中,A(-1,4),B(-3,3),C(-2,1)(1)已知△A′B′C′与△ABC关于x轴对称,画出△A′B′C′,并写出以下各点坐标:A′______;B′______;C′______.(2)在y轴上作出点P(在图中显示作图过程),使得PA+PC的值最小,并写出点P的坐标______.21.如图1,△ABC中,CD为△ABC的中线,点E在CD上,且∠AED=∠BCD.(1)求证:AE=BC.(2)如图2,连接BE,若AB=AC=2DE,∠CBE=14°,则∠ACD的度数为______(直接写出结果),22.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.23.已知四边形ABCD是正方形,△DEF是等腰直角三角形,DE=DF,M是EF的中点.(1)如图1,当点E在AB上时,求证:点F在直线BC上.(2)如图2,在(1)的条件下,当CM=CF时,求证:∠CFM=22.5°(3)如图3,当点E在BC上时,若CM=2,则BE的长为______(直接写出结果)(注:等腰直角三角形三边之比为1:1:)24.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.(1)求m和n的值.(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN 交y轴于点N,且∠HAN=∠HBO,求NB-HB的值.答案和解析1.【答案】D【解析】解:A、W是轴对称图形,故本选项不合题意;B、U是轴对称图形,故本选项不合题意;C、H是轴对称图形,故本选项不合题意;D、N不是轴对称图形,故本选项符合题意.故选:D.根据轴对称图形的概念对各选项分析判断后利用排除法求解.本题考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:3+4<8,A不能摆成三角形;8+7=15,B不能摆成三角形;5+5<11,C不能摆成三角形;12+12>20,20-12<12,D能摆成三角形;故选:D.根据三角形三边关系定理判断即可.本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.3.【答案】B【解析】【分析】此题考查了线段垂直平分线的性质.此题比较简单,注意熟记定理是解此题的关键.由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选B.4.【答案】D【解析】【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL结合选项进行判定.【解答】解:A、∵AB=DE,BC=EF,AC=DF,∴可根据SSS判定△ABC≌△DEF;B、AB=DE,∠B=∠E,BC=EF,∴可根据SAS判定△ABC≌△DEF;C、∵∠B=∠E,BC=EF,∠C=∠F,∴可根据ASA判定△ABC≌△DEF;D、∵AB=DE,AC=DF,∠B=∠E,不能用SSA判定三角形的全等.故选D.5.【答案】D【解析】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.此题考查了角平分线的性质.此题难度适中,注意掌握角平分线上的点到角两边的距离相等定理的应用,注意数形结合思想的应用,小心别漏解.6.【答案】A【解析】解:∵AB=AC,AD=AE,∴∠B=∠C,∠AED=∠ADE,∵∠AED=∠C+∠2,∠ADE+∠2=∠1+∠B,∴∠C+2∠2=∠1+∠B,∴∠1=2∠2.故选:A.根据等腰三角形的性质可得到两组相等的角,再根据三角形外角的性质可表示出∠AED 和∠ADC,再根据角之间的关系即可得到∠1与∠2之间的关系.此题主要考查等腰三角形的性质及三角形外角的性质的综合运用.7.【答案】C【解析】解:当三边是8cm,8cm,6cm时,符合三角形的三边关系,此时周长是22cm;当三边是8cm,6cm,6cm时,符合三角形的三边关系,此时周长是20cm.因此等腰三角形的周长为22cm或20cm.故选:C.本题已知了等腰三角形的两边的长,但没有明确这两边哪边是腰,哪边是底,因此要分类讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.【答案】B【解析】解:如图所示:当BC=BA时,使△ABC为等腰三角形的点C有2个;当AB=AC时,使△ABC为等腰三角形的点C有1个;当CA=CB时,使△ABC为等腰三角形的点C有1个;综上所述,若动点C在y轴上运动,使△ABC为等腰三角形的点C有4个;故选:B.由等腰三角形的判定进行分类讨论,即可得出答案.本题考查了等腰三角形的判定,坐标与图形性质的应用;熟练掌握等腰三角形的判定,注意分类讨论思想的应用.9.【答案】C【解析】解:∵四边形ABCD是矩形,∴AD∥BC,∠C=90°,∴∠ADB=∠DBC=30°,∵将一块长方形纸片ABCD沿BD翻折后,∴∠E=∠C=90°,∠EBD=∠DBC=30°,BC=BE,∴∠ADB=DBE=30°,∴BH=HD,∠EHD=∠ADB+∠DBE=60°,∴∠EDH=30°,且∠E=90°,∴DH=2HE=4cm,∴BH=4cm,∴BE=6cm,∴BC=6cm,故选:C.由折叠的性质可得∠E=∠C=90°,∠EBD=∠DBC=30°,BC=BE,由平行线的性质可得BH=HD,由直角三角形的性质可得DH=2HE=4cm,即可求解.本题考查了翻折变换,矩形的性质,等腰三角形的判定和性质,证明BH=DH是本题的关键.10.【答案】B【解析】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.作点A关于CM的对称点A′,作点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.本题主要考查了翻折变换的运用,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.11.【答案】P1(-2,-3)【解析】解:∵P(-2,3)与P1关于x轴对称,∴横坐标相同,纵坐标互为相反数,∴P1的坐标为(-2,-3).故答案为(-2,-3).根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;则P1的坐标为(-2,-3).此题主要考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律,注意结合图象,进行记忆和解题.12.【答案】7【解析】【分析】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.设这个多边形的边数为n,根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.故答案为7.13.【答案】50或130【解析】解:①当为锐角三角形时可以画图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时可画图为,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°;故填50°或130°.读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.此题考查了等腰三角形的性质及三角形内角和定理;做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.14.【答案】6cm【解析】解:连接AD,如图.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴BM=AM,又∵AD≤AM+MD,∴AD的长为BM+MD的最小值,∴BM+DM最小值为6cm.故答案为:6cm.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF 的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.15.【答案】10【解析】解:在Rt△ABC中,AB==10,∵AI平分∠CAB,BI平分∠ABC,∴I点到三角形三边的距离相等,设此距离为x,∵S△AIB+S△BIC+S△AIC=S△ABC,∴×x×10+×x×8+×x×6=×6×8,解得x=2,即IG=2,∴S△ABI=×2×10=10.故答案为10.先利用勾股定理计算出AB=10,再根据角平分线的性质得到I点到三角形三边的距离相等,设此距离为x,利用三角形面积公式×x×10+×x×8+×x×6=×6×8,解得x=2,即IG=2,然后利用三角形面积公式求解.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.16.【答案】30°【解析】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°-∠CBD-∠DCA-∠ACB=180°-23°-53°-74°=30°.故答案为:30°延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC 的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.17.【答案】证明:∵AC∥BD,∴∠A=∠B,∵AE=BF,∴AF=BE,在△ACF和△BDE中∴△ACF≌△BDE(SAS),∴DE=CF.【解析】由AE=BF可求得AF=BE,由AC∥BD可得∠A=∠B,利用SAS可证明△ACF≌△BDE,可证明DE=CF.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.【答案】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°-∠C=18°.【解析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.此题考查等腰三角形的性质,关键是此题主要是三角形内角和定理的运用.三角形的内角和是180°.19.【答案】解:AC=AE,AC⊥AE;理由:如图,∵∠BAD=∠BCD=90°,∴∠ABC+∠ADC=180°,∵∠ADE+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(ASA)∴AC=AE,∠BAC=∠DAE,∵∠BAC+∠CAD=∠DAE+∠CAD=90°,∴∠CAE=90°,∴AC⊥AE.【解析】根据三角形的判定定理ASA即可证得△ABC≌△ADE,由此即可解决问题.本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】(-1,-4)(-3,-3)(-2,-1)(0,3)【解析】解:(1)如图所示,△A′B′C′即为所求.由图知A′(-1,-4)、B′(-3,-3),C′(-2,-1),故答案为:(-1,-4)、(-3,-3)、(-2,-1);(2)如图所示,点P即为所求,其坐标为(0,3),故答案为:(0,3).(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接可得答案;(2)作点C关于y轴的对称点C″,连接AC″,与y轴的交点即为所求点P.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点及两点之间线段最短的运用.21.【答案】28°【解析】证明:(1)如图1,延长CD到F,使DF=CD,连接AF,∵CD为△ABC的中线,∴AD=BD,且∠ADF=∠BDC,且CD=DF,∴△ADF≌△BDC(SAS),∴AF=BC,∠F=∠BCD,∵∠AED=∠BCD,∴∠AED=∠F,∴AE=AF,∴AE=BC;(2)∵DE=AB,CD为△ABC的中线,∴DE=AD=DB,∴∠DEB=∠DBE,∴∠ABC=∠DBE+∠CBE=∠DEB+14°,∵∠DEB=∠DCB+∠CBE,∴∠DCB=∠DEB-14°,∵AC=AB,∴∠ACB=∠ABC=∠DEB+14°∴ACD=∠ACB-∠DCB=28°,故答案为:28°.(1)如图1,延长CD到F,使DF=CD,连接AF,由“SAS”可证△ADF≌△BDC,可得AF=BC,∠F=∠BCD,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得∠DEB=∠DBE,可得∠DCB=∠DEB-14°,∠ACB=∠ABC=∠DEB+14°,即可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,外角的性质,添加辅助线构造全等三角形是本题的关键.22.【答案】(1)证明:过点D分别作AC,CE的垂线,垂足分别为M,N,∵CF是△ABC的外角∠ACE的角平分线,∴DM=DN,在Rt△DAM和Rt△DBN中,,∴Rt△DAM≌Rt△DBN(HL),∴∠DAM=∠DBN,∴∠ACB=∠ADB;(2)证明:由(1)知DM=DN,在Rt△DMC和Rt△DNC中,,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【解析】(1)过点D分别作AC,CE的垂线,垂足分别为M,N,证明Rt△DAM≌Rt△DBN,得出∠DAM=∠DBN,则结论得证;(2)证明Rt△DMC≌Rt△DNC,可得CM=CN,得出AC+BC=2BN,又BN<BD,则结论得证;(3)在AC上取一点P,使CP=CD,连接DP,可证明△ADP≌△BDC,得出AP=BC,则结论可得出.本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】2【解析】(1)证明:∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠A=∠BCD=∠ADC=90°,∵△DEF是等腰直角三角形,∴∠EDF=90°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠A=∠DCF=90°,∴点E在直线BC上;(2)证明:作EN∥CM交BC于N,如图2所示:∵M是EF的中点,EN∥CM,∴CM是△EFN的中位线,∠BCM=∠BNE,∴CN=CF,由(1)得:△ADE≌△CDF,∴AE=CF,∴AE=CN,∴BE=BN,∴△BEN是等腰直角三角形,∴∠BNE=45°,∴∠BCM=45°,∵CM=CF,∴∠CMF=∠CFM=∠BCM=22.5°;(3)解:过点F作FG⊥BC于G,FQ⊥AD于Q,则四边形CGQD为矩形,过点E作EH⊥AD于H,则EH=AB=CD,作FN∥CM交CG于N,如图3所示:∵∠EDF=90°,∴∠HDE+∠QDF=90°,∵∠HDE+∠HED=90°,∴∠QDF=∠HED,在△QDF和△HED中,,∴△QDF≌△HED(AAS),∴EH=DQ,∴DQ=CD,∴矩形CGQD是正方形,∴CG=BC,∵M是EF的中点,FN∥CM,∴CM是△ENF的中位线,∴∠GCM=∠GNF,NF=2CM=4,CE=CN,∴BE=NG,连接DM、GM,则DM是Rt△EDF的中线、GM是Rt△EGF的中线,∴DM=EF,GM=EF,∴DM=GM,在△CMD和△CMG中,,∴△CMD≌△CMG(SSS),∴∠DCM=∠GCM=∠DCG=45°,∴∠GNF=45°,∴△NGF是等腰直角三角形,∴NG=NF=2,故答案为:2.(1)易证∠ADE=∠CDF,由SAS证得△ADE≌△CDF,得出∠A=∠DCF=90°,即可得出结论;(2)作EN∥CM交BC于N,则CM是△EFN的中位线,∠BCM=∠BNE,得出CN=CF,由△ADE≌△CDF,得出AE=CF,推出AE=CN,BE=BN,则△BEN是等腰直角三角形,得出∠BNE=45°,∠BCM=45°,由CM=CF,得出∠CMF=∠CFM=∠BCM=22.5°;(3)过点F作FG⊥BC于G,FQ⊥AD于Q,则四边形CGQD为矩形,过点E作EH⊥AD 于H,则EH=AB=CD,作FN∥CM交CG于N,易证∠QDF=∠HED,由AAS证得△QDF≌△HED(AAS),得出EH=DQ,即DQ=CD,则矩形CGQD是正方形,得出CG=BC,易证CM是△ENF的中位线,得出∠GCM=∠GNF,NF=2CM=4,CE=CN,则BE=NG,连接DM、GM,则DM是Rt△EDF的中线、GM是Rt△EGF的中线,得出DM=GM,由SSS证得△CMD≌△CMG,得出∠DCM=∠GCM=∠DCG=45°,证得△NGF是等腰直角三角形,即可得出结果.本题是四边形综合题,主要考查了正方形的判定与性质、矩形的判定与性质、三角形中位线定理、直角三角形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;通过作辅助线构建全等三角形是解题的关键.24.【答案】解:(1)由题意,解得.(2)如图2中,由(1)可知,A(-4,0),B(0,2),D(-4,4),∴AD=OA=4,OB=2,AB=BD=2,∵AC=OC=2,∴AC=OB,∵∠DAC=∠AOB=90°,AD=OA,∴△DAC≌△AOB(SAS),∴∠ADC=∠BAO,∵∠ADC+∠ACD=90°,∴∠EAC+∠ACE=90°,∴∠AEC=90°,∵AF⊥BD,DE⊥AB,∴S△ADB=•AB•AE=•BD•AF,∵AB=BD,∴DE=AF.(3)解:如图,取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,∵AG=BG,∴∠GAB=∠GBA,∵G为射线AD上的一点,∴AG∥y轴,∴∠GAB=∠ABC,∴∠ACB=∠EBA,∴180°-∠GBA=180°-∠ACB,即∠ABG=∠ACN,∵∠GAN=∠GBO,∴∠AGB=∠ANC,在△ABG与△ACN中,,∴△ABH≌△ACN(AAS),∴BF=CN,∴NB-HB=NB-CN=BC=2OB,∵OB=2∴NB-FB=2×2=4(是定值),即当点H在GB的延长线上运动时,NB-HB的值不会发生变化.【解析】(1)构建方程组即可解决问题.(2)首先证明△DAC≌△AOB,推出AB⊥CD,再利用面积法证明DE=AF.(3)如图,取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明△ABH≌△ACN(AAS),利用全等三角形的性质即可解决问题.本题属于四边形综合题,考查了全等三角形的判定与性质,等腰三角形的判定和性质,三角形的面积等知识,教育的关键是正确寻找全等三角形解决问题,学会利用面积法证明线段相等.。
江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷 含解析

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.23.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9二、填空题(本大题共10小题,每小题3分,共30分)7.某人的身份证号码是320106************,此人的生日是月日.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.12.的平方等于25,立方得﹣8的数是.13.若|x﹣2|+(y+3)2=0,则y x=.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c=.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是.三、解答题(本大题共10小题,共102分)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ },无理数集合:{ },整数集合:{ },分数集合:{ }.18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]21.计算:(1)(2)﹣1+2﹣3+4…﹣2019+202022.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是.(2)上海、纽约与悉尼的时差分别为(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是.(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|=.参考答案与试题解析一.选择题(共6小题)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【分析】只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣3的相反数是3.故选:B.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.2【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:0,﹣3是整数,属于有理数;﹣1.2是有限小数,属于有理数,∴无理数的是1.1010010001…,故选:C.3.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】各式计算得到结果,即可作出判断.【解答】解:①(﹣3)+(﹣9)=﹣12,符合题意;②0﹣(﹣5)=0+5=5,不符合题意;③(﹣)=﹣,符合题意;④(﹣36)÷(﹣9)=4,不符合题意,故选:B.4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数【分析】数轴上的点与实数一一对应,不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.【解答】解:数轴上的点不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.故选:D.5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9【分析】可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2019÷6=336…3,所以a2017=a3=1.故选:A.二.填空题(共10小题)7.某人的身份证号码是320106************,此人的生日是10 月17 日.【分析】身份证的第7﹣14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:身份证号码是320106************,第7﹣14位是:20071017,表示2007年10月17日出生故答案为:10,17.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为3×1012美元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000000000=3×1012美元.故答案为:3×1012美元.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是9 .【分析】由数轴上两点表示的数,利用数轴上两点间的距离公式即可求出线段AB的长度.【解答】解:∵数轴上两点A、B表示的数分别是2和﹣7,∴A、B两点间的距离为2﹣(﹣7)=9.故答案为:9.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=﹣1 .【分析】利用两数互为相反数,和为0;两数互为倒数,积为1,由此可解出此题.【解答】解:依题意得:a+b=0,cd=1,所以(a+b)﹣cd=0﹣1=﹣1.故答案为:﹣1.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是﹣4 .【分析】在4,﹣1,+2,﹣5这四个数中找出较小的三个数,再计算它们的和即可.【解答】解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.故答案为:﹣412.±5 的平方等于25,立方得﹣8的数是﹣2 .【分析】根据乘方的性质,可得答案.【解答】解:±5的平方等于25,立方得﹣8的数是﹣2,故答案为:±5,﹣2.13.若|x﹣2|+(y+3)2=0,则y x=9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c= 1 .【分析】根据|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,可以得到a、b、c的值,从而可以求得所求式子的值.【解答】解:∵|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,∴a=2,b=3,c=﹣4,∴a+b+c=2+3+(﹣4)=1,故答案为:1.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是1﹣π.【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案.【解答】解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是13 .【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,则在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.【解答】解:在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.故答案为:13三.解答题(共10小题)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ ﹣(﹣11)、、0.,、},无理数集合:{ ﹣5.0101001…(两个1间的0的个数依次多1个)},整数集合:{ +(﹣2),0,﹣(﹣11)…},},分数集合:{ ﹣0.314,,,0.,}.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:正有理数集合:{﹣(﹣11)、、0.,、…},无理数集合:{﹣5.0101001(两个1间的0的个数依次多1个)……},整数集合:{+(﹣2),0,﹣(﹣11)…},分数集合:{﹣0.314,,,0.,…}18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.【分析】将各数在数轴上表示出来,根据“在数轴上从右到左,数逐步减小”用“>”连接各数即可.【解答】解:将各数在数轴上表示出来,如图所示:∵在数轴上从右到左,数逐步减小,∴.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4)=4.20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]【分析】(1)根据有理数的乘法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)==2;(2)=﹣=﹣;(3)=﹣5×=﹣1;(4)﹣14﹣[2﹣(﹣3)2]=﹣1﹣(2﹣9)=﹣1﹣(﹣7)=﹣1+7=6.21.计算:(2)﹣1+2﹣3+4…﹣2019+2020【分析】(1)根据乘法的分配律解答即可;(2)先把数字分组:(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020),分组后得出规律每组都为1,算出有多少个1相加即可得出结果.【解答】解:(1)===12+18﹣30﹣27=﹣27;(2)﹣1+2﹣3+4…﹣2019+2020=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020)=1×1010=1010.22.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.【分析】(1)由题意x=±5,y=±2,由于xy<0,x=5,y=﹣2或x=﹣5,y=2,代入x+y即可求出答案.(2)由题意x=±5,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:因为|x|=5,|y|=2,所以x=±5,y=±2,(1)∵xy<0,∴x=5,y=﹣2或x=﹣5,y=2,∴x+y=±3,(2)当x=5,y=2时,x﹣y=5﹣2=3;当x=5,y=﹣2时,x﹣y=5﹣(﹣2)=7;当x=﹣5,y=2时,x﹣y=﹣5﹣2=﹣7;当x=﹣5,y=﹣2时,x﹣y=﹣5﹣(﹣2)=﹣3,所以x﹣y的最大值是7.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【解答】解:(1);(2)C村离A村的距离为9﹣3=6(km);(3)邮递员一共行驶了2+3+9+4=18(千米).24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.【分析】(1)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(2)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(3)根据题意和a⊕b=ab+a﹣b,可以求得b的值.【解答】解:(1)∵a⊕b=ab+a﹣b,∴3⊕(﹣4)=3×(﹣4)+3﹣(﹣4)=(﹣12)+3+4(2)∵a⊕b=ab+a﹣b,∴3⊕[(﹣2)⊕1]=3⊕[(﹣2)×1+(﹣2)﹣1]=3⊕[(﹣2)+(﹣2)﹣1]=3⊕(﹣5)=3×(﹣5)+3﹣(﹣5)=(﹣15)+3+5=﹣7;(3)∵(﹣3)⊕b与b互为相反数,∴(﹣3)×b+(﹣3)﹣b+b=0,解得,b=﹣1.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是10月1日上午12时.(2)上海、纽约与悉尼的时差分别为﹣2,﹣14 (正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【分析】(1)由统计表得出:悉尼时间比上海时间早2小时,也就是10月1日上午12时.(2)由统计表得出:上海比悉尼晚2个小时,所以时差为﹣2,纽约比悉尼晚14个小时,所以时差为﹣14;(3)先计算飞机到达机场时纽约的时间,即:(10+14)时(45+55)分,2018年9月2日1时40分,再根据时差计算结果即可.【解答】解:(1)由题意得:当上海是10月1日上午10时,悉尼时间是10月1日上午故答案为:10月1日上午12时;(2)上海与悉尼的时差是:﹣2;纽约与悉尼的时差是:﹣2﹣12=﹣14;故答案为:﹣2,﹣14;(3)由题意得:(10+14)时(45+55)分,即2018年9月2日1时40分,又知上海比纽约早12小时,所以到上海时是:9月2日13时40分;答:飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=﹣4或2 ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是8 .(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|= 6 .【分析】(1)根据题意可以求得数轴上表示4 和1的两点之间的距离和表示﹣3和2两点之间的距离;(2)根据|x+1|=3,可以求得x的值,本题得以解决;(3)根据题意可以求得a、b的值,从而可以求得A,B两点间的最大距离;(4)根据数轴上表示数a的点位于﹣4 与2之间,可以求得|a+4|+|a﹣2|的值.【解答】解:(1)数轴上表示4 和1的两点之间的距离是4﹣1=3,表示﹣3和2两点之间的距离是2﹣(﹣3)=5,故答案为:3,5;(2)∵|x+1|=3∴x+1=±3,解得,x=2或x=﹣4,故答案为:﹣4或2;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或a=1,b=﹣3或b=﹣1,∴当A为5,B为﹣3时,A,B两点间的距离最大,最大距离是5﹣(﹣3)=8,故答案为:8;(4)∵数轴上表示数a的点位于﹣4 与2之间,∴﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6.。
2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷解析版

2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷一.选择题(本大题共有6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)下列图形中,是轴对称图形的是( )A .B .C .D .2.(2分)等腰三角形的一个角是100︒,则其底角是( )A .40︒B .100︒C .80︒D .100︒或40︒3.(2分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( )A .B .C .D .4.(2分)如图,在ABC ∆中,过顶点A 的直线//DE BC ,ABC ∠、ACB ∠的平分线分别交DE 于点E 、D ,若3AC =,4AB =,则DE 的长为( )A .6B .7C .8D .95.(2分)在ABC ∆中,①若AB BC CA ==,则ABC ∆为等边三角形;②若A B C ∠=∠=∠,则ABC ∆为等边三角形;③有两个角都是60︒的三角形是等边三角形;④一个角为60︒的等腰三角形是等边三角形.上述结论中正确的有( )A .1个B .2个C .3个D .4个6.(2分)若直角三角形的两边长分别为a ,b ,且满足269|4|0a a b -++-=,则该直角三角形的第三边长的平方为( )A .25B .7C .25或7D .25或16二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,巧妙地利用面积关系证明了一个定理,这是我国古代数学的骄傲.这个定理就是 定理.8.(3分)在直角三角形中,斜边长为10cm ,则斜边上的中线长为 .9.(3分)一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是 cm .10.(3分)如图,沿直线AD 折叠,ACD ∆与ABD ∆重合,若50B ∠=︒,则CAD ∠= 度.11.(3分)如图,阴影部分是一个长方形,它的面积是 2cm .12.(3分)如图,在ABC ∆中,30AB AC cm ==,DE 是AB 的垂直平分线,分别交AB 、AC 于D 、E 两点.(1)若70C ∠=︒,则BEC ∠= ;(2)若20BC cm =,则BCE ∆的周长是 cm .13.(3分)如图,OP平分AOB=,则点P到OA的距离是cm.PB cm⊥,2∠,PB OB14.(3分)如图,ABCBC=,则AD的AB=,16∆中,AB AC=,AD BC⊥,垂足为D,已知10长为.15.(3分)如图的24⨯的正方形网格中,ABC∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与ABC∆成轴对称的格点三角形一共有个.16.(3分)如图,60=,动点P从点C出发沿CB以2/OC cmcm s AOB∠=︒,C是BO延长线上一点,12的速度移动,动点Q从点O出发沿OA以1/t s表示cm s的速度移动,如果点P、Q同时出发,用()移动的时间,当t=s时,POQ∆是等腰三角形.三、解答题(本大题共有8小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与ABC ∆关于直线l 成轴对称的△AB C '';(2)在直线l 上找一点P ,使PB PC '+的长最短;(3)若ACM ∆是以AC 为腰的等腰三角形,点M 在小正方形的顶点上.这样的点M 共有 个.18.(6分)先尺规作图,后进行计算:如图,ABC ∆中,105A ∠=︒.(1)试求作一点P ,使得点P 到B 、C 两点的距离相等,并且到ABC ∠两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若30ACP ∠=︒,则PBC ∠的度数为 ︒.19.(6分)如图,在ABC ∆中,AB AC =,D 为BC 边上一点,30B ∠=︒,45DAB ∠=︒.(1)求DAC ∠的度数;(2)求证:DC AB =.20.(6分)如图,已知ABC ∆中,边AB 、AC 的垂直平分线分别交BC 于E 、F ,若90EAF ∠=︒,3AF =,4AE =.(1)求边BC 的长;(2)求出BAC ∠的度数.21.(6分)已知:如图,在等边ABC∆中,点D、E分别在边AC、BC上,BD与AE交于点F,=.CD BE(1)求证:BD AE=;(2)求证:60∠=︒.AFD22.(8分)如图,已知四边形ABCD中,90⊥,垂∠=∠=︒,点E为AC的中点.EF BDABC ADC足为F.(1)求证:BE DE=;(2)若26EF=,求BD的长.AC=,523.(8分)如图,已知:90∠,点P在射线OC上.点E在射线OA上,AOB∠=︒,OC平分AOB点F在射线OB上,且90EPF∠=︒.(1)如图1,求证:PE PF=;(2)如图2,作点F关于直线EP的对称点F',过F'点作FH OF'与EP交⊥于H,连接EF',F H于点M.连接FM,图中与EFM∠相等的角共有个.24.(12分)如图1,长方形ABCD中,90==,AD BCDAB B DCB D∠=∠=∠=∠=︒,6∆沿直线AE翻折得△AD E'.AB CD10==.点E为射线DC上的一个动点,把ADE(1)当D'点落在AB边上时,DAE∠=︒;(2)如图2,当E点与C点重合时,D C'与AB交点F,①求证:AF FC=;②求AF长.(3)连接D B',当90AD B∠'=︒时,求DE的长.2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(本大题共有6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)等腰三角形的一个角是100︒,则其底角是()A.40︒B.100︒C.80︒D.100︒或40︒【分析】等腰三角形的一个角为100︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解答】解:当100︒为顶角时,其他两角都为40︒、40︒,当100︒为底角时,等腰三角形的两底角相等,由三角形的内角和定理可知,底角应小于90︒,故底角不能为100︒,所以等腰三角形的底角为40︒、40︒.故选:A.【点评】本题考查了等腰三角形的性质及三角形内角和定理;在解决与等腰三角形有关的问题时,由于等腰三角形所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.3.(2分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.4.(2分)如图,在ABC∠的平分线分别交DE于∠、ACB∆中,过顶点A的直线//DE BC,ABC点E、D,若3AB=,则DE的长为()AC=,4A.6B.7C.8D.9【分析】BE为ABC∠=∠,∠的角平分线,则ACD DCB ∠的角平分线,EBC ABE∠=∠,CD为ACB因为//=,所以BC DE,根据平行线的性质,内错角相等,可得出AD AC=,AB AE =+=+,从而可求出DE的长度.DE AD AE AB AC【解答】解:由分析得:EBC ABE∠=∠;∠=∠,ACD DCB根据平行线的性质得:DCB CDE∠=∠;∠=∠,EBC BED所以ADC ACD ∠=∠,ABE AEB ∠=∠,则AD AC =,AB AE =;所以347DE AD AE AB AC =+=+=+=;故选:B .【点评】本题综合考查了勾股定理、平行线的性质以及等腰三角形的判定与性质.根据勾股定理求得AB 是本题的重点.5.(2分)在ABC ∆中,①若AB BC CA ==,则ABC ∆为等边三角形;②若A B C ∠=∠=∠,则ABC ∆为等边三角形;③有两个角都是60︒的三角形是等边三角形;④一个角为60︒的等腰三角形是等边三角形.上述结论中正确的有( )A .1个B .2个C .3个D .4个【分析】根据等边三角形的判定判断即可.【解答】解:①根据等边三角形的定义可得ABC ∆为等边三角形,结论正确;②根据判定定理1可得ABC ∆为等边三角形,结论正确;③一个三角形中有两个角都是60︒时,根据三角形内角和定理可得第三个角也是60︒,那么这个三角形的三个角都相等,根据判定定理1可得ABC ∆为等边三角形,结论正确;④根据判定定理2可得ABC ∆为等边三角形,结论正确.故选:D .【点评】本题考查了等边三角形的判定,等边三角形的判定方法有三种:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60︒的等腰三角形是等边三角形.注意:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60︒,则用判定定理2来证明.6.(2分)若直角三角形的两边长分别为a ,b ,且满足269|4|0a a b -++-=,则该直角三角形的第三边长的平方为( )A .25B .7C .25或7D .25或16【分析】根据非负数的性质列出方程求出a 、b 的值,根据勾股定理即可得到结论.【解答】解:269|4|0a a b -++-=,4|0-=,2(3)a ∴-,40b -=,3a ∴=,4b =,∴直角三角形的第三边长5,或直角三角形的第三边长=,∴直角三角形的第三平方为25或7,故选:C .【点评】本题考查了勾股定理,非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,巧妙地利用面积关系证明了一个定理,这是我国古代数学的骄傲.这个定理就是 勾股 定理.【分析】根据题意即可得到这个定理就是勾股定理.【解答】解:这个定理就是勾股定理,故答案为:勾股.【点评】此题主要考查了勾股定理的证明,熟练掌握勾股定理是解题关键.8.(3分)在直角三角形中,斜边长为10cm ,则斜边上的中线长为 5cm .【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:直角三角形斜边长为10cm ,∴斜边上的中线长为5cm .故答案为:5cm .【点评】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.9.(3分)一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是 17 cm .【分析】等腰三角形两边的长为3cm 和7cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm ,底边是7cm 时:不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是7cm 时,能构成三角形,则其周长37717cm =++=.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,沿直线AD 折叠,ACD ∆与ABD ∆重合,若50B ∠=︒,则CAD ∠= 40 度.【分析】根据折叠的性质可知,B C ∠=∠,90ADB ADC ∠=∠=︒,继而即可求出CAD ∠的度数.【解答】解:沿直线AD 折叠,ACD ∆与ABD ∆重合,50B C ∴∠=∠=︒,90ADB ADC ∠=∠=︒,9040CAD C ∴∠=︒-∠=︒.故答案为:40.【点评】本题考查翻折变换的知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.(3分)如图,阴影部分是一个长方形,它的面积是 5 2cm .【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.【解答】5()cm ,∴阴影部分的面积2515()cm =⨯=;故答案为:5.【点评】本题考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.12.(3分)如图,在ABC ∆中,30AB AC cm ==,DE 是AB 的垂直平分线,分别交AB 、AC 于D 、E 两点.(1)若70C ∠=︒,则BEC ∠= 80︒ ;(2)若20BC cm =,则BCE ∆的周长是 cm .【分析】(1)先根据等腰三角形的性质得出ABC ∠的度数,再由三角形内角和定理求出A ∠的度数,根据线段垂直平分线的性质求出AE BE =,故可得出ABE ∠的度数,进而可得出结论;(2)根据AE BD =可知,BE CE AE CE AC +=+=,由此可得出结论.【解答】解:(1)在ABC ∆中,30AB AC cm ==,70C ∠=︒,70ABC C ∴∠=∠=︒,180180707040A ABC C ∴∠=︒-∠-∠=︒-︒-︒=︒. DE 是AB 的垂直平分线,AE BE ∴=,40ABE A ∴∠=∠=︒,704030EBC ABC ABE ∴∠=∠-∠=︒-︒=︒,180180703080BEC C EBC ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:80︒;(2)由(1)知AE BE =,30BE CE AE CE AC cm ∴+=+==,20BC cm =,BCE ∴∆的周长302050()AC BC cm =+=+=.故答案为:50.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)如图,OP平分AOBPB cm=,则点P到OA的距离是2cm.⊥,2∠,PB OB【分析】过点P作PD OA=,从⊥于点D,根据角平分线上的点到角的两边的距离相等可得PD PB而得解.【解答】解:过点P作PD OA⊥于点D,PB cm⊥,2=,∠,PB OBOP平分AOB∴==,PD PB cm2故答案为2.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.14.(3分)如图,ABCBC=,则AD的AB=,16⊥,垂足为D,已知10=,AD BC∆中,AB AC长为6.【分析】直接利用等腰三角形的性质得出BD的长,再利用勾股定理得出AD的长.【解答】解:在ABC⊥,10BC=,AB=,16=,AD BC∆中,AB AC∴==,8BD DC∆中,∴在Rt ABDAD==.6故答案为:6.【点评】此题主要考查了勾股定理以及等腰三角形的性质,正确得出BD的长是解题关键.15.(3分)如图的24⨯的正方形网格中,ABC∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与ABC∆成轴对称的格点三角形一共有3个.【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【解答】解:如图:共3个,故答案为:3.【点评】本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.16.(3分)如图,60AOB∠=︒,C是BO延长线上一点,12OC cm=,动点P从点C出发沿CB以2/cm s 的速度移动,动点Q从点O出发沿OA以1/cm s的速度移动,如果点P、Q同时出发,用()t s表示移动的时间,当t=103或10s时,POQ∆是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后POQ∆是等腰三角形,有OP OC CP OQ=-=,即102x x-=,解得,103x s =;(2)当点P 在CO 的延长线上时,此时经过CO 时的时间已用5s ,当POQ ∆是等腰三角形时,60POQ ∠=︒,POQ ∴∆是等边三角形,OP OQ ∴=,即2(5)x x -=,解得,10x s = 故答案为103s 或10s . 【点评】本题考查了等腰三角形的判定;解题时把几何问题转化为方程求解,是常用的方法,注意要分类讨论,当点P 在点O 的左侧还是在右侧是解答本题的关键.三、解答题(本大题共有8小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC ∆关于直线l 成轴对称的△AB C '';(2)在直线l 上找一点P ,使PB PC '+的长最短;(3)若ACM ∆是以AC 为腰的等腰三角形,点M 在小正方形的顶点上.这样的点M 共有 4 个.【分析】(1)依据轴对称的性质得到各顶点,进而得出与ABC ∆关于直线l 成轴对称的△AB C '';(2)依据两点之间,线段最短,连接B C '交直线l 于点P ,则PB PC '+的长最短;(3)分别以点A 和点B 为圆心,AB 长为半径画弧,即可得到符合条件的点M .【解答】解:(1)如图所示,△AB C ''即为所求;(2)如图所示,点P 即为所求;(3)如图所示,符合条件的点M共有4个,故答案为:4.【点评】本题主要考查了利用轴对称变换作图以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合对称变换来解决,多数情况要作点关于某直线的对称点.18.(6分)先尺规作图,后进行计算:如图,ABCA∠=︒.∆中,105(1)试求作一点P,使得点P到B、C两点的距离相等,并且到ABC∠两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若30ACP∠的度数为15︒.∠=︒,则PBC【分析】(1)作BC的垂直平分线和ABC∠的平分线,它们的交点为P点;(2)设P B C x∠=∠=,利用线段垂直平分线的性质得ABC PBC x∠=,利用角平分线的定义得到22到PB PC=,则PCB PBC x∠=∠=,然后根据三角形内角和定理可计算出x的值.【解答】解:(1)如图,点P为所作;(2)设PBC x∠=,PB平分ABC∠,∴∠=∠=,ABC PBC x22=,PB PC∴∠=∠=,PCB PBC x∠+∠+∠=︒,ABC ACB BAC180x=︒.∴++︒+︒=︒,解得15x x230105180即PBC∠的度数为15︒.故答案为15.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质.19.(6分)如图,在ABCDAB∠=︒.∠=︒,45∆中,AB AC=,D为BC边上一点,30B(1)求DAC∠的度数;(2)求证:DC AB=.【分析】(1)由A B A CB C∠=∠=︒,再根据三角形的内角=,根据等腰三角形的两底角相等得到30和定理可计算出120∠=︒,则12045∠=∠-∠=︒-︒;DAC BAC DABDAB∠=︒,而45BAC(2)根据三角形外角性质得到75DAC∠=︒,再根据等∠=∠+∠=︒,而由(1)得到75ADC B DAB腰三角形的判定可得DC AC=,这样即可得到结论.【解答】(1)解:AB AC=,∴∠=∠=︒,30B C180C BAC B ∠+∠+∠=︒,1803030120BAC ∴∠=︒-︒-︒=︒,45DAB ∠=︒,1204575DAC BAC DAB ∴∠=∠-∠=︒-︒=︒;(2)证明:45DAB ∠=︒,75ADC B DAB ∴∠=∠+∠=︒,DAC ADC ∴∠=∠,DC AC ∴=,DC AB ∴=.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.(6分)如图,已知ABC ∆中,边AB 、AC 的垂直平分线分别交BC 于E 、F ,若90EAF ∠=︒,3AF =,4AE =.(1)求边BC 的长;(2)求出BAC ∠的度数.【分析】(1)根据勾股定理求出EF ,根据线段垂直平分线的性质得到EA EB =,FA FC =,结合图形计算,得到答案;(2)根据等腰三角形的性质得到EAB B ∠=∠,FAC C ∠=∠,根据三角形内角和定理计算即可.【解答】解:(1)由勾股定理得,5EF ==,边AB 、AC 的垂直平分线分别交BC 于E 、F ,EA EB ∴=,FA FC =,12BC BE EF FC AE EF AF ∴=++=++=;(2)EA EB =,FA FC =,EAB B ∴∠=∠,FAC C ∠=∠,由三角形内角和定理得,180EAB B EAF FAC C ∠+∠+∠+∠+∠=︒,45B C ∴∠+∠=︒,180135BAC B C ∴∠=︒-∠-∠=︒.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.(6分)已知:如图,在等边ABC ∆中,点D 、E 分别在边AC 、BC 上,BD 与AE 交于点F ,CD BE =.(1)求证:BD AE =;(2)求证:60AFD ∠=︒.【分析】(1)根据SAS 证明ABE BCD ∆≅∆即可解决问题;(2)利用全等三角形的性质即可解决问题;【解答】证明:(1)ABC ∆是等边三角形,BC AB ∴=,60ABE C ∠=∠=︒,在ABE ∆和BCD ∆中,BA BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩,()ABE BCD SAS ∴∆≅∆,BD AE ∴=.(2)ABE BCD ∆≅∆,BAE CBD ∴∠=∠,60AFD ABF BAE ABF CBD ABC ∴∠=∠+∠=∠+∠=∠=︒.【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(8分)如图,已知四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 为AC 的中点.EF BD ⊥,垂足为F .(1)求证:BE DE =;(2)若26AC =,5EF =,求BD 的长.【分析】(1)根据直角三角形斜边上的中线定义斜边的一半即可得到结论;(2)根据等腰三角形的性质和勾股定理即可得到结论.【解答】解:(1)90ABC ADC ∠=∠=︒,点E 为AC 的中点,12BE DE AC ∴==; (2)BE DE =,EF BD ⊥,2BD BF ∴=, 12BE AC =,26AC =, 13BE ∴=,5EF =,12BF ∴==,224BD BF ∴==.【点评】本题考查了角平分线性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识点,能熟练地运用性质进行推理是解此题的关键.23.(8分)如图,已知:90AOB ∠=︒,OC 平分AOB ∠,点P 在射线OC 上.点E 在射线OA 上,点F 在射线OB 上,且90EPF ∠=︒.(1)如图1,求证:PE PF =;(2)如图2,作点F 关于直线EP 的对称点F ',过F '点作FH OF ⊥于H ,连接EF ',F H '与EP 交于点M .连接FM ,图中与EFM ∠相等的角共有 4 个.【分析】(1)过P 作PG OB ⊥于G ,PH AO ⊥于H ,判定()PEH PFG AAS ∆≅∆,即可得出PE PF =;(2)依据轴对称的性质以及等腰直角三角形的性质,即可得到与EFM ∠相等的角.【解答】解:(1)如图1,过P 作PG OB ⊥于G ,PH AO ⊥于H ,则90PGF PHE ∠=∠=︒, OC 平分AOB ∠,PG OB ⊥,PH AO ⊥,PH PG ∴=,90AOB EPF ∠=∠=︒,180PFG PEO ∴∠+∠=︒,又180PEH PEO ∠+∠=︒,PEH PFG ∴∠=∠,()PEH PFG AAS ∴∆≅∆,PE PF ∴=;(2)由轴对称可得,EFM EF M '∠=∠,F H OF '⊥,AO OB ⊥,//AO F F '∴,EF M AEF ''∴∠=∠,90AEF OEF OFE OEF '∠+∠=∠+∠=︒,AEF OFE '∴∠=∠,由题可得,P 是FF '的中点,EF EF '=,EP ∴平分FEF '∠,PE PF =,90EPF ∠=︒,45PEF PEF '∴∠=︒=∠, 又1452AOP AOB ∠=∠=︒,且AEP AOP OPE ∠=∠+∠,4545AEF OPE '∴∠+︒=︒+∠,AEF OPE '∴∠=∠,∴与EFM ∠相等的角有4个:EF M '∠,AEF '∠,EFO ∠,EPO ∠.故答案为:4.【点评】本题主要考查了全等三角形的判定与性质、轴对称的性质以及角平分线的性质的综合运用,解决问题的关键是作辅助线构造全等三角形.24.(12分)如图1,长方形ABCD 中,90DAB B DCB D ∠=∠=∠=∠=︒,6AD BC ==,10AB CD ==.点E 为射线DC 上的一个动点,把ADE ∆沿直线AE 翻折得△AD E '.(1)当D '点落在AB 边上时,DAE ∠= 45 ︒;(2)如图2,当E 点与C 点重合时,D C '与AB 交点F ,①求证:AF FC =;②求AF 长.(3)连接D B ',当90AD B ∠'=︒时,求DE 的长.【分析】(1)由A D E ∆≅△AD E '知DAE D AE ∠=∠',结合D '点落在AB 边上知90DAE D AE ∠+∠'=︒,从而得出答案;(2)①由折叠得出ACD ACD ∠=∠',再由//AB CD 得出ACD BAC ∠=∠,从而得知ACD BAC ∠'=∠,据此即可得证;②设AF FC x ==,则10BF x =-,在Rt BCF ∆中,由222BF BC CF +=得到关于x 的方程,解之可得;(3)分两种情况:点E 在DC 线段上,点E 为DC 延长线上的一点,进一步分析探讨得出答案即可.【解答】解:(1)由题意知ADE ∆≅△AD E ',DAE D AE ∴∠=∠',D '点落在AB 边上时,90DAE D AE ∠+∠'=︒,45DAE D AE ∴∠=∠'=︒,故答案为:45;(2)①如图2,由题意知ACD ACD ∠=∠',四边形ABCD 是矩形,//AB CD ∴,ACD BAC ∴∠=∠,ACD BAC ∴∠'=∠,AF FC ∴=;②设AF FC x ==,则10BF x =-,在Rt BCF ∆中,由222BF BC CF +=得222(10)6x x -+=,解得 6.8x =,即 6.8AF =;(3)如图3,△AD E ADE '≅∆,90AD E D ∴∠'=∠=︒,90AD B ∠'=︒,B ∴、D '、E 三点共线,又ABD BEC ∆'∆∽,AD BC '=,ABD BEC ∴∆'≅∆,10BE AB ∴==,8BD '=,1082DE D E ∴='=-=;如图4,90ABD CBE ABD BAD ∠''+∠=∠''+∠''=︒,CBE BAD ∴∠=∠'', 在ABD ∆''和BEC ∆中,D BCE AD BCBAD CBE ∠''=∠⎧⎪''=⎨⎪∠''=∠⎩, ABD BEC ∴∆''≅∆,10BE AB ∴==,81018DE D E ∴=''=+=.综上所知,2DE =或18.【点评】此题是四边形的综合问题,考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.。
2020-2021南京市第一中学初二上册第一次月考数学【试卷+答案】

26.(本题 10 分) (1)是 (2) B nC
B.300°
C.210°
D.330°
6.如图, △ABC ≌ VADE , B 25 , E 105 , EAB 10 ,则 BAD 为( )
A.50°
B.60°
C.80°
D.120°
7.AD 是 △ABC 的中线, DE DF 下列说法:① CE BF ;② △ABD 和 △ACD 面积相等;
角形的三个角均是此三角形的好角.
图①
图②
图③
6 / 10
【一中数学】2020 年初二(上)第一次月考试卷+答案
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分。在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
题号
1
2
3
4
5
答案
A
D
C
cm .
第 12 题
第 13 题
第 14 题
2 / 10
|
15.如图,在△ ABC 和△ ADC 中,已知 AD AB ,在不添加任何辅助线的前提下,要使
△ ABC ≌△ ADC ,只需再添加的一个条件可以是
.
16.如图,四边形纸片 ABCD 中, C=80 , B=70 ,将纸片折叠,使 C 、 D 落在 AB 边上
②如图,EF 即为所求
江苏省徐州市 八年级(上)月考数学试卷(10月份)

八年级(上)月考数学试卷(10月份)一、选择题(本大题共8小题,共32.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.能判断两个三个角形全等的条件是()A. 已知两角及一边相等B. 已知两边及一角对应相等C. 已知三条边对应相等D. 已知三个角对应相等3.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠BDA=∠CDAD. ∠B=∠C4.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A. SSSB. SASC. ASAD. HL5.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 3对C. 4对D. 5对6.如图,已知△ACE≌△DBF,下列结论中正确的个数是( )①AC=DB;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.A. 4个B. 5个C. 6个D. 7个7.若△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A. 55cmB. 45cmC. 30cmD. 25cm8.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A. 50B. 62C. 65D. 68二、填空题(本大题共10小题,共40.0分)9.从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是______.10.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=______.11.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是______.(添一个即可)12.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=______cm.13.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件______.14.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=______.15.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第______块去.(填序号)16.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是______.17.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=______°.18.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有______种.三、解答题(本大题共7小题,共68.0分)19.如图,每个小正方形的面积是1.(1)作出△ABC关于直线l成轴对称的图形△A′B′C′;(2)求出△ABC的面积.20.如图,把大小为4×4的正方形方格图分割成两个全等图形,例如图1,请在图中沿着虚线画出四种不同的方法,把4×4的正方形方格图分割成两个全等图形.21.已知:如图,AB=AE,∠1=∠2,∠B=∠E,求证:BC=DE.22.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB∥DE,AB=DE,AF=DC.求证:BC=EF.23.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:(1)AC=BE,(2)AC+BD=AB.24.如图①,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下面的问题:(1)如果AB=AC,∠BAC=90°.当点D在线段BC上时(与点B不重合),如图②,线段CF、BD之间的数量关系为______,位置关系为______.(写出证明过程)(2)如图③,线段CF、BD之间的数量,位置关系是否成立?______(填“是”或“否”).25.如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.(1)△ACN≌△MCB吗?为什么?(2)说明CE=CF;(3)若△CBN绕着点C旋转一定的角度(如图2),则上述2个结论还成立吗?(此问只须写出判断结论,不要求说理)答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】C【解析】解:A、已知两角及一边相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;B、已知两边及一角对应相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;C、已知三条边对应相等,可用SSS判定两个三个角形全等,故选项正确;D、已知三个角对应相等,AAA不能判定两个三个角形全等,故选项错误.故选:C.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要根据已知条件结合判定方法逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.【答案】B【解析】解:A、在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),A不符合题意;B、在△ABD和△ACD中,∠1=∠2、BD=CD、AD=AD,由ASS不能证出△ABD≌△ACD,B符合题意;C、在△ABD和△ACD中,,∴△ABD≌△ACD(ASA),C不符合题意;D、在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),D不符合题意.故选:B.A、由AB=AC、∠1=∠2、AD=AD,即可证出△ABD≌△ACD(SAS),A不符合题意;B、由∠1=∠2、BD=CD、AD=AD,无法证出△ABD≌△ACD(ASS不能证出全等),B符合题意;C、由∠1=∠2、AD=AD、∠BDA=∠CDA,即可证出△ABD≌△ACD(ASA),C不符合题意;D、由∠B=∠C、∠1=∠2、AD=AD,即可证出△ABD≌△ACD(AAS),D不符合题意.综上即可得出结论.本题考查了全等三角形的判定,牢记各全等三角形的判定定理是解题的关键.4.【答案】A【解析】解:做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.5.【答案】C【解析】解:①△ODC≌△OEC∵BD⊥AO于点D,AE⊥OB于点E,OC平分∠AOB∴∠ODC=∠OEC=90°,∠1=∠2∵OC=OC∴△ODC≌△OEC(AAS)∴OE=OD,CD=CE;②△ADC≌△BEC∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE∴△OBE≌△OCD(AAS)∴AC=BC,AD=BE,∠B=∠A;③△OAC≌△OBC∵OD=OE∴OA=OB∵OA=OB,OC=OC,AC=BC∴△ABO≌△ACO(SSS);④△OAE≌△OBD∵∠ODB=∠OEA=90°,OA=OB,OD=OE∴△AEC≌△ADB(HL).故选:C.根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证,做题时要由易到难,循序渐进.本题考查了全等三角形的判定方法;全等三角形的判定方法一般有:AAS、SAS、ASA、SSS、HL.应该对每一种方法熟练掌握做到灵活运用,做题时要做到不重不漏.提出猜想,证明猜想是解决几何问题的基本方法.6.【答案】C【解析】解:∵△ACE≌△DFB,∴AC=DB,①正确;∠ECA=∠DBF,∠A=∠D,S△ACE=S△DFB,⑤正确;∵AB+BC=CD+BC,∴AB=CD ②正确;∵∠ECA=∠DBF,∴BF∥EC,⑦正确;∠1=∠2,③正确;∵∠A=∠D,∴AE∥DF,④正确.BC与AE,不是对应边,也没有办法证明二者相等,⑥不正确.故选:C.运用全等三角形的性质,认真找对对应边和对应角,则该题易求.本题考查了全等三角形性质的运用,做题时结合图形及其它知识要进行综合思考.7.【答案】B【解析】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∵DE=30cm,DF=25cm,∴AB=30cm,AC=25cm,∵△ABC的周长为100cm,∴CB=100-30-25=45(cm),故选:B.根据全等三角形的性质可得AB=DE,AC=DF,BC=EF,再根据△ABC的周长为100cm可得答案.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.8.【答案】A【解析】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16-3×4-6×3=50.故选:A.由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.本题考查的是全等三角形的判定的相关知识,是中考常见题型.9.【答案】BA629【解析】解:该车的后五位号码是BA629.故答案是:BA629.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.10.【答案】90°【解析】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°-∠B-∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.11.【答案】AB=CD等(答案不唯一)【解析】解:∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.12.【答案】4【解析】解:∵AB∥CF,∴∠ADE=∠EFC,∵∠AED=∠FEC,E为DF的中点,∴△ADE≌△CFE,∴AD=CF=5cm,∵AB=9cm,∴BD=9-5=4cm.故填4.先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=9cm即可求出BD的长.本题考查的是平行线的性质、全等三角形的判定定理及性质,比较简单.13.【答案】AB=AC【解析】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.14.【答案】11【解析】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.根据已知条件分清对应边,结合全的三角形的性质可得出答案.本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.15.【答案】③【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.16.【答案】三角形稳定性【解析】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.将其固定,显然是运用了三角形的稳定性.注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.17.【答案】135【解析】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.18.【答案】4【解析】解:如图所示.这样的添法共有4种.故答案为:4.因为中间4个小正方形组成一个大的正方形,正方形有四条对称轴,试着利用这四条对称轴添加图形得出答案即可.本题考查的是利用轴对称设计图案,解答此题要明确轴对称的性质,并据此构造出轴对称图形.19.【答案】解:(1)如图所示:(2)△ABC的面积=4×4−12×4×1−12×3×3−12×4×1=7.5【解析】(1)根据网格结构找出点A、B、C关于直线l的对称点A'、B'、C'的位置,然后顺次连接即可;(2)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.【答案】解:如图所示:【解析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.本题考查的是作图-应用与设计作图,熟悉图形全等的定义和轴对称的性质是解题的关键.21.【答案】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中∠EAD=∠BACAE=AB∠E=∠B,∴△EAD≌△BAC(ASA),∴BC=DE.【解析】根据题意得出∠EAD=∠BAC,进而利用全等三角形的判定与性质得出答案.此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.22.【答案】证明:∵AF=DC,∵AC=AF+CF,DF=DC+CF,∴AC=DF,∵AB∥DE,∴∠A=∠D∴在△ACB和△DEF中,AB=DE∠A=∠DAC=DF,∴△ACB≌△DEF(SAS),∴BC=EF(全等三角形的对应角相等).【解析】根据已知条件得出△ACB≌△DEF,即可得出BC=EF.本题考查了全等三角形的判断和全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.【答案】证明:(1)∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∴∠C+∠CEA=90°,∠D+∠DEB=90°,∵CE⊥DE,∴∠CED=90°,∴∠CEA+∠DEB=90°,∴∠C=∠DEB,在△CAE和△EBD中∠A=∠B=90°∠C=∠DEBCE=DE,∴△CAE≌△EBD(AAS),∴AC=BE,(2)∵△CAE≌△EBD,∴AC=BE,BD=AE,∵AE+BE=AB,∴AC+BD=AB.【解析】根据垂直的定义得到∠A=∠B=90°,再证明∠C=∠DEB,即可证明△CAE≌△EBD,根据全等三角形的性质即可证得结论.本题主要考查了互为余角的关系,全等三角形的判定与性质,能根据同角的余角相等证得∠C=∠DEB是解决问题的关键.24.【答案】CF=BD CF⊥BD是【解析】解:(1)结论:CF=BD,CF⊥BD,理由:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵,∴△BAD≌△CAF(SAS),∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD.故答案为:CF=BD;CF⊥BD;(2)是由正方形ADEF得AD=AF,∠DAF=90°,∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD,故答案为:是(1)当CF与BD位置关系为互相垂直,数量关系是相等.首先证明△DAB≌△FAC,然后推出∠ACF=45°,∠BCF=∠ACB+∠ACF=90°,求出CF⊥BD;(2)当CF与BD位置关系为互相垂直,数量关系是相等.首先证明△DAB≌△FAC,然后推出∠ACF=45°,∠BCF=∠ACB+∠ACF=90°,求出CF⊥BD;本题考查正方形的性质,三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.【答案】解:(1)∵△ACM与△CBN为等边三角形,∴∠ACM=∠BCN=60°,AC=CM,BC=CN,∴△ACN≌△MCB;(2)∵∠ACB=180°,∠ACM=∠BCN=60°,∴∠MCN=∠BCN=60°,∵△ACN≌△MCB,∴∠ABM=∠ANC,∵∠MCN=∠BCN,BC=CN,∠ABM=∠ANC,∴△CEN≌△CFB,∴CE=CF;(3)△CBN绕着点C旋转一定的角度后,①△ACN≌△MCB成立,②CE=CF不成立.【解析】(1)因为△ACM、△CBN都是等边三角形,所以∠ACM=∠BCN=60°,AC=CM,BC=CN,则可根据SAS判定△ACN≌△MCB;(2)因为∠ACB=180°,∠ACM=∠BCN=60°,所以∠MCN=∠BCN,又因为△ACN≌△MCB,所以∠ABM=∠ANC,则可根据AAS判定△CEN≌△CFB,即CE=CF;(3)成立,因为△ACN≌△MCB,所以∠CBM=∠ANC,根据三角形外角的性质可得故∠CEN=∠CFB,则可根据AAS判定△CEN≌△CFB,即CE=CF.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
八年级上册数学第一次月考试卷分析

八年级上册数学第一次月考试卷分析第一篇:八年级上册数学第一次月考试卷分析八年级上数学第一次月考试卷分析一、试题的结构、特点的分析1.试题结构的分析本套试题满分120分,七道大题包含24道小题,其中客观性题目占42分,主观性题目占78分。
2.试题的特点(1)强调能力,注重对数学思维过程、方法的考查试卷中不仅考查学生对第一章、第二章数学基础知识的掌握情况,而且也考查了学生以这些知识为载体,在综合运用这些知识的过程中所反映出来的基本的数学能力。
(2)重视阅读理解、获取信息和数据处理能力的考查从文字、图象、数据中获取信息和处理信息的能力是新课程特别强调的。
如第16题、17题、19题、题24题等,较好地实现了对这方面能力的考查,强调了培养学生在现代社会中获取和处理信息能力的要求。
(3)重视联系实际生活,突出数学应用能力的考查二、试题做答情况分析试题在设计上保持了一定的梯度,学生对客观题完成教好,后面的主观题完成较差,特别是应用方面,分析原因是:平时对阅读题较少,不能从题中找出有用的数学信息,缺乏耐心。
三、存在情况:1、好学生的学习态度可以,但进步不大,后进生情况令人担忧,缺乏学习数学的兴趣,譬如课前不预习、上课不听讲,课后不作业,考试不认真做;两级分化严重;差生面较多,特别是二班2、数学思维缺乏(分组讨论思想),学生一遇到难题就怕,不愿开动脑筋思考,对实际应用题型缺乏突破,对基础掌握不扎实,导致后面的大题失分非常严重3、对所学数学概念理解不透彻,对所学知识不会融会贯通,只会就题论题,不能用所学知识解决实际问题;4、审题意识不强,粗心,没有做阅读题的耐心;四、教学启示与建议通过对以上试卷的分析,在今后的教学过程中应注意以下几个方面:1.研读新课程标准,以新课程理念指导教学工作平时教学要从学生已有知识和生活经验出发,创设问题情境,激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学经验。
初二(上)数学期中复习训练题(含答案).docx

1.如图,将矩形纸片ABCD (图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F (如图3);(3)将纸片收展平,那么ZAFE的度数为()A DA D F D 7/KB C E C: E C图①图②图③D. 75°2.如图,在AABC中,ZBAC=130°, AB、AC的垂直平分线分别交BC于D、E,则ZDAE=( )3.如图,Z\ABC 屮,ZC=90°, AC=BC, AD 平分ZCAB 交BC 于点D, DE丄AB,垂足为E,且AB=6cm,贝IJADEB 的周氏为()A. 4cmB. 6cmC. 8cmD. 10cm5.如图,平面直角坐标系xOy中,己知定点A (1, 0)和B (0, 1),若动点C在x轴上运动,则使AABC为等腰三角形的点C有()个.C. 70°D. 80°4. 如图,设ZiABC和ACDE都是正三角形,且ZEBD=62°, 则ZAEB的度数是(B. 122°C. 120°D. 118°C7. 如图,在厶ABC 屮,AB 二AC, ZBAC=90°,直角ZEPF 的顶点P 是BC 的屮点,两边PE 、PF 分别交AB 、AC 于点E 、F,连接EF 交AP 于G.给出四个结论:①AE=CF ;②EF=AP ; @AEPF 是等腰直角三角形; ④ZAEP 二ZAGF.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个8. 如图,AABC 是等腰直角三角形,ADEF 是一个含30。
角的直角三角形,将D 放在BC 的屮点上,转动ADEF, 设DE, DF 分另恢AC, BA 的延长线于E, G,则下列结论:① AG 二CE ② DG 二 DE③BG - AC=CE®S ABDG - S ACDE =^S AABC其中总是成立的是 ( )A.①②③B.①②③④C.②③④D.①②④9.如图,AABC 中,ZACB=90°, D 为AB ±任一点,过D 作AB 的垂线,分别交边AC 、BC 的延长线于E 、F 两点,ZBAC 、ZBFD 的平分线交于点1, AI 交DF 于点M, FI 交AC 于点N,连接BI.下列结论:①ZBAC=ZBFD ; ②ZENI=ZEMI ;③AI 丄FI ;④ZABI=ZFBI ;其中正确结论的个数是( )D. 4个6.如图,在Z\ABC 屮,ZBAC=90°, AD 丄BC 于D, BE 平分ZABC 交AD 于F,作EG 丄DC 于G,则下列结论其中正确结论的个数为()10. 如图,RtAACB+, ZACB=90° , AABC 的角平分线AD 、BE 相交于点P,过P 作PF 丄AD 交BC 的延长线于点F, 交AC 于点H,则下列结论:①ZAPB=135° ;②BF=BA ;③PH=PD ;④连接CP, CP 平分ZACB,其中正确的是 () A.①②③B.①②④C.①③④D.①②③④11. 在ZXABC 中,ZB=2ZC, AD 丄BC 于D, AE 平分ZBAC,则下列结论:①AB+BD 二CD ;②S AABE : S AAEC =AB : AC ;③AC - AB=BE ;④ZB=4ZDAE 其屮正确的是( )12. 如图,在△八BC 中,ZABC=45° , AD, BE 分别为BC 、AC 边上的高,AD 、BE 相交于点P,下列结论: ①ZPCD 二45° ,②AE=EC, ®SAABP : SAAPC=BD : CD,④若 BP=2EC,则APDC 周长等于 AB 的长.正确的是13. 如图,C 为线段AE 上一动点(不与点A, E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE, AD 与BE 交于点0, AD 与BC 交于点P, BE 与CD 交于点Q,连接PQ.以下五个结论:①AD-BE ;②PQ 〃AE ;③AP 二BQ ;④DE 二DP ; ⑤ZA0B 二60° •其中正确的结论的个数是( )A. 2个B. 3个C. 4个D. 5个A.①②③④B.①③④C.②③④D.①②③A.①②B.①③C.①④D.①③④B DC ()14.如图:AABC 中,ZACB=90° , ZCAD二30° , AC=BC=AD, CE丄CD,且CE二CD,连接BD, DE, BE,则下列结论:@ZECA=165° ' @BE=BC;③AD丄BE;喑•其中正确的是<)A.①②③B.①②④C.①③④D.①②③④15.如图,将30°的直角三角尺ABC绕直角顶点A逆吋针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①ZDAC二ZDCA;②ED为AC的垂直平分线;③EB平分ZAED;④ED二2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④16.如图,AABC是等边三角形,F、G分别为AC和BC的中点,D在线段BG ±,连接DF,以DF为边在DF的右侧作等边ADFE, ED的延长线交AB于H,连接EC,则以下结论:①BF丄AC;②ZAHD+ZAFD二180°;③ZBCE=60°;④当D在线段BG上(不与G点重合)运动时,DOFC+CE.其中正确的是()A.只有①③④B.只有①②④C.①②③④D.只有①②③E17.如图,AABC 中,AC二BC, ZACB=90° , AE 平分ZBAC 交BC 于E, BD丄AE 于D, DM丄AC 于连CD.下列结论: @AC+CE=AB;②CD冷楓③RAW。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省泰州市兴化市板桥中学八年级(上)第一次月考数学试卷一、选择题(本大题共6小题,共18.0分)1.观察下列银行标志,从图案看不是轴对称图形的是()A. B. C. D.2.等腰三角形一腰上的高与另一腰的夹角为45∘,则其顶角为()A. 45∘B. 135∘C. 45∘或67.5∘D. 45∘或135∘3.如图,已知AB=CD,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. ∠M=∠NB. MB=NDC. AM=CND. AM//CNBC的长为半径作弧,4.如图,在已知的△ABC中,按以下步骤:(1)分别以B、C为圆心,大于12两弧相交M、N;(2)作直线MN,交AB于D,连结CD,若CD=AD,∠B=20°,则下列结论:①∠ADC=40°②∠ACD=70°③点D为△ABC的外心④∠ACD=90°,正确的有()A. 4个B. 3个C. 2个D. 1个5.满足下列条件的△ABC,不是直角三角形的为()A. ∠A=∠B−∠CB. ∠A∶∠B∶∠C=1∶1∶2C. b2=a2−c2D. a∶b∶c=2∶3∶46.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 2条B. 3条C. 4条D. 5条二、填空题(本大题共10小题,共30.0分)7.请写出两组勾股数:______ 、______ .8.等腰三角形是轴对称图形,其对称轴是_______________________________.9.全等三角形的_____________相等,________________相等。
10.等腰三角形一边长等于5,一边长等于10,则它的周长是______.11.在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,则斜边AB上的高线长为__________.12.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.13.12.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.14.等腰三角形有一内角的度数为50°,一腰的垂直平分线与另一腰所在直线相交所成的锐角的度数为______.15.如图,线段DE是由线段AB平移得到的,AB=6,EC=8−CD,则△DCE的周长是______ .16.在矩形ABCD中,AB=3cm,BC=4cm,则点A到对角线BD的距离为______。
三、计算题(本大题共1小题,共10.0分)17.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,E为AC的中点,DF⊥AB,垂足为点F,求DE、DF的长四、解答题(本大题共9小题,共92.0分)18.如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹).(1)图1:在BC边上寻找一点M,使得MA+MC=BC;(2)图2:在BC边上寻找一点N,使得NA+NC=AB.19.如图,已知Rt△ABC中,∠C=90°,AD是角平分线,CD=15,BD=25,求AC的长.20.如图,已知点E、F在AB上,AD=BC,∠A=∠B,∠C=∠D.求证:AE=BF.21.如图,在△ABC中,∠B=∠C,P、Q、R分别在AB、AC上,且BP=CQ,BQ=CR.求证:点Q在PR的垂直平分线上.22.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,CD=15,AC=17,求△ABC的面积.23.如图所示,四边形ABCD中,∠BAD=90°,∠BCD=90°,E、F分别是BD、AC的中点,求证:EF⊥AC.24.勾股定理神秘而美妙,它的证法有几百种,其巧妙各有不同,其中的“面积法”非常特殊.王刚同学在研究时,惊喜地发现,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明,下面是他证明勾股定理的过程:将两个全等的直角三角形按图所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连结DB,过点D作BC边上的高DF,则DF=EC=b−a.……(请接着帮他完成后面的证明)25.如图,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直线上,连接EC.求证:EC⊥BD.26.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC-------- 答案与解析 --------1.答案:A解析:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念对各选项分析判断后利用排除法求解.本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.答案:D解析:【分析】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.本题要分情况讨论,当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:①当为锐角三角形时,如图,∵∠ABD=45°,BD⊥AC,∴∠A=90°−45°=45°,∴三角形的顶角为45°;②当为钝角三角形时,如图,∵∠ABD=45°,BD⊥AC,∴∠BAD=90°−45°=45°,∵∠BAD+∠BAC=180°,∴∠BAC=135°∴三角形的顶角为135°,故选D.3.答案:C解析:【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.根据全等三角形的判定定理分别进行分析即可.【解答】解:A.可根据AAS判定△ABM≌△CDN,故此选项不合题意;B.可根据SAS判定△ABM≌△CDN,故此选项不合题意;C.不能判定△ABM≌△CDN,故此选项符合题意;D.由AM//CN可得∠A=∠NCD,可根据ASA判定△ABM≌△CDN,故此选项不合题意;故选:C.4.答案:B解析:解:由题意可知,直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD=20°,∴∠ADC=∠BCD+∠CBD=40°,故A选项正确;又∵CD=AD,∴∠A=∠ACD,又∵∠A+∠ACD+∠ADC=180°,∴∠ACD=70°,故B选项正确,D选项错误;∵AD=CD,BD=CD,∴AD=BD,即D是AB的中点,故C选项正确;故选:B.依据直线MN是线段BC的垂直平分线,可得∠B=∠BCD=20°,进而得出∠ADC=40°;依据AD=CD 与三角形内角和定理,即可得到∠ACD=70°;依据AD=BD,即可得出D是AB的中点;依据AD= CD=DB,即可得到点D是△ABC的外接圆圆心;依据∠ACD=70°得∠ACD≠90°.本题主要考查了线段垂直平分线的性质,经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称“中垂线”.5.答案:D解析:【分析】本题考查直角三角形的判定,灵活的应用勾股定理的逆定理及三角形内角和定理是解决问题的关键.根据三角形的内角和为180°,直角三角形的一个内角为90°,勾股定理的逆定理,对逐各选项进行判断,即可得到答案.【解答】解:A.∵∠A=∠B−∠C,∴∠A+∠C=∠B,则∠B=90°,故△ABC是直角三角形;B.设∠A、∠B、∠C分别为x、x、2x,则x+x+2x=180°,解得x=45°,则∠C=90°,故△ABC是直角三角形;C.∵b2=a2−c2,∴b2+c2=a2,符合勾股定理的逆定理,故△ABC是直角三角形;D.a:b:c=2:3:4,∵22+32≠42,不符合勾股定理的逆定理,故△ABC不是直角三角形.故选D.6.答案:C解析:解:如图所示,当CA=CF=3,BC=BD=3,BC=CE=3,BG=CG,都能得到符合题意的等腰三角形.故选C.根据等腰三角形的性质分别利用CA为底以及CA为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.7.答案:3、4、5;6、8、10解析:解:两组勾股数是:3、4、5;6、8、10;故答案为:3、4、5;6、8、10.根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,写出即可.本题考查了勾股数的定义,注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…8.答案:顶角平分线(或底边上的高线,或底边的中线)所在的直线解析:【分析】本题考查了轴对称图形,等腰三角形的性质.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念以及等腰三角形的性质解答即可.【解答】解:等腰三角形是轴对称图形,根据等腰三角形三线合一的性质即可得到其对称轴为:顶角平分线(或底边上的高线,或底边的中线)所在的直线.故答案为:顶角平分线(或底边上的高线,或底边的中线)所在的直线.9.答案:对应角对应边解析:【分析】本题考查了全等三角形的性质,根据全等三角形的对应角相等,对应边相等,可得答案.【解答】解:根据全等三角形的对应角相等,对应边相等,可得答案.故答案为:对应角,对应边10.答案:25解析:解:当5为腰,10为底时,∵5+5=10,∴不能构成三角形;当腰为10时,∵5+10>10,∴能构成三角形,∴等腰三角形的周长为:10+10+5=25.故答案为:25.此题先要分类讨论,已知等腰三角形的一边等于10cm,另一边等于5cm,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.11.答案:4.8解析:【分析】本题考查勾股定理.根据勾股定理求得斜边AB,然后利用直角三角形面积的两种不同求法,列式计算,答案可得.【解答】解:∵在直角三角形ACB中,∠ACB=90°,AC=6,BC=8,∴根据勾股定理得:AB=√AC2+BC2=10,过点C作CD垂直AB,垂足为D又∵CD为斜边AB上的高,∴S△ABC=12AC·BC=12CD·AB,则CD=AC·BCAB=4.8,故答案为4.8.12.答案:55°解析:【分析】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义,熟练掌握性质和定义是解题的关键.首先直接利用直角三角形全等的判定定理HL得到Rt△AOP≌Rt△BOP;然后根据全等三角形的性质定理得到∠POA=∠BOP,结合∠MON=50°得到∠POA的度数;最后根据三角形外角性质及∠CPO=30°,问题即可解决.【解答】解:∵PA⊥ON,PB⊥OM,∴∠OAP=∠PBO=90°,∵在Rt△AOP和Rt△BOP,OP=OP,PA=PB,∴Rt△AOP≌Rt△BOP,∴∠POA=∠BOP,∵∠MON=50°,∠POA=∠BOP,∴∠POA=1∠MON=25°,2∵∠POA=25°,∠CPO=30°,∴∠PCA=∠POA+∠CPO=55°,故答案为:55°.13.答案:68解析:【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得∠ADB=∠BAD,最后利用三角形的内角和等于180°列式计算即可得解.【详解】∵DM垂直平分AC,∴AD=CD.∴∠DAC=∠C=28°.∴∠ADB=∠C+∠DAC=28°+28°=56°.∵AB=BD,∴∠ADB=∠BAD=56°.在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=68°.故答案为:68.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.14.答案:40°或10°解析:【分析】本题考查了等腰三角形的性质,三角形内角和定理,线段垂直平分线的性质,关键在于根据题意分类讨论.根据题意,一种情况为顶角是50°,根据直角三角形两锐角互余即可推出所求角为40°,另一种情况为底角是50°,根据等腰三角形以及三角形内角和定理推出顶角是80°,再根据直角三角形两锐角互余即可推出所求角为10°.【解答】解:①此等腰三角形顶角是50°,如图1.∵在Rt△ADE中,∠ADE=90°,∠A=50°,∴∠AED=40°;②此等腰三角形底角是50°,如图2,∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=80°.∵在Rt△ADE中,∠ADE=90°,∠A=80°,∴∠AED=10°.综上可知,一腰的垂直平分线与另一腰所在直线相交所成的锐角的度数为40°或10°.故答案为40°或10°.15.答案:14解析:【分析】本题考查了平移的性质,要准确把握平移的性质,新图形与原图形的对应线段平行且相等,对应角相等.根据平移的性质,得AB=DE,结合已知可求△DCE的周长.【解答】解:∵线段DE是由线段AB平移而得,∴DE=AB=6,∴△DCE的周长=DE+CE+CD=6+8−CD+CD=14.故答案为:14.cm.16.答案:125解析:【分析】本题考查了矩形的性质,掌握矩形的性质是解决问题的关键.先由矩形的性质和勾股定理求出BD,AD⋅AB即可得出结果.再根据△ABD的面积=12【解答】解:∵四边形ABCD是矩形,∴BD=√AB2+AD2=√32+42=5cm,∵S△ABD=12AB.AD=12×3×4=6(cm2),∵点A到对角线BD的距离为6×2÷5=125(cm).故答案为125cm.17.答案:见解析解析:连接AD,根据等腰三角形性质得出AD⊥BD,BD=BC=5,根据直角三角形斜边上中线性质求出DE,根据三角形面积得出AB⋅DF=AD⋅BD,代入求出即可.试题解析:解:连结AD(1分)∵AB=AC=13BC=10点D是BC的中点∴AD⊥BD BD=BC=(2分)∵E为AC的中点∴DE=AC=6.5(3分)∵在Rt△ABD中,AB=,BD=5∴AD=12(4分)∵DE⊥AB∴AB·DE=AD·BD=2S△ABD∴DE=(12×5)÷13=(6分)考点:1.勾股定理;2.等腰三角形的性质;3.直角三角形斜边上的中线.18.答案:解:(1)如图所示:(2)如图所示:解析:此题考查作图问题,线段垂直平分线的性质等有关知识.(1)作线段AB的垂直平分线交BC于点M即可;(2)先在线段CB上截取CE=AB,再作线段AE的垂直平分线交BC于N即可.19.答案:解:过点D作DE⊥AB于E,∵AD是角平分线,∠C=90°,DE⊥AB,∴DE=CD=15,在Rt△DEB中,BE=√BD2−DE2=20,在Rt△ACD和Rt△AED中,{DC=DEAD=AD,∴Rt△ACD≌Rt△AED(HL)∴AC=AE,在Rt△ABC中,AC2+BC2=AB2,即AC2+402=(AC+20)2,解得,AC=30,即AC=30.解析:本题考查的是角平分线的性质、勾股定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.过点D作DE⊥AB于E,根据角平分线的性质求出DE,根据勾股定理求出BE,证明AC=AE,根据勾股定理列式计算,得到答案.20.答案:证明:在△ADF和△BCE中,{∠A=∠B AD=BC ∠D=∠C,∴△ADF≌△BCE(ASA),∴AF=BE,∴AE=BF.解析:欲证明AE=BF,只要证明AF=BE,只要证明△ADF≌△BCE(ASA)即可;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.21.答案:证明:∵在△ABC中,∠B=∠C,∴在△PBQ和△CQR中,∴△BPQ≌△CQR(SAS),∴PQ=RQ,∴点Q在PR的垂直平分线上.解析:此题考查了线段垂直平分线的判定、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.由在△ABC中,AB=AC,且BP=CQ,BQ=CR,易证得△BPQ≌△CQR,即可得PQ=RQ,即可证得点Q在PR的垂直平分线上.22.答案:解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,S△ABC=12BC⋅AD=12(BD+CD)⋅AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.解析:利用勾股定理逆定理判断出AD⊥BC,再利用三角形的面积公式列式计算即可得解.本题考查了勾股定理逆定理,三角形的面积,熟记定理并确定出AD⊥BC是解题的关键.23.答案:证明:连接AE,CE.∵∠BAD=∠BCD=90°,E是BD的中点,∴AE=12BD,CE=12BD,∴AE=CE,又∵F是AC的中点,∴EF⊥AC.解析:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.连接AE,CE,根据直角三角形斜边上的中线等于斜边的一半可得AE=12BD,CE=12BD,那么AE=CE,再根据等腰三角形三线合一的性质即可证明EF⊥AC.24.答案:证明:连结DB,过点D作BC边上的高DF,则DF=EC=b−a..又∴12b2+12ab=12c2+12a(b−a)∴a2+b2=c2.解析:此题主要考查了勾股定理得证明、三角形的面积.首先连结BD,过点D作BC边上的高DF,则DF=EC=b−a,表示出S四边形ADCB,进而得出答案.25.答案:解:∵在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,∴∠BAC+∠CAD=∠EAD+∠CAD,∠ABC=∠BCA=45°,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=∠ABC=45°,∴∠BCA+∠ACE=90°,∴EC⊥BD.解析:本题主要考查了全等三角形的判定与性质,解答本题的关键在于找出全等三角形并根据全等三角形的性质求出∠BCA+∠ACE=90°.先根据∠BAC+∠CAD=∠EAD+∠CAD,得出∠BAD=∠CAE,然后证明△ABD≌△ACE,再得出∠ACE=∠ABD=45°,∠BCA+∠ACE=90°,即可证明出EC⊥BD.26.答案:证明:在AB上截取BE=BC,∵BD平分∠ABC,∴∠EBD=∠CBD,又∵BD=BD,BE=BC,∴△BED≌△BCD,∴ED=CD,∠BED=∠C,∵∠C=2∠A,∠BED=∠A+∠ADE,∴∠A=∠ADE,∴AE=ED=CD,∴AB=AE+BE=CD+BC.解析:本题主要考查的是三角形的外角性质,全等三角形的判定及性质,等腰三角形的判定等有关知识.由题意在AB上截取BE=BC,利用全等三角形的判定及性质得到ED=CD,∠BED=∠C,再根据∠C=2∠A,∠BED=∠A+∠ADE,得到∠A=∠ADE,进而得到AE=ED=CD,进而求出此题的答案.。