第7章 电化学极化
第7章电化学极化

以提高电池性能。
改进电解液配方及添加剂使用
优化电解液配方
通过调整电解液的成分和浓度, 提高离子传输速度和电极反应速 率,减小电化学极化。
使用添加剂
在电解液中加入适量添加剂,如 表面活性剂、离子液体等,以改 善电解液的物理化学性质,降低 电化学极化。
开发新型电解液
研发具有高离子电导率、低粘度 、宽电化学窗口等优点的新型电 解液,以减小电化学极化。
第7章电化学极化
汇报人:XX
目录
• 电化学极化基本概念 • 电化学极化对电池性能影响 • 电化学极化测量方法与技术 • 减小电化学极化措施与策略 • 实例分析:锂离子电池中电化学极化
问题探讨 • 总结与展望
01
电化学极化基本概念
电化学极化定义
电化学极化
电极上有电流通过时,电极电位偏离 其平衡电位的现象。
THANKS FOR WATCHING
感谢您的观看
分类
根据电极过程的不同环节,极化可分为电化学极化、浓差极化和电阻极化等。其中,电 化学极化是由于电荷转移步骤的迟缓而产生的;浓差极化是由于液相传质步骤的迟缓而 产生的;电阻极化则是由于电子或离子在电极材料或电解质溶液中的迁移受到阻碍而产
生的。
02
电化学极化对电池性能 影响
电池内阻增加
极化现象导致电池内阻增加
平衡电位
在无外电流通过时,金属电极在电解 质溶液中的电位。
电极过程与极化现象
电极过程
电极反应由一系列连续步骤组成,主要包括液相传质、前置 转化、电荷转移、后置转化和生成新相步骤等。
极化现象
当有电流通过电极时,电极电位将偏离其平衡电位,此现象 称作极化。
极化产生原因及分类
产生原因
第七章 电化学(4)

l g Ksp = −9.7566
K sp = 1 . 75 × 10 − 10
例7.9.3 将下列扩散过程设计成电池,并写出其电动势的能斯 特方程。
(1) H 2 (g, p1 ) → H 2 (g, p2 )
( p1>p2 )
(2) Ag + (a1 ) → Ag + (a2 )
解: (1) 阳极: 阴极:
Pt | O 2 (g, p ) | OH − H + | O 2 (g, p ) | Pt
同样,这两个电极中O2压力也必须相等。
例 7.9.2
利用表7.7.1的数据,求25℃ AgCl(s)在水中的溶度积Ksp。 解:溶解过程表示为
AgCl(s) = Ag + + Cl −
阳极 阴极
Ag = Ag + + e −
{
}
2.第二类电极
(1)金属—难溶盐电极 这类电极是在金属上覆盖一层该金属的难溶盐,然后 将它浸入含有与该难溶盐具有相同阴离子的溶液中而 构成的。 银-氯化银电极和甘汞电极。 甘汞电极
Cl − Hg 2 Cl 2 (s) Hg
电极反应为:
Hg 2 Cl 2 (s) + 2e − 2Hg + 2Cl −
当外加电压等于分解电压时,两极的电极电势分别称为氢和氧 的析出电势。 表7.10.1 几种电解质溶液的分解电压(室温,铂电极) 电解质 HCl HNO3 H2SO4 NaOH CdSO4 NiCl2 浓度c/mol·dm−3 1 1 0.5 1 0.5 0.5 电解产物 H2和Cl2 H2和O2 H2和O2 H2和O2 Cd和O2 Ni和Cl2 E分解/V 1.31 1.69 1.67 1.69 2.03 1.85 E理论/V 1.37 1.23 1.23 1.23 1.26 1.64
电化学极化、浓度极化和欧姆极化

电化学极化、浓度极化和欧姆极化
电化学极化:电化学极化是指在电解质溶液中,由于电解质离子在电场作用下发生偏移而引起的极化现象。
当外电场作用于电解质溶液时,溶液中的正、负离子将会受到电场力的作用而偏移,形成电场效应。
这种电场效应导致溶液中出现电偶极子,从而引起溶液的极化现象。
浓度极化:浓度极化是指在电解质溶液中,由于电解质离子在极化过程中的相互作用和堆积所引起的极化现象。
在电解质溶液中,电极表面附近的离子浓度可能会因为极化而发生变化,造成离子浓度梯度。
这种梯度会产生离子迁移的阻力,称为浓度极化。
欧姆极化:欧姆极化是指电解液在电流通过时,由于电流通过时的电阻产生的极化现象。
当电流通过电解质溶液时,溶液内部会发生电势降,并且由于溶液的电阻性质,电流通过时会产生电流密度不均匀的分布。
这种电流密度的不均匀分布导致了电极表面局部电流密度较大,从而引起电势差。
这种电势差所引起的极化现象称为欧姆极化。
电化学极化 电压滞后

电化学极化电压滞后
电化学极化是指在电化学系统中,由于电极表面的化学反应而产生的极化现象。
电化学极化是电化学过程中的重要现象,它在许多领域都有着重要的应用,比如电化学储能、电化学传感器等。
而电压滞后则是指在电化学系统中,电压的变化与电流的变化之间存在一定的滞后现象。
这种现象在电化学系统中也是十分常见的,对于理解电化学过程和优化电化学系统具有重要意义。
电化学极化和电压滞后的研究不仅对于深入理解电化学过程有着重要意义,同时也对于提高电化学系统的性能和效率具有重要的指导意义。
在电化学储能领域,电化学极化和电压滞后的研究可以帮助我们设计更高效的电池和超级电容器,提高能量密度和循环寿命。
在电化学传感器领域,电化学极化和电压滞后的研究可以帮助我们设计更灵敏的传感器,并提高传感器的响应速度和稳定性。
为了充分发挥电化学极化和电压滞后在各个领域的作用,我们需要深入研究电化学极化和电压滞后的机制,并利用先进的实验技术和理论模型来揭示其规律。
同时,我们还需要不断探索新的材料和结构,以优化电化学系统的性能。
通过这些努力,我们可以更好
地利用电化学极化和电压滞后的特性,推动电化学领域的发展,为能源存储、传感器技术等领域带来新的突破和进步。
电化学极化曲线

电化学极化曲线简介电化学极化曲线是描述电化学过程中电流和电位之间关系的一种图形。
通过测量电流与电位的关系,可以了解电化学反应的动力学特征和反应机理,以及材料的电化学性能。
本文将介绍电化学极化曲线的基本概念、测量方法以及常见的应用领域。
基本概念电化学极化电化学极化是指当在电化学系统中施加外加电位时,产生的电流不等于零的现象。
这种不平衡主要由两种极化机制引起:电解液溶液中的浓度极化和电极的电化学极化。
电化学极化曲线电化学极化曲线是描述电流和电位之间关系的图形。
通常,电位在横坐标上,而电流在纵坐标上。
极化曲线可以通过在实验中测量不同电位下的电流得到。
测量方法三电极系统电化学极化曲线的测量通常使用三电极系统,包括工作电极、参比电极和计数电极。
工作电极是进行电化学反应的电极,参比电极用作测量电位的基准,而计数电极用于测量电流。
电化学极化曲线实验装置电化学极化曲线的实验装置通常包括电化学池、电位控制器和电流计。
电化学池用于容纳电解液和电极,而电位控制器则用于调整施加在工作电极上的电位,电流计用于测量电流。
测量步骤1.准备实验装置,并将工作电极、参比电极和计数电极正确连接。
2.添加适量的电解液到电化学池中,并将电化学池密封好。
3.设置电位控制器施加一定的电位,然后测量电流。
4.逐渐增加(或减小)电位值,并记录对应的电流值。
5.根据测量结果绘制电化学极化曲线。
应用领域腐蚀研究电化学极化曲线可以用于研究材料在不同环境中的耐腐蚀性能。
通过测量极化曲线,可以评估材料的腐蚀速率以及选择防腐蚀措施。
电池和燃料电池研究电池和燃料电池的性能评估和优化通常需要测量电化学极化曲线。
通过观察极化曲线的形状和斜率,可以了解电池的动力学特性和能量转化效率。
金属材料表面处理在金属材料表面处理过程中,电化学极化曲线可以用于评估表面处理的效果。
通过测量极化曲线,可以了解表面处理对材料耐蚀性和表面质量的影响。
结论电化学极化曲线是研究电化学反应和材料的电化学性能的重要工具。
《电化学极化》课件

05
电化学极化的未来发展
新材料的应用
总结词
随着科技的发展,新型电化学材料不断涌现 ,为电化学极化技术的发展提供了更多可能 性。
详细描述
目前,科研人员正在研究新型的电极材料、 电解质材料和隔膜材料等,以提高电化学极 化的效率和稳定性。这些新材料具有更高的 电化学活性、更好的导电性和更强的耐腐蚀 性等特点,能够显著提升电化学极化的性能
。
新型电极的设计
要点一
总结词
新型电极的设计是电化学极化技术发展的关键,能够提高 电极的效率和寿命。
要点二
详细描述
科研人员正在探索新型电极的结构和组成,以优化电极表 面的反应动力学和电荷传递过程。通过改变电极的形貌、 组成和孔隙结构等参数,可以显著提高电极的电化学性能 和稳定性,进一步推动电化学极化技术的发展。
注意事项
由于电极电位进行周期性的扫描,因此适用于可 逆和半可逆体系,避免极化对实验结果的影响。 同时需要注意扫描速度和扫描路径的选择,以获 得准确的实验结果。
04
电化学极化的实际应用
电池技术
电池性能优化
通过研究电化学极化现象,可以深入 了解电池内部的反应机制,从而优化 电池的充放电性能、能量密度和循环 寿命。
电化学极化的影响因素
金属的性质
不同金属在电解质溶液中的电化学极化程度 不同,这主要取决于金属的电子结构和表面 特性。
电解质溶液的组成和性质
电解质溶液的组成和性质对电化学极化有重要影响 ,例如离子种类、浓度、溶液的酸碱度等。
电极电位
电极电位是影响电化学极化的一个重要因素 。在一定的电极电位下,金属的电化学极化 程度会有所不同。
电化学极化的动力学模型
01
建立电化学极化动力学模型需要 考虑金属表面电荷分布的变化速 率以及界面反应速率等因素。
第七章 思考题

第七章电化学思考题1.导体分几类,它们间有何不同?答:导体分两类,第一类导体,又称电子导体,如金属、石墨等。
传导电流靠自由电子作定向运动;导电后导体本身不发生变化;温度升高,电阻变大;所导电量全部由自由电子承担;第二类导体,又称离子导体,如电解质溶液、熔融电解质等。
传导电流靠正、负离子作反向运动完成;导电离子可能在电极上发生反应;温度升高,电阻反而变小;所导电量由正、负离子分担。
2.测定离子的迁移数有几种方法?答:通常有三种方法:1. Hittorf 法;2. 界面移动法;3. 电动势测定法。
3.在电镀工业上一般都用钾盐而不用钠盐?答:钠离子的半径虽然比钾离子小,但钠离子的水合作用却强得多,因而迁移速率比较慢。
因此,在电镀工业上,为了减少电解液的电阻,一般都选用钾盐。
4.在电迁移率、电导率、摩尔电导率、离子摩尔电导率、电解质扩散系数、离子扩散系数等性质中,哪些与选择基本单元有关,哪些与选择基本单元无关? 答:与基本单元选择无关的性质有:电迁移率,电导率,电解质扩散系数;与基本单元选择有关的性质有:摩尔电导率,离子摩尔电导率,离子扩散系数。
5.极限摩尔电导率是无限稀释时电解质溶液的摩尔电导率。
既然溶液已经“无限稀释”,为什么还会有摩尔电导率?此时溶液的电导率应为多少?答:根据摩尔电导率的概念,极限摩尔电导率虽然要求溶液无限稀释,但仍要求溶液中有1 mol电解质,即对应的溶液体积应为无限大,此时离子之间已没有相互作用,因此,电解质的摩尔电导率达最大值。
但这时溶液的电导率趋于纯溶剂的电导率。
6.柯尔劳施经验公式适用条件和范围是什么?柯尔劳施离子独立运动定律的重要性何在?答:柯尔劳施经验公式:c A −Λ=Λ∞m m ,适用于强电解质水溶液,浓度低于0.01 mol·dm −3的稀溶液。
根据离子独立移动定律,可以从相关的强电解质的∞Λm 来计算弱电解质的∞Λm ,或由离子电导数值计算出电解质的无限稀释时摩尔电导。
物理化学电子课件第七章电化学基础

第二节 电解质溶液
六、电导测定的应用
2. 难溶盐或微溶盐在水中的溶解度很小,很难用普通的滴定方法测 定出来,但是可以用电导的方法测定。用一已预先测定了电导率的高 纯水,配置待测微溶或难溶盐的饱和溶液,测定此饱和溶液的电导率 κ,则测出值为盐和水的电导率之和,故
第二节 电解质溶液
3. 在科学研究及生产过程中,经常需要纯度很高的水。例如,半导 体器件的生产和加工过程,清洗用水若含有杂质会严重影响产品质量 甚至变为废品。
第二节 电解质溶液
表7-2 25 ℃时几种浓度KCl水溶液的电导率
第二节 电解质溶液
四、摩尔电导率与浓度的关系
科尔劳施 (Kolrausch)对电解质溶液的摩尔电导率进行了深入的 研究,根据实验结果得出结论:在很稀的溶液中,强电解质的摩尔电 导率Λm与其浓度c的平方根呈直线关系,即科尔劳施经验式:
第七章 电化学基础
第一节 电化学的基本概念 第二节 电解质溶液第三节 可逆电池及原电池热力学 第四节 电极电势 第五节 不可逆电极过程 第六节 电化学的基本应用
第一节电化学的基本概念
一、电解池与原电池
电化学的根本任务是揭示化学能与电能相互转换的规律,实现这 种转换的特殊装置称为电化学反应器,分为电解池和原电池两类。电 解池是将电能转化为化学能的装置,而原电池是将化学能转化为电能
第三节 可逆电池及原电池热力学
四、可逆电池的热力学 1.可逆电池的电动势E与电池反应的摩尔反应吉布斯函数ΔrGm的关
在恒温、恒压且电池可逆放电过程中,系统吉布斯函数的变化量等 于系统与环境间交换的可逆电功,即等于电池的电动势E与电量Q的乘积。 根据法拉第定律,每摩尔电池反应的电量为zF,故
第三节 可逆电池及原电池热力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vvv0
(3)绝对电流密度与交换电流密度
7
8
(4)过渡态理论
9
10
(5)电极电势 对电化学反应能 垒的影响
• 电场力作功,带 电体势能减少 – 电势升高,电 子能量降低 – 电势降低,电 子能量升高
11
(6)Tafel公式 • 瑞士化学家Tafel于1905年提出著名了的
Tafel公式。该公式说明电极反应速率与过 电势之间呈现出指数关系。
–β随电极电势变化,但多数情况下变化很小,可 近似认为是常数
24
• β是能垒对称性的度量,它由两条吉布斯自由能曲 线的对称性决定的,其值在0到1之间 – 如H+在汞电极上的还原β=0.5 – Ti 4+在汞电极上还原为Ti 3+的反应β=0.42 – Ce 4+在铂电极上还原为Ce 3+的反应β=0.75
12
(7)电极动力学的Butler-Volmer公式
• 20世纪20年代,Butler和Volmer定量的建立了电极 动力学公式——Butler-Volmer公式,取得了极大的 成功,成为研究电极动力学最基础的理论。 – 一个合理的电极动力学模型,必须在平衡电势下 导出Nernst方程 – 同时,电极动力学模型还必须解释Tafel公式的正 确性
• 对于大多数体系,β值在0.3~0.7之间,在没有确切 的测量时通常将之近似为0.5
25
26
7.2.3 动力学参数k
• k--- 电极反应标准速率常数(standard rate
constant) – 定义:当电极电势等于形式电势时,正逆反应速
率常数相等,称为标准速率常数。 – 物理意义:可以度量氧化还原电对的动力学难易
– 物理意义:度量氧化还原电对的动力学难易程度 ,体现了电极反应的反应能力与反应活性,反映 了电极反应的可逆性。
– 交换电流密度与k的关系
29
30
• 同一个电极上进行的不同反应,其交换电流密度 值可以有很大的差别。例如将一个铂电极浸入到 含有0.001M的K3Fe(CN)6和1.0M的HBr溶液中, 各种反应的交换电流密度如下
• 电化学反应的基本动力学规律
– 确定反应的速率以及各种因素对反应速率 的影响
– 研究反应的机理,即从反应物变为产物的 反应历程
3
7.1 电化学动力学理论基础
• 发生极化时,电极反应处于非平衡态,称为 不可逆电极过程。 – 可逆电极过程:平衡或准平衡态 – 不可逆电极过程:非平衡态
4
(1)如何研究电化学极化 • 采取措施使电化学步骤成为速率控制步骤
32
33
• ④ 影响J0的因素:
– 不同反应,J0不同 – 同一反应在不同电极上进行,J0不同
• 材料、表面状态等 – 其他影响反应速度的因素
• 溶液组成、浓度、温度等
• ⑤ J0和k均可反映反应的可逆性
– k不受浓度的影响 – J0比较直观
31
讨论
• ① 在相同过电势下,反应速度差别由J0 和β决定 • ② J0越大,反应活性越大,可逆性越好 • 电极反应可逆性的判断:
– 在一定的净电流密度下,电极电势偏离平衡电 势越小,则可逆性越好
– 在一定的过电势下,产生的净电流密度越大, 则可逆性越好
• ③ J0趋于∞时,为理想不极化电极 J0趋于 0 时,为理想极化电极
(1)电流密度与活化自由能的关系
16
(2)电极电势对活化自由能的影响 为了使问题简化,在此做两个假设: ① 电极/溶液界面上仅有O和R参与的单电子转移步 骤,而没有其他任何化学步骤; ② 双电层中分散层的影响可以忽略。
17
18
19
(3)电极电势与电流密度的特征关系式
20
巴伏公式通式
21
22
13
(8)电荷转移的微观理论
• 建立在量子力学和统计热力学基础之上 • 电子迁移的Marcus理论在电化学研究中已有广泛的
应用,并已被证明通过最少量的计算,它便有能力 进行关于结构对动力学影响的有用的预测 • Marcus因此贡献而获得1992年度诺贝尔化学奖
14
7.2 电极动力学的Butler-Volmer模型
电化学原理
1
第7章 电化学极化
• 7.1 电化学动力学理论基础 • 7.2 电极动力学的Butler-Volmer模型 • 7.3 单电子反应的电化学极化 • 7.4 多电子反应的电极动力学 • 7.5 电极反应机理的研究 • 7.6 分散层对电极反应速率的影响 • 7.7 平衡电势与稳定电势
2
本章研究内容
电流密度—过电势通式
β=0.5 T=298K jd,c=-jd,a=jd j0 /jd=0.2
23
7.2.2 动力学参数β
• β—对称系数(对称因子)
– 定义:电势偏离形式电势时,还原反应过渡态活 化能改变值占FΔφ的分数
–物理意义:反映了改变电极电势对还原反应活化 能的影响程度 • (1- β)反映了改变电极电势对氧化反应活 化能的影响程度
程度,体现了电极反应的反应能力与反应活性, 反映了电极反应的可逆性。 • 在形式电势下,反应物与产物浓度Байду номын сангаас为1时,
k在数值上等于电极反应的绝对反应速度。
27
28
7.2.4 动力学参数J0
• J0---交换电流密度(exchange current density)
– 定义:在平衡电势下,氧化反应与还原反应的绝 对电流密度相等,称为交换电流密度。
– 电流很小 – 加强搅拌 – 暂态方法(第9章)
5
(2)反应速率常数与交换反应速率
• 质量作用定律:一定温度下,基元反应的反应速 率与各反应物浓度以相应化学计量数为方次的积 成正比。
• 微观可逆性原理:如果正向反应是基元反应,则 其逆向反应也必然是基元反应,而且逆过程按原 来的路径返回。
• 精细平衡原理:平衡时体系中每一个基元反应在 正、逆两个方向进行反应的速率相等。 – 在复杂反应中如果有一个决速步骤,则它必然 是逆反应的决速步骤。
• 在本节中,将把过渡态理论应用于电极反应,以建 立一个可定量的预测电流密度与电极电势关系的公 式,即Butler-Volmer电极动力学公式。
• 单步骤单电子过程是最简单的电极过程,可以看作 基元反应来研究,所以首先要研究单电子步骤的电 化学极化,然后再推广到多电子电极反应
15
7.2.1 Butler-Volmer电极动力学公式的 推导