三年级华罗庚数学思维训练之等差数列
思维训练1等差数列趣谈

思维训练一:等差数列趣谈姓名:得分:像1、2、3、4、5、----- ;2、4、6、8、10----- 两组数中每相邻的两个数的差都一样,这样排列的一组数就叫做“等差数列”。
等差数列的每一个数都叫做“项”,通常把第一个项叫做“首项”,最后一项叫做“末项”,等差数列中相邻两个数的差叫做“公差”。
一、说出下边数列中,哪些是等差数列,是的打“√”,不是打“×”(1)2、5、8、11、14 ()(2)99、89、79、69、59()(3)1、2、4、7、11、16()(4)11、19、27、35、43()二、数列12、17、22、27、32 …,这个数列的第50项是多少?提示:要求的项=首项±(项数-1)×公差三、你能求出数列255、251、247 …的第30项是多少吗?四、从一个箩筐里拿鸡蛋,第一次拿1个,第二次拿3个,以后每次比前一次多拿2个,拿了16次刚好拿完。
这筐鸡蛋一共有多少个?提示:等差数列的和=(首项+末项)×项数÷2五、你能很快求出这些等差数列的和吗?1+2+3+4+5+…+99+100 1+3+5+…+31+33+35六、时钟在每个整点都要报时,每个半点也会报时。
整点敲钟次数与钟点数相同,半点敲钟次数都是1次。
那么时钟一天敲钟多少次?七、我会断。
对的打“√”,错的打“×”1、25×25÷25×25=1 ()2、比90少2的数的2倍是176 ()3、21、26、13的平均数是20 ()4、185乘97与53的差,积是多少?列式是:185×97-53 ()5、括号的作用是是运算简便()八、快乐ABC1.要使450÷10+20×3的运算顺序是加→乘→除,下面正确的算式是()。
A. 450÷(10+20)×3B. 450÷[(10+20)×3]C. 450÷(10+20×3)2、下面的算式中,除数能整除被除数的是()A. 32÷9B. 32÷8C. 32÷7九、在○里填上>,=,< 符号25×4÷25×4○25×4-25×4 600÷20÷5○600÷(20×5)十、简算下面各题756-193-207 101×92 4800÷25÷4864-199 28×4×25 88×125。
(完整)三年级奥数简单的等差数列

1.3 简单的等差数列新知导航在加减法的混合计算中,存在一种情况:多个加数(或减数)按照固定的规律依次排列,并且这些数中任意两个相邻的数的差相同,这就是数学王国中最著名的故事“高斯求和”——等差数列求和。
一、等差数列的认识【基础过关】热身题:智慧老人觉得龟兔都是可造之才,所以邀请它们来到家里继续学习新的知识。
智慧老人给它们讲了数学王子高斯小时候的故事,随后在黑板上写下了这样的一个题:1+2+3+4+5+6+7+8+9+10的结果是多少?分析:观察发现:本题中的数按从小到大的顺序依次排列,可以使用首尾对应求和的方式变加法为乘法计算。
1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11+11+11+11+11=11×5=55老师点睛当一组数字按照从小到大(或者从大到小)顺次排列且任意两个相邻的数的差相同,这组数被称之为“等差数列”。
若求这组等差数列的和,可以按照首尾对应相加的方式使用乘法计算。
二、等差数列的求和计算【综合提升】例题1:10+11+12+13+…+19分析:通过观察可得这是一组等差数列的求和计算,可以采用前面的首尾对应求和的方法。
10+11+12+13+…+19=(10+19)+(11+18)+…+(14+15)=29+29+29+…+29=29×(10÷2)=29×10÷2=290÷2=145老师点睛在连续自然数组成的等差数列求和计算中,可以将加法改为乘法计算:和=(第一个数+最后一个数)×数的个数÷2。
但首先要找到这组等差数列中数的个数,才能完成计算。
【巩固训练】(1)1+2+3+…+20(2)3+4+5+…+12(3)1+2+3+…+40(4)5+6+7+…+24例题2:3+6+9+…+60分析:通过观察可得:这组等差数列的数都是第一个数的倍数,因此在找数的个数时,可以借用倍数的特殊性。
三年级奥数等差数列

三年级奥数等差数列小学三年级奥数专项练:等差数列知识要点】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。
2.特点:①相邻两项差值相等;②要么递增,要么递减。
3.名词:公差,首项,末项,项数按一定次序排列的一列数叫做数列。
数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;最后一个数叫末项。
如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列。
后项与前项的差就叫做这个数列的公差。
例如:1,2,3,4.是等差数列,公差是1;1,3,5,7.是等差数列,公差是2;5,10,15,20.是等差数列,公差是5.在等差数列中,有如下规律:通项公式:末项=首项+(项数-1)×公差第几项=首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2 =平均数×项数平均数公式:平均数=(首项+末项)÷21) 一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;2) 一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。
3) 一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。
计算下面的数列和:1) 1+2+3+4+…+23+24+25=2) 1+5+9+13+…+33+37+41=3) 3+7+11+15+19+23+27+31=拓展练:1、在10和40之间插入四个数,使得这六个数构成一个等差数列。
那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。
1) 2、4、6、8、……、28、30这个等差数列有()项。
2) 2、8、14、20、……62这个数列共有()项。
三年级奥数等差数列

三年级奥数等差数列引言本文档旨在介绍三年级学生应了解的奥数等差数列的概念和基本计算方法。
什么是等差数列?等差数列是由一系列数按照相等的差值依次排列而成的数列。
每个数与它前一个数的差值都是相等的。
等差数列的特点1. 公差:等差数列中相邻两项之间的差值称为公差。
用字母"d"表示。
2. 首项:等差数列的第一项称为首项。
用字母"a"表示。
3. 通项公式:按照公差依次递增的等差数列的第n项可以表示为:an = a + (n-1)d。
等差数列的计算方法计算首项- 已知公差d和第n项an,首项可以通过公式a = an - (n-1)d来计算。
- 已知公差d和前一项an-1,首项可以通过公式a = an-1 + d来计算。
计算公差- 已知首项a和第n项an,公差可以通过公式d = (an - a) / (n-1)来计算。
- 已知前一项an-1和第n项an,公差可以通过公式d = an - an-1来计算。
计算第n项- 已知首项a和公差d,第n项可以通过公式an = a + (n-1)d来计算。
- 已知前一项an-1和公差d,第n项可以通过公式an = an-1 + d 来计算。
例子请考虑一个等差数列的实例:首项a=2,公差d=3。
我们来计算该等差数列的第5项。
根据通项公式:an = a + (n-1)d,我们计算得到:a5 = 2 + (5-1)*3 = 14。
结论通过本文档,我们了解了三年级奥数中关于等差数列的概念,以及计算等差数列中首项、公差和第n项的方法。
掌握了这些基础知识,学生可以更好地理解和解决与等差数列相关的问题。
三年级奥数第四讲等差数列

等差数列及其应用教学目标:⒈让学生理解等差数列的意义,知道等差数列中各部分的名称,掌握求尾项和项数的公式。
⒉培养良好的审题习惯和思维习惯。
教学重难点:理解并学会应用求和的公式及如何求项数,首项,末项及公差。
教学过程:第一课时一、理解等差数列的意义。
㈠⒈师:同学们,喜欢做游戏吗?生:喜欢。
师:(课件出示:找规律,猜猜下一个数是谁。
5,(),)生:6生:7生:10生:不确定,还要知道一个数才能发现规律呢。
(学生一齐鼓掌。
)【设计意图:通过学生喜欢的游戏形式,一开始就吸引学生的注意力,调动学生的学习积极性,让学生知道得出规律不能凭一种情况,至少要三个数,构成两种情况。
】㈡师:老师再给你一个数,现在猜猜看。
(课件出示:找规律,猜猜下一个数是谁。
5,(),9)生:7师:怎么想的?生:7比5多2,9比7多2,(电脑同时出示)师:下一个数是几?生:11师:对吗?生:9+2=11师:下一个?再一个?师:能说完吗?师:对,每加一个2,就会产生一个新数。
㈢师:如果老师在这儿填6可以吗?(课件出示:5,(6),9 )生:可以师:什么规律呢?生:加1、加3师:哪下个数可能是多少?怎么想的?师:下个数呢?怎么想的?下个呢?能说完吗?师:人站队,我们叫队列,像这样把数排队我们把它叫数列。
(板书课题:数列)请同学们比较这两个数列有什么区别。
生:师:一个数列,从第个2数开始,依次与前一个数的差相同,这样的数列叫等差数列。
(板书完善课题:等差)师:谁来完整地说说什么叫等差数列。
【设计意图:通过同一道题目的两种填法,揭示不同的规律,培养学生创新思维的同时,让学生知道寻找规律的重要性,通过两种数列的比较养成遇到数列就先找规律的习惯。
】二、认识数列各部分的名称。
出示:一套书有5本,每隔5年出版一本,第三本是1998年出版的。
其他几本书分别是哪年出版的?师:关键词有哪些?师:你认为哪个关键词比较难理解?生:每隔5年。
师:谁来说说(板书:1998年)第二本是哪年出版?你是怎么想的?生:隔5年就是减5年,第二本出版是1993年。
三年级华罗庚数学思维训练之和差倍问题

三年级华罗庚数学思维训练之和差倍问题1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。
解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。
2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?分析:从甲筐取出放入乙筐,总数不变。
甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。
于是,问题就变成最基本的和差问题:和19千克,差3千克。
解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。
4、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:被减数=减数+差=(被减数+减数+差)/2。
因此,减数与差的和= 120/2=60。
这样就是基本的和倍问题了。
小数=和/(倍数+1)解:减数与差的和=120/2=60,差=60/(3+1)=15。
5、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。
新概念思维训练-小学三年级第13讲等差数列-教师版

第13讲等差数列内容概述掌握等差数列中的首项、末项、项数、公差等基本概念及其相互关系;理解等差数列中的各种计算公式,并能熟练运用公式解决与等差数列相关的各种问题。
典型问题兴趣篇1. (1) 2, 5, 8, 11, 14, …。
上面是按规律排列的一串数,其中第21项是多少?(2)把比100大的奇数从小到大排成一列,其中第21个是多少?答案:(1)62 (2)141 解析:(1)首项是2,公差是3,所以21项是62;(2)首项是101.公差是2,第21项是141.2. 如图13-1,有一堆按规律摆放的砖。
从上往下数,第1层有1块砖,第2层有5块砖,第3层有9块砖……按照这样的规律,第19层有多少块砖?答案:73块解析:首项是1,公差是4的等差数列,第19项即是答案。
3. 已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?答案:83 191 解析:由题意可知公差是6,由此求出首项是83,第19项即是63+18乘以6即是结果191.4. 冬冬先在黑板上写了一个等差数列,刚写完阿奇就冲上讲台,擦去了其中的大部分数,只留下第四个数31和第十个数73。
你能算出这个等差数列的公差和首项吗?答案:公差是7,首项10 解析:公差是73-31=42,42除以6=7;首项=10.5. 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
(1)如果冬冬报3,阿奇报25,每位同学报的数都比前一位多2,那么队伍里一共有多少人?(2)如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?答案:(1)12 (2)20解析:由题意可知,首项是3,末项是25,公差是2,由此可求项数是12.(2)同理6. 计算:(1)1+2+3+4+5+6+7+8+9+10+11+12;答案:78(2)11+12+13+14+15+16+17+18+19。
三年级等差数列题型及解题方法

三年级等差数列题型及解题方法
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母公式表示。
例如数列公式就是一个等差数列,其中公差公式。
2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式为首项(数列的第一项),公式为项数,公式为公差。
例如,在等差数列公式中,公式,公式,那么第公式项公式。
3. 求和公式
等差数列的前公式项和公式为公式或者公式。
例如,求等差数列公式的和。
这里公式,公式,公式。
先求项数公式,由公式可得公式,解方程公式,
即公式,解得公式。
再根据求和公式公式,可得公式。
二、三年级等差数列常见题型及解题方法
1. 求数列中的某一项
题目:在等差数列公式中,求第公式项是多少?
解析:
首先确定这个等差数列的首项公式,公差公式。
根据通项公式公式,当公式时,公式
先计算括号内公式,再计算公式,最后公式。
所以第公式项是公式。
2. 求数列的项数
题目:等差数列公式,这个数列有多少项?
解析:
已知公式,公式,公式。
根据通项公式公式,可得公式。
先展开括号得到公式,
移项可得公式,即公式,解得公式。
所以这个数列有公式项。
3. 求数列的和
题目:求等差数列公式的和。
解析:
这里公式,公式,公式。
方法一:根据求和公式公式,先求公式,公式
,则公式。
方法二:根据公式,公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级华罗庚数学思维训练之等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3 (1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100 2=50组,每组3个数,共有50 3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?.
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为:1988 14=142,最小数与最大数相差28-1=27个公差,即相差2 27=54,这样转化为和差问题,最大数为(142+54)2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34 28+28=35 28=980<1000,所以只有以下几个数:
34 29+29=35 29
34 30+30=35 30
34 31+31=35 31
34 32+32=35 32
34 33+33=35 33
以上数的和为35 (29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析:假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和
13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3++134+135=136 135 2=9180,9180 17=540,135个数的和除以17的余数为0,而19+97=116,116 17=6 14,所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,,那么其中第多少个算式的结果是1992?
解答:先找出规律:每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。
因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3,如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)2=996项,而数字1始终是奇数项,两者不符,所以这个算式是3+1989=1992,是(1989+1)2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、、12、5。
从右向左算它们的差分别为:1332、1325、1318、、9、2,所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2
个问题:前18个式子用去了多少个数?各式用数分别为5、7、9、、第18个用了5+2 17=39个,5+7+9++39=396,所以第19个式子从397开始计算;第19个式子有几个数相加?各式左边用数分别为3、4、5、、第19个应该是3+1 18=21个,所以第19个式子结果是397+398+399++417=8547。
9、已知两列数:2、5、8、11、、2+(200-1)3;5、9、13、17、、5+(200-1)4。
它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、,由于第一个数列最大为2+(200-1)3=599;第二数列最大为5+(200-1)4=801。
新数列最大不能超过599,又因为5+12 49=593,5+12 50=605,所以共有50对。
10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正
三角形分割成许多边长为2厘米的小正三角形。
求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度。
解答:⑴从上数到下,共有100 2=50行,第一行1个,第二行3个,第三行5个,,最后一行99个,所以共有(1+99)50 2=2500个;⑵所作平行线段有3个方向,而且相同,水平方向共作了49条,第一条2厘米,第二条4厘米,第三条6厘米,,最后一条98厘米,所以共长(2+98)49 2 3=7350厘米。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。
如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。
由题意可知,总厂人数每天在减少,
最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070 15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)(30-1)=2人,所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、35 第二方案:45、50、55、60、65、40 二次方案调整如下:第一方案:40、45、50、55、35+35(第一天放到最后惶熘腥ィ?/P 第二方案:40、45、50、55、(最后一天放到第一天)这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵,为了使钌俚男《又值氖髟缴僭胶茫?敲戳?个应该越多越好,有:17+16+15+14+13=75棵,所以最少的小队最少要种82-75=7棵。
14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?
解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19,当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170,当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158,所以最大数为19时,有第2个数为7。