概率统计习题5.3
高中数学第五章统计与概率5.3概率5.3.2事件之间的关系与运算教学1b高一必修第二册数学

第二十一页,共二十二页。
内容(nèiróng)总结
第五章 统计(tǒngjì)与概率。说出每一事件的实际意义,并尝试理解上述各事件之间的关系.。2理解,互斥事件和对立事件的概念 及关系。会用互斥事件与对立事件的概念公式求概率。3.会用自然语言、符号语言表示事件之间的关系与运算,加强数学抽象素养的培
2021/12/9
第十四页,共二十二页。
即时训练3 已知数学考试中,李明名成绩高于90分的概率为0.3,不低于60分且不高于90 分的概率为0.5,求: (1)李明成绩不低于60分的概率; (2)李明成绩低于60分的概率。5事件(shìjiàn)的混合运算。
2021/12/9
第十五页,共二十二页。
第五章 统计 与概率 (tǒngjì)
2021/12/9
第一页,共二十二页。
5.3 概率(gàilǜ)
5.3.2 事件(shìjiàn)之间的关系与运算
2021/12/9
第二页,共二十二页。
5.3.2 事件(shìjiàn)之间的关系与运 算
2021/12/9
第三页,共二十二页。
【导入新课】 回顾1.集合间的运算(yùn suàn)及关系
2021/12/9
第七页,共二十二页。
问题探究二:事件的和(并) (1)给定事件A,B。由所有A中的样本点与所有B中的样本点组成的事件, 称为A与B的和(或并),记作A+B(或A∪B)。 (2)事件A+B发生(fāshēng),则当且仅当事件A与事件B中至少有一个发生。
2021/12/9
第八页,共二十二页。
2021/12/9
第九页,共二十二页。
P(A)≤P(A+B) , P(B)≤P(A+B) , P(A+B)≤P(A)+P(B)
概率论与数理统计 5.3 协方差与相关系数

概率论
均值 EX是X一阶原点矩,方差DX是X的二阶
中心矩。
四、课堂练习
概率论
1、设随机变量(X,Y)具有概率密度
f (x, y) 81(x y) 0 x 2,0 y 2
0
其它
求E(X ), E(Y ),Cov(X ,Y ), D(X Y )。
2、设X ~ N(, 2),Y ~ N(, 2),且设X,Y相互独立 试求Z1 X Y和Z2 X Y的相关系数(其中,
Cov(aX b,cY d ) acCov( X ,Y ); Cov(aX bY ,cX dY ) acDX bdDY (ad bc)Cov( X ,Y ).
(6) D(XY) = DX+ D Y 2 Cov(X, Y) .
一般地, D(aXbY) =a 2DX + b2DY 2 abCov(X, Y).
1
1
dx
1 x 8xydy 8
0
x
15
EY
yf ( x, y)dxdy
o
1x
1
dx
1 y 8xydy 4
0
x
5
EXY
xyf ( x, y)dxdy
1
dx
0
1 xy 8xydy 4
x
9
Cov( X ,Y ) EXYEXEY 4
225
类似地,EX 2
1
X与Y不独立.
EX EY EXY 0, Cov( X ,Y ) 0, XY 0,
X与Y不相关.
例6 设 X 的分布律为
X 1 0 1 P 13 13 13
Y X 2, 求 XY , 并讨论 X 与Y 的独立性. 解 EX 0, EY EX 2 2 3, E( XY ) EX 3 0,
概率与数理统计 5.3 中心极限定理.ppt

X ~ N (120, 48) (近似)
问题转化为求 a , 使
P(0 rX a) 99.9%
P(0 rX a) a / r 120 0 120 48 48
a / r 120 (17.32) 48 0
P(Xi k) p1 p k1 , p1/3 k 1,2,
(几何分布)
E( X i )
1 p
p1/ 3
3,
D(Xi )
1
p
p
2
p1/ 3
6
100
X1, X 2,, X100 相互独立, X X k
k 1
E( X ) 300, D( X ) 600
根据第二章知识若 X ~ N(, 2) 则X的标准化 随机变量
Y ( X EX ) / DX ( X ) / ~ N (0,1)
若X1, X2, …Xn为独立同分布的随机变量,
n
X i ~ N (, 2 ) ,则 X i ~ N (n, n 2 ) i 1
其标准化随机变量
X n X n1 Yn (n 1)
其中Xn是第n天该商品的价格.如果今天 的价格为100,求18天后该商品的价格 在 96 与 104 之间的概率.
解 设 X 0 表示今天该商品的价格, X 18为18
天后该商品的价格, 则
18
X18 X17 Y18 X16 Y17 Y18 X 0 Yi
0! 1!
3°用正态分布近似计算
PX 2 1 PX 2 1 PX 1
1 (1 np ) npq
新教材高中数学第五章统计与概率5.3.5随机事件的独立性学案新人教B版必修第二册

5.3.5 随机事件的独立性问题导学预习教材P114-P116的内容,思考以下问题: 1.事件A 与B 相互独立的概念是什么?2.如果事件A 与B 相互独立,则A 与B ,B 与A ,A 与B 也相互独立吗? 3.两事件互斥与两事件相互独立是一个意思吗?随机事件的独立性1.一般地,当P (AB )=P (A )P (B )时,就称事件A 与B 相互独立(简称独立).如果事件A 与B 相互独立,那么A -与B ,A 与B -,A -与B -也相互独立.2.两个事件相互独立的概念也可以推广到有限个事件,即“A 1,A 2,…,A n 相互独立”的充要条件是“其中任意有限个事件同时发生的概率都等于它们各自发生的概率之积”.■名师点拨两个互斥事件不可能同时发生,但相互独立的两个事件是可以同时发生的,相互独立事件和互斥事件之间没有联系.判断正误(正确的打“√”,错误的打“×”)(1)不可能事件与任何一个事件相互独立.( ) (2)必然事件与任何一个事件相互独立.( )(3)“P (AB )=P (A )P (B )”是“事件A 与B 相互独立”的充要条件.( ) 答案:(1)√ (2)√ (3)√国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1个人去北京旅游的概率为( )A.5960B.35C.12D.160解析:选B.因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1个人去北京旅游的概率为P =1-23×34×45=35.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为________.解析:记两个实习生把零件加工为一等品分别记为事件A 和B . 则P =P (AB )+P (AB )=23×⎝ ⎛⎭⎪⎫1-34+⎝ ⎛⎭⎪⎫1-23×34=512.答案:512相互独立事件的判断从一副扑克牌(去掉大、小王)中任取一张,设事件A =“抽到K ”,事件B =“抽到红牌”,事件C =“抽到J ”,那么下列每对事件是否相互独立?是否互斥?是否对立?为什么?(1)A 与B ; (2)C 与A .【解】 (1)由于事件A 为“抽到K ”,事件B 为“抽到红牌”,故抽到红牌中有可能抽到红桃K 或方块K ,即有可能抽到K ,故事件A ,B 有可能同时发生,显然它们不是互斥事件,更加不是对立事件.以下考虑它们是否为相互独立事件: 抽到K 的概率为P (A )=452=113,抽到红牌的概率为P (B )=2652=12,事件AB 为“既抽到K 又抽到红牌”,即“抽到红桃K 或方块K ”,故P (AB )=252=126,从而有P (A )P (B )=P (AB ),因此A 与B 是相互独立事件.(2)从一副扑克牌(去掉大、小王)中任取一张,抽到K 就不可能抽到J ,抽到J 就不可能抽到K ,故事件C 与事件A 不可能同时发生,A 与C 互斥,由于P (A )=113≠0.P (C )=113≠0,P (AC )=0,所以A 与C 不是相互独立事件,又抽不到K 不一定抽到J ,故A 与C 并非对立事件.判断两个事件是否相互独立的方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)定义法:如果事件A ,B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率的积,则事件A ,B 为相互独立事件.下列事件A ,B 是相互独立事件的是( )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,事件A 为“第一次摸到白球”,事件B 为“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A 为“甲灯泡能用1 000小时”,B 为“甲灯泡能用2 000小时”解析:选A.把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C ,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.相互独立事件概率的求法小王某天乘火车从广州到上海去办事,若当天从广州到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.【解】 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间相互独立,所以恰好有两列正点到达的概率为P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车至少有一列正点到达的概率为P 2=1-P (ABC -)=1-P (A -)P (B -)P (C -)=1-0.2×0.3×0.1=0.994.[变问法]在本例条件下,求恰有一列火车正点到达的概率.解:恰有一列火车正点到达的概率为P 3=P (ABC -)+P (A -B C -)+P (AB -C )=P (A )P (B -)·P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C )=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(1)求相互独立事件发生的概率的步骤是 ①首先确定各事件之间是相互独立的; ②确定这些事件可以同时发生; ③求出每个事件的概率,再求乘积.(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.相互独立事件的应用甲、乙两人破译一密码,他们能破译的概率分别为13和14.求:(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率.【解】 设“甲能破译”为事件A ,“乙能破译”为事件B ,则A ,B 相互独立,从而A 与B -、A -与B 、A -与B -均相互独立.(1)“两人都能破译”为事件AB ,则P (AB )=P (A )·P (B )=13×14=112.(2)“两人都不能破译”为事件AB ,则P (AB -)=P (A -)·P (B -)=[1-P (A )]·[1-P (B )]=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=12.(3)“恰有一人能破译”为事件((A B -)∪(A -B )),则P ((A B -)∪(A -B ))=P (A B -)+P (A -B )=P (A )·P (B -)+P (A -)·P (B )=13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-13×14=512.解决此类问题的关键是弄清相互独立的事件,还要注意互斥事件的拆分,以及对立事件概率的求法的运用,即三个公式的联用:P (A ∪B )=P (A )+P (B )(A ,B 互斥),P (A )=1-P (A -),P (AB )=P (A )P (B )(A ,B 相互独立).某项竞赛分为初赛、复赛、决赛三个阶段,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则被淘汰.已知某选手通过初赛、复赛、决赛的概率分别是34,12,14,且各阶段通过与否相互独立.求该选手在复赛阶段被淘汰的概率.解:记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,则P (A )=34,P (B )=12, 那么该选手在复赛阶段被淘汰的概率P =P (AB )=P (A )P (B )=34×⎝⎛⎭⎪⎫1-12=38.1.分别抛掷2枚质地均匀的硬币,设“第1枚为正面”为事件A ,“第2枚为正面”为事件B ,“2枚结果相同”为事件C ,有下列三个命题:①事件A 与事件B 相互独立; ②事件B 与事件C 相互独立; ③事件C 与事件A 相互独立. 以上命题中,正确的个数是( ) A .0 B .1 C .2D .3解析:选D.P (A )=12,P (B )=12,P (C )=12,P (AB )=P (AC )=P (BC )=14,因为P (AB )=14=P (A )P (B ),故A ,B 相互独立;因为P (AC )=14=P (A )P (C ),故A ,C 相互独立;因为P (BC )=14=P (B )P (C ),故B ,C 相互独立;综上,选D.2.(2019·四川省眉山市期末)三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将元件T 2,T 3并联后再和元件T 1串联接入电路,如图所示,则此电路不发生故障的概率为________.解析:记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.因为电路不发生故障的事件为(A 2+A 3)A 1, 所以电路不发生故障的概率为P =P [(A 2+A 3)A 1]=P (A 2+A 3)P (A 1)=[1-P (A -1)·P (A -3)]·P (A 1)=(1-14×14)×12=1532.答案:15323.在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( )A .P 1P 2B .1-P 1P 2C .P 1(1-P 2)D .(1-P 1)(1-P 2)解析:选D.因为甲地不下雨的概率为P 1,乙地不下雨的概率为P 2,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为P =(1-P 1)(1-P 2).故选D.4.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,则“星队”至少猜对3个成语的概率为________.解析:记事件A :“甲第一轮猜对”,事件B :“乙第一轮猜对”,事件C :“甲第二轮猜对”,事件D :“乙第二轮猜对”,事件E :“‘星队’至少猜对3个成语”.由题意知,E =ABCD +A -BCD +A B -CD +AB C -D +ABC D -. 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)·P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -)=34×23×34×23+2×⎝ ⎛14×23×34×23+34×13×⎭⎪⎫34×23=23. 所以“星队”至少猜对3个成语的概率为23.答案:23[A 基础达标]1.如图,用K 、A1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576解析:选B.可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个正常工作的概率为P =1-(1-0.8)2=0.96,所以系统正常工作的概率为P K ·P =0.9×0.96=0.864.2.一件产品要经过2道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( )A .1-a -bB .1-abC .(1-a )(1-b )D .1-(1-a )(1-b )解析:选C.设A 表示“第一道工序的产品为正品”,B 表示“第二道工序的产品为正品”,则P (AB )=P (A )P (B )=(1-a )(1-b ).3.(2019·陕西省西安中学段考)从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,这两项至少有一项合格的的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( )A.1320B.15C.14D.25解析:选D.法一:所求概率P =15×34+45×14+15×14=3+4+120=820=25.法二:所求概率P =1-45×34=1-35=25.4.(2019·河南省郑州市中原区月考)一道竞赛题,A ,B ,C 三人可解出的概率分别为12,13,14,则三人独立解答,仅有一人解出的概率为( ) A.124B.1124C.1724D.1解析:选B.所求概率P =12×23×34+12×13×34+12×23×14=14+18+112=1124.5.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯而停车一次的概率为( ) A.19 B.16 C.13D.718解析:选D.设汽车分别在甲、乙、丙三处通行为事件A ,B ,C ,则P (A )=13,P (B )=12,P (C )=23,停车一次即为事件ABC +ABC +ABC 的发生,故概率P =⎝⎛⎭⎪⎫1-13×12×23+13×⎝⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718. 6.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.解析:从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M ,N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P (MN )=P (M )·P (N )=160200×180240=35. 答案:357.已知A ,B ,C 相互独立,如果P (AB )=16,P (B -C )=18,P (AB C -)=18,则P (A -B )=________.解析:依题意得⎩⎪⎨⎪⎧P (AB )=16,P (B -C )=18,P (AB C -)=18,解得P (A )=13,P (B )=12,P (C )=14.所以P (A -B )=23×12=13.答案:138.在某道路A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条道路上匀速行驶,则三处都不停车的概率为________.解析:由题意可知,每个交通灯开放绿灯的概率分别为512,712,34.某辆车在这个道路上匀速行驶,则三处都不停车的概率为512×712`×34=35192.答案:351929.已知电路中有4个开关,每个开关独立工作,且闭合的概率为12,求灯亮的概率.解:因为A ,B 断开且C ,D 至少有一个断开时,线路才断开,导致灯不亮,P =P (A -B -)[1-P (CD )]=P (A -)P (B -)·[1-P (CD )]=12×12×⎝ ⎛⎭⎪⎫1-12×12=316.所以灯亮的概率为1-316=1316.10.有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (1)求恰有一件不合格的概率;(2)求至少有两件不合格的概率(精确到0.001).解:设从三种产品中各抽取一件,抽到合格品的事件为A 、B 、C . (1)因为P (A )=0.90,P (B )=P (C )=0.95, 所以P (A -)=0.10,P (B -)=P (C -)=0.05.因为事件A 、B 、C 相互独立,恰有一件不合格的概率为:P (A ·B ·C -)+P (A ·B -·C )+P (A -·B ·C )=P (A )·P (B )·P (C -)+P (A )·P (B -)·P (C )+P (A -)·P (B )·P (C )=2×0.90×0.95×0.05+0.10×0.95×0.95≈0.176.(2)法一:至少有两件不合格的概率为P (A ·B -·C -)+P (A -·B ·C -)+P (A ·B -·C -)+P (A -·B -·C -)=0.90×0.052+2×0.10×0.05×0.95+0.10×0.052=0.012.法二:三件产品都合格的概率为P (A ·B ·C ) =P (A )·P (B )·P (C )=0.90×0.952≈0.812.由(1)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为1-[P (A ·B ·C )+0.176]=1-(0.812+0.176)=0.012.[B 能力提升]11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .2个球至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C.分别记从甲、乙袋中摸出一个红球为事件A 、B ,则P (A )=13,P (B )=12,由于A 、B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.12.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为________.解析:设加工出来的零件为次品为事件A ,则A 为加工出来的零件为正品. P (A )=1-P (A -)=1-⎝ ⎛⎭⎪⎫1-170⎝ ⎛⎭⎪⎫1-169⎝ ⎛⎭⎪⎫1-168=370.答案:37013.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工,绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45,56,23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率.解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为45×56×⎝ ⎛⎭⎪⎫1-23=29,只有农产品加工和水果种植两个项目成功的概率为 45×⎝⎛⎭⎪⎫1-56×23=445,只有绿色蔬菜种植和水果种植两个项目成功的概率为⎝ ⎛⎭⎪⎫1-45×56×23=19,所以恰有两个项目成功的概率为29+445+19=1945. (2)三个项目全部失败的概率为⎝ ⎛⎭⎪⎫1-45×⎝ ⎛⎭⎪⎫1-56×⎝ ⎛⎭⎪⎫1-23=190, 所以至少有一个项目成功的概率为1-190=8990. [C 拓展探究]14.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:在三门课程中,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为a 、b 、c ,且三门课程考试是否及格相互之间没有影响.(1)分别求应聘者用方案一和方案二时,考试通过的概率;(2)试比较应聘者在上述两种方案下考试通过的概率的大小(说明理由).解:记该应聘者对三门指定课程考试及格的事件分别为A 、B 、C ,则P (A )=a ,P (B )=b ,P (C )=c .(1)应聘者用方案一考试通过的概率P 1=P (A ·B ·C -)+P (A -·B ·C )+P (A ·B -·C )+P (A ·B ·C )=ab (1-c )+bc (1-a )+ac (1-b )+abc =ab +bc +ca -2abc ,应聘者用方案二考试通过的概率为P 2=13P (A ·B )+13P (B ·C )+13P (A ·C )=13(ab +bc +ca );(2)因为a 、b 、c ∈[0,1],所以P 1-P 2=23(ab +bc +ca )-2abc =23[ab (1-c )+bc (1-a )+ac (1-b )]≥0,故P 1≥P 2.即采用第一种方案,该应聘者通过的概率大.。
高中数学第五章统计与概率5.3概率5.3.5随机事件的独立性教学1b高一必修第二册数学

2.坛中有黑、白两种颜色的球,从中进行有放回地摸球,用A1
表示第一次摸得白球,A2表示第二次摸得白球,则A1与A2是( )
A.相互独立事件
B.不相互独立事件
C.互斥事件
D.对立事件
12/13/2021
3.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球
(2)甲、乙两名射手同时向一目标射击,设事件A:“甲击中目
标”,事件B:“乙击中目标”,则事件A与事件B(
)
A.相互独立但不互斥
B.互斥但不相互独立
C.相互独立且互斥
D.既不相互独立也不互斥
12/13/2021
相互独立事件同时发生的概率
【例2】 高二某同学语文、数学、英语三科的考试成绩在一次 考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85. 求:
所以 P(A)=36=12,P(B)=26=13,P(AB)=16. 所以 P(AB)=P(A)P(B), 所以事件 A 与 B 相互独立.
12/13/2021
判断事件是否相互独立的方法 1定义法:事件A,B相互独立⇔PAB=PA·PB. 2直接法:由事件本身的性质直接判定两个事件发生是否相互 影响.
12/13/2021
1.(1)下列事件中,A,B是相互独立事件的是(
)
A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为
反面”
B.袋中有2白,2黑的小球,不放回地摸两球,A=“第一次摸
到白球”,B=“第二次摸到白球”
C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为 偶数”
D.A=“人能活到20岁”,B=“人能活到50岁”
人教B版(2019)高中数学必修第二册 第五章统计与概率5.3.4频率与概率同步习题(含答案)

5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:时间2016年2017年2018年2019年出生婴儿数21840230702009419982 出生男婴数11453120311029710242(2)该市男婴出生的概率约为多少?知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.137.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:“满意”的概率是( )A.715B.25C.1115D.13159.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.11.对某批产品进行抽样检查,数据如下:抽查________件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:赔付金额(元)01000200030004000 车辆数500130100150120(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.:易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.63.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码12345678910 取到的次数101188610189119A.0.53 B.0.5C.0.47 D.0.374.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增大,有( )A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.456.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3000辆帕萨特出租车,乙公司有3000辆桑塔纳出租车,100辆帕萨特出租车.交警部门应先调查哪家公司的车辆较合理?( )A.甲公司B.乙公司C.甲与乙公司D.以上都对二、多项选择题9.下列说法中,正确的有( )A.频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小B.百分率是频率,但不是概率C.频率是不能脱离试验次数n的实验值,而概率是具有确定性的不依赖于试验次数的理论值D.频率是概率的近似值,概率是频率的稳定值10.下列说法正确的是( )A.事件A的概率为P(A),必有0≤P(A)≤1B.事件A的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效.现有胃溃疡的病人服用此药,则估计有明显疗效的概率约为76% D.某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖11.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩(取整数)分布:法正确的是( )A.估计她得90分以上(含90分)的概率约为0.067B.估计她得60~69分的概率约为0.150C.估计她得60分以上(含60分)的概率约为0.982D.估计她得59分以下(含59分)的概率约为0.10812.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买,则下列说法正确的是( )B.估计顾客同时购买乙和丙的概率为0.2C.估计顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.4D.如果顾客购买了甲,则该顾客同时购买乙、丙、丁中的丙的可能性最大三、填空题13.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率的近似值是________.14.一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x个;[40,50)5个;[50,60)4个;[60,70]2个.则x等于________;根据样本的频率估计概率,数据落在[10,50)的概率约为________.15.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.16.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%;一旦失败,一年后将丧失全部资金的50%.下表是去年200例类似项目开发的实施结果.四、解答题17.电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的及格率(60分及以上为及格);(2)从该校高一年级随机选取一名学生,估计这名学生该次期末考试成绩在70分以上(包括70分)的概率.19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40) 天数21636257 4(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.20.甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:测试指标[85,90)[90,95)[95,100)[100,105)[105,110)甲机床81240328 乙机床7184029 6(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20,假设甲机床某天生产50零件,请估计甲机床该天的日利润(单位:元);(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层随机抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn答案 A解析根据概率的定义,当n很大时,频率是概率的近似值.2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)解(1)表中乒乓球为优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,随着抽取的球数n的增加,计算得到的频率值虽然不同,但都在常数0.950的附近摆动,所以任意抽取一个乒乓球检测时,其为优等品的概率约为0.950.3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(2)该市男婴出生的概率约为多少?解(1)2016年男婴出生的频率为1145321840≈0.524.同理可求得2017年、2018年和2019年男婴出生的频率分别为0.521,0.512,0.513.(2)该市男婴出生的概率约为0.52.知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%答案 D解析A中,此概率只说明发生的可能性大小,具有随机性,并非一定是比赛5场甲胜3场;B中,此治愈率只说明发生的可能性大小,具有随机性,并非10个病人一定有1人治愈;C中,随机试验的频率可以估计概率,并不等于概率;D中,概率为90%,即可能性是90%.故选D.5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.解不一定.有放回地摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑棋子,也可能没有一次摸到黑棋子.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.13答案 A解析从已知数据可以看出,在随机抽取的这20名学生中,身高在155.5~170.5 cm之间的学生有8人,频率为25,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5~170.5 cm之间的概率约为2 5 .7.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg答案 B解析由题意可得,该批垫片中非优质品约为5280×500≈8.929 kg.8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:满意情况不满意比较满意满意非常满意人数200n 21001000 “满意”的概率是( )A.715B.25C.1115D.1315答案 C解析由题意,得n=4500-200-2100-1000=1200,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的总人数为1200+2100=3300,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的频率为33004500=1115.由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为1115.故选C.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:落在桌面的数字1234 5 频数3218151322答案0.35解析落在桌面的数字不小于4,即4,5的频数共13+22=35,所以频率为35100=0.35,所以估计落在桌面的数字不小于4的概率约为0.35.10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.答案0.4解析由频率的定义可知用电量超过指标的频率为1230=0.4,由频率估计概率,知第一天用电量超过指标的概率约是0.4.11.对某批产品进行抽样检查,数据如下:抽查________件产品.答案1000解析根据题表中数据可知合格品出现的频率依次为0.94,0.92,0.96,0.95,0.95,故合格品出现的概率约为0.95,因此要从该批产品中抽到950件合格品大约需要抽查1000件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.解(1)贫困地区的频率分别逐渐趋近于0.5和0.55.故所求概率分别为0.5和0.55.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,样本车辆总数n=500+130+100+150+120=1000,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元或4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率,得P(C)=0.24.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.解(1)甲品牌产品寿命小于200 h的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200 h的概率为1 4 .(2)根据抽样结果,寿命大于200 h的产品共有75+70=145个,其中甲品牌产品有75个,所以在样本中,寿命大于200 h的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200 h的该产品是甲品牌的概率为15 29.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.求:错误!解(1)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为400600=23.(2)由题意可知,生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为3001000=3 10.(3)由题意可知,∵a+b+c=600,∴a,b,c的平均数为200,∴s2=13[(a-200)2+(b-200)2+(c-200)2]=13(a2+b2+c2-120000),∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c =0时,有s2=80000.易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错分析由于混淆了概率与频率的概念而致误,事实上频率是随机的,而概率是一个确定的常数,与每次试验无关.答案0.5正解通过做大量的试验可以发现,正面朝上的频率都在0.5附近摆动,故掷一次硬币,正面朝上的概率是0.5,故填0.5.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.易错分析(1)对随机数表认识不到位,不能准确找出恰有两次命中的组数;(2)对用频率估计概率的方法理解不到位,不能求出“运动员三次投篮恰有两次命中”的概率.答案1 4正解20组随机数中,恰有两次命中的有5组,用频率估计概率,因此,该运动员三次投篮恰有两次命中的概率为P=520=14.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%答案 D解析抽出的样本中次品率为110,即10%,所以总体中次品率大约为10%.2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.6 答案 B解析因为抛了10次硬币,正面朝上的情形出现了6次,我们说频率为3 5,而不能说概率为35.3.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码 1 2 3 4 5 6 7 8 9 10 取到的次数101188610189119A .0.53B .0.5C .0.47D .0.37答案 A解析 取到号码为奇数的次数为10+8+6+18+11=53,所以f =53100=0.53,所以估计取到号码为奇数的概率约为0.53.4.若在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),则随着n 的逐渐增大,有( )A .f (n )与某个常数相等B .f (n )与某个常数的差逐渐减小C .f (n )与某个常数的差的绝对值逐渐减小D .f (n )在某个常数的附近摆动并趋于稳定 答案 D解析 由频率和概率的关系知,在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),随着n 的逐渐增加,频率f (n )逐渐趋近于概率.5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45答案 D解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件产品为二等品的概率为0.45.6.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定答案 A解析概率是一个确定的常数,在试验前已经确定,与试验次数无关.故选A.7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③答案 A解析概率反映的是随机性的规律,但每次试验出现的结果具有不确定性,因此①②④错误;③中抛掷均匀塑料圆板出现正面与反面的概率相等,是公平的,因此③错误.8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有。
2019_2020学年新教材高中数学第5章统计与概率5.3.3古典概型课时21古典概型练习含解析新人教b版必修第二册

课时21 古典概型知识点一样本点个数的计算错误!未指定书签。
1.一个家庭有两个小孩,对于性别,则所有的样本点是( )A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)答案 C解析把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点是(男,男),(男,女),(女,男),(女,女).故选C.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的样本空间;(2)求出这个试验的样本点的总数;(3)写出“第1次取出的数字是2”这一事件包含的样本点.解(1)这个试验的样本空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)样本点的总数为6.(3)“第1次取出的数字是2”包含以下2个样本点:(2,0),(2,1).知识点二古典概型的判断错误!未指定书签。
3.下列问题中是古典概型的是( )A.种下一粒杨树种子,求其能长成大树的概率B.掷一个质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一个数,求这个数大于1.5的概率D.同时掷两个质地均匀的骰子,求向上的点数之和是5的概率答案 D解析A,B两项中的样本点的发生不是等可能的;C项中样本点的总数是无限的;D项中每个样本点的发生是等可能的,且样本点总数有限.故选D.4.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.答案③解析①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.知识点三古典概型概率的计算错误!未指定书签。
概率统计习题5.3

&5.3 统计量及其分布习题与解答5.31.在一本书上我们随机地检查了 10页,发现每页上的错误数为 4560314214试计算其样本均值,样本方差和样本标准差 解样本均值又=;二—^亠3. 样本方差 sX j - x ■ 4 - 34 - 3 二3-78,n -1 y 19 _样本标准差s 二 s 2 =1.94. 2证明:对任意常数c,d 有nn'X j - c y j - d ]_ I * - x yn X- c Y- d .j 1j z!nn_n_送(X _c )(y j_d )=Z (X j_X+X-c )(y j _Y + y _ d )=送(X j -X )( y )+i 1 八j =1j =1八n_nn_迟(X -c jt yj _ y )+迟(Xj -X )( yj -d ) + 瓦(X -c )( y-d ),j 1 j j 二 jj mnn_由一 i X j —X i ; = 0〕 y — y :U 0,得j=1imnn__'X —c y j —d ! _ iX j —X y j— y n X-c y — d ,j 1j *因而结论成立.3.设X 1,..., X n和%,..., y n 是两组样本观测值,且有如下关系: y=3X j -4, i=1,2.., n,试求样本均值X 和y 间的关系以及样本方差 S X 和Sy 的关系.1 n-1 n..八y Y i 3X j - 4 =n i 42 11E 3x i 4 3x+4n—lJXj-X 化因而得y二3x-4与 2 2S厂9S x4•记xn+1n -1X n d -X n,n =1,2.…,证明SnS n 1J X i(X i -x nx+xnILn +1X(X i -X n )n +^1 ■X n+1)n+1 n+1(X i -X n+1 n+1 n+1X i 「X -X n+1 )2n+1 n+1 (X n+1 -X n) -4 二3x-4,3/X in y21 nX n+1 -*n (n +1 丿n-11 n_ 21 _ 2(X i -X n ) X n+1 -X nn n -1 ijn 11 - 2I.X n +1 - X nn 15•从同一总体中抽取两个容量分别为 n,m 的样本,样本均值分别为X 1,X 2,样本方差分别为s 2,s ;,将两组样本合并,其均值力差分别为2x,s ,证明:-mx 2 x 二 2 222(n - 1)s (m-1)s 2 nm(X [-x 2)s 二证设取自同一总体的两个样本为X 11 , X 12,...,X in ; X 21,X22,…,X 2m .由x ;'1代…NnX^ %…B 得x 11 ... ■ x 1n x 21x 22 …x 2mmx 21 n— — - 2.-- ---- —[Z (X [i — X [ + X [— X ) +》(X 2i 一 X 2 * X 2 — x)]1 ° — — —2 ----------------------------------------------------------------------- ------------------- - 2[£ (冷一人)+n(x 〔—x) +瓦(X? —X 2)+m(x 2 -x)i An^ mx 2 221 2S n 1(X i -X n )-n i J i _ 2X n+1 -X n由s 2亠' (N i -为)22n -1 y,S 21佑“2m -1 id1(X 1i -x)2-n m -1 y(X 2i -X )]nx-i mx 2)m(X 22 1 n 二(n - 1)s2 (m -1)S22. n(X1n m 'n m -1_ (n - 1)s2 (m-g2 . nm(% -x2)6.设有容量为n 的样本A,它的样本均值为X A ,样本标准差为S A ,样本 极差为R A ,样本中位数为口人•现对样本中每一个观测值施行如下变换ax b ,如此得到样本B,试写出样本B 的均值,标准差极差和中位 数.解 不妨设样本A 为:x 1,x 2,...,x^:?,样本B 为:y 1,y 2,...,y 」,且 ax +b,i=1,2,…,n,— y 〔 y 2 …ynax 1 b ax 2 b …ax n by B ax A b,s B = —(y j _ yB )2= —(ax b _ ax _ b)2 = a 2s A ,n - 1 yn -1 i因而 S B = |a s A.R B 二 y (n )- y (1)= ax (n ) b- ax ⑴- b = a(x (n^ x (“)= aR a ,y 口 , n 为奇数, (_T )1 2(ax nb, n 为奇数()1-(ax n b ax n b), n 为偶数S 2 =(% _x)2 (x 2 - x)2 =(%证:2 22二(X 1 -X 2) . (X 2 - X 1)_ (X 1 -X 2)=a m Ab7•证明溶量为2的样本X I ,212X 2的方差为T )2© —于 2 2X i X 2\28.设X i ,…,X n 是来自U (一1,1)的样本,试求E(X)和Var (x) 解 均匀分布的均值和方差分别为0和1/3,该样本容量为n,1 因而得 E x 二 0,Var x , 3n9.设总体二阶矩存在 X i ,..., X n 是样本,证明X-X 也X j- X (iH j)的相 关系数为-(n-1)'对次你能够给予解释吗? 2,则 p —XrCov(“X j X)Jvar(X j -x)Jvar(X j -x)由 Cov(X j - x, X j - x) = Cov(x ,X j )-Cov(x ,x) - Cov(X j,x) + Cov(x, x)--a 2由于,Cov(X i,X j )二 0,Cov(x,x),n1 n., Cov(x i ,x) = Cov(x j ,x) = Cov(x ix i )= 一 n im nVar(x - x) = Var(X j - x) = Var(X [ - x)“j—"22(n ® 2n n(n -1Xn所以订X i -x,X j -x) — (n -1)_1n__由于v (X i - x^ 0 ,故其中任意一个偏差X i - x 的增加,都会使另一i 三 个偏差X j -X 减少的机会增加,因而两者的相关系数为负.10.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率证不妨设总体的方差为因而 Cov(x - x,X j -x)落在(0.4,0.6)间的概率至少为0.9.如何才能更精确地计算这个次数?是 多少? 解 均匀硬币正面朝上的概率p=0.5,设X n 为n 次抛硬币中正面朝上的 次数,则有X nD b n 据题意选取次数n 应满足X np (0.4 — 0.6) — 0.9n此式等价于p (X n - 0.5n a 0.1n )£ 0.1 ,利用切比雪夫不等式估计上25 再由不等式 0.1可得粗糙的估计n- 250.即抛均匀硬币250次n后可满足要求.事实上,利用x 的渐近正态性可以得到更精确的结论.由中心极限定理 知样本均值 X = ',vn (x —0.5)/J0.5江 0.5[ N (0,1),故nP (0.4 x 0.6)= P (d x — 0.5/0.5 匸/5) = 2 (冷/5) T - 0.9,即门(jn/5) 一0.95,故行/5一 1.645这就给出较精确的上界 n 启(5況1.645),这表明只需抛均匀硬币68次就可满足要求.两 个结果差异很大,说明切比雪夫不等式是一个较为粗糙的不等式,在能 够使用大样本结果的情况下应尽量使用中心极限定理 .11.从指数总体Exp (1厂)抽取了 40个样品试求X 的渐近分布. 解 由于指数总体Exp (1八)的均值为二,方差为二2,于是x 的渐近分(日2、布为N.12. 设X i ,...,x 25是从均匀分布U (o,5)抽取的样本,试求样本均值x 的式左端概率的上界 p( x^ -0.5n 色 0.1 n)兰 n 0.5(1-0.5) (0.1 n)225n渐近分布.解均匀分布U (0,5)的均值和方差分别为5/2和25/12,样本容量为25, 因而样本均值X的渐近分布为N12 12 丿13. 设X i,..., X20是从二点分布b(1,p)抽取的样本,试求样本均值x 的渐近分布.解二点分布b(1,p)的均值和方差分别为p和p(1-p),样本容量为20, 因而样本均值X的渐近分布为N '' P,卫生PI 20丿14•设X1,…,X8是从正态总体N 10,9中抽取的样本,试求样本均值x 的标准差.解来自正态分布的样本均值仍服从正态分布,均值保持不变,方差为原来方差的1/n,此处总体方差为9,样本容量为8,因而Va「X二9/8的标准差为3,2/4 = 1.06.15. 切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而剩下的当中的值来计算样本均值,其计算公式X」1厂X(h:」2厂…心_*])(h:是X 書乔,其中0: 1 /2是切尾系数,M)岂人刀乞…乞X(n)是有序样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
& 统计量及其分布习题与解答1. 在一本书上我们随机地检查了10页,发现每页上的错误数为4 5 6 0 3 1 4 2 1 4 试计算其样本均值,样本方差和样本标准差. 解 样本均值1...45 (4)x= 3.10n x x n +++++== 样本方差()()()2222111... 3.78,19x 4343ni i n x s=⎡⎤==++=⎢⎥-⎣⎦---∑样本标准差 1.94.s ==2.证明:对任意常数c,d,有 证 ()()()()()()11x .nni iiii i x c d x Y n X c Y d y y ==--=--+--∑∑()()()()()()()()()()()()111111x+x-c x x x nn niiiiiii i i nnniiiii i i xc d x y Y y d x y xc y xd c y d y y y y ======--=--+-=--+--+--+--∑∑∑∑∑∑,由 ()()11x 00nn i i i x y y ==-=-=∑∑,,得 ()()()()()()11x x-c nnii i i i i xc yd x y y n y d ==--=--+-∑∑,因而结论成立.3.设1,...,n x x 和1,...,n y y 是两组样本观测值,且有如下关系:3412...i i y x i n =-=,,,,试求样本均值x 和y 间的关系以及样本方差2x s 和 2y s 的关系.解 ()()()()111221222111133443x-411119911343x+4x n n ni i i i i i ny i nnxi i y y x x n n n in i i n n y y s x x s ========-=-==-==--∑∑∑-∑---∑∑,因而得3-4y x =与229y x s s =.4.记 ()2n 21111x 12....1x n i nn i i x n n n i s x =====-∑-∑,,,,,,证明()()n+1n 1n 22211x x x ,111.1n 1x n n n x n n n n n x s s ++=+-+-=+++-证()()()()()()()()1n n+1n 1n+1n+1n n+1n 2222n+11n+1n+111122n n+1n+1n+112n n n n+1n+1n 111x x x x+x x 1111x x x 111x ()x x 11(x x )x x 121(x )x x x x x n i i n n i i n n i i n i n i n n i i i i xn n n n n n x X X n n X X n nX x n n n s +=++=====++-===+++=+-+⎡⎤=-=-+-⎢⎥⎣⎦=-+-+-=-+--+-∑∑∑∑∑∑,()22n+1n+11x x .n+- 由()()22n n n+1n n+1n+1n n+1n 11111x 0(x x )x x x x (x x )nn n i i i i x n n ===-=-=-=+-∑∑∑,,得()()()()2222221n n+1n n+1n 122n n+1n 122n+1n 111(x )x x x x 11111(x )x x 1111x x .1n n i i n i i n n s X n n n n n X n n n n s n n +==⎛⎫⎛⎫=-+-+- ⎪ ⎪++⎝⎭⎝⎭-=⨯-+--+-=+-+∑∑5.从同一总体中抽取两个容量分别为n,m 的样本,样本均值分别为1x ,2x ,样本方差分别为2212,s s ,将两组样本合并,其均值,方差分别为2,,x s 证明:1222221212,(1)(1)().1()(1)nx mx x n mn s m s nm x x s n m n m n m +=+-+--=++-++- 证 设取自同一总体的两个样本为1112121222,,...,;,,...,.n m x x x x x x 由111212122212......,,n mx x x x x x x x n m++++++==得1112122212.......n m x x x x x nx mx x n m n m+++++++==++由2211111()1n i i s x x n ==--∑2222211,()1m i i s x x m ==--∑ 221211211122211222211122211212122212121[()()]11[()()]11[()()()()1()()(1)(1)1n mi i i i n m i i i i n m i i i i s x x x x n m x x x x x x x x n m x x n x x x x m x x n m nx mx nx mx n x m x n s m s n m n m n m n m =======-+-+-=-+-+-+-+-=-+-+-+-+-++-+--+-++=++-+∑∑∑∑∑∑1-2221212(1)(1)()1()(1)n s m s nm x x n m n m n m -+--=++-++- 6.设有容量为n 的样本A,它的样本均值为A x ,样本标准差为A s ,样本极差为A R ,样本中位数为A m .现对样本中每一个观测值施行如下变换y ax b =+,如此得到样本B,试写出样本B 的均值,标准差,极差和中位数.解 不妨设样本A 为{}12,,...,,n x x x 样本B 为{}12,,...,,n y y y 且,1,2,...,,i i y ax b i n =+=12122222211()(1)()(1)()(1)......,11()(),11.(),n n B A n n i B i B A i i B A B n n n A y y y ax b ax b ax b y ax b n n s y y ax b ax b a s n n s a s R y y ax b ax b a x x aR ==+++++++++===+=-=+--=--==-=+--=-=∑∑因而 1()2()(1)22,(),n n n y n y y n +++为奇数,1为偶数21()2122,1(),2n n n ax b n ax b ax b n +⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭++++为奇数为偶数.A am b +=7.证明:容量为2的样本1,2x x 的方差为22121()2s x x =-证:2222212121212222122112()()()()22()()()442x x x xs x x x x x x x x x x x x ++=-+-=-+----=+=8.设1,...,n x x 是来自(1,1)U -的样本,试求()E x 和()Var x解 均匀分布(1,1)U -的均值和方差分别为0和1/3,该样本容量为n,因而得()()10,,3E x Var x n==9.设总体二阶矩存在1,...,n x x 是样本,证明i x x -也()j x x i j -≠的相关系数为1(1)n ---对次你能够给予解释吗证 不妨设总体的方差为2σ,则(,)(,)i j Cov x x x x x x x x ρ----=由,,,(,)()()()(,)i j i j i j Cov x x x x Cov x x Cov x x Cov X x Cov x x --=--+由于, 2,()0,(,),i j Cov x x Cov x x nσ==2,11(,)(,)()n i j i i i Cov x x Cov x x Cov x x n n σ====∑因而2(,),i j Cov x x x x nσ--=-1222122()()()(1)...(1)(1)()i j n Var x x Var x x Var x x n x x x n n Var n n σσ-=-=------+-==2(1),n nσ-=所以1(,)(1)i j x x x x n ρ---=--由于1()0ni i x x =-=∑ ,故其中任意一个偏差i x x -的增加,都会使另一个偏差j x x -减少的机会增加,因而两者的相关系数为负.10.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在,间的概率至少为.如何才能更精确地计算这个次数是多少解 均匀硬币正面朝上的概率p=,设n x 为n 次抛硬币中正面朝上的次数,则有(,).nx b n p 据题意选取次数n 应满足(0.40.6)0.9nx p n<<≥此式等价于(0.50.1)0.1n p x n n -≥< ,利用切比雪夫不等式估计上式左端概率的上界20.5(10.5)25(0.50.1),(0.1)n n p x n n n n⨯--≥≤= 再由不等式250.1n≤可得粗糙的估计250n ≥.即抛均匀硬币250次后可满足要求.事实上,利用x 的渐近正态性可以得到更精确的结论.由中心极限定理知样本均值(0.5)/(0,1),nx x x N n=-故(0.40.6)0.5/0.5210.9,P x P <<=-<=Φ-≥即5)0.95,Φ≥故5 1.645≥这就给出较精确的上界2(5 1.645)67.65n ≥⨯=,这表明只需抛均匀硬币68次就可满足要求.两个结果差异很大,说明切比雪夫不等式是一个较为粗糙的不等式,在能够使用大样本结果的情况下应尽量使用中心极限定理.11.从指数总体(1/)Exp θ抽取了40个样品,试求x 的渐近分布. 解 由于指数总体(1/)Exp θ的均值为θ,方差为2θ,于是x 的渐近分布为2,40N θθ⎛⎫ ⎪⎝⎭.12.设125,...,x x 是从均匀分布(0,5)U 抽取的样本,试求样本均值x 的渐近分布.解 均匀分布(0,5)U 的均值和方差分别为5/2和25/12,样本容量为25,因而样本均值x 的渐近分布为51,.212N ⎛⎫⎪⎝⎭13.设120,...,x x 是从二点分布(1,)b p 抽取的样本,试求样本均值x 的渐近分布.解 二点分布(1,)b p 的均值和方差分别为p 和p(1-p),样本容量为20,因而样本均值x 的渐近分布为(1),20p p N p -⎛⎫ ⎪⎝⎭14.设18,...,x x 是从正态总体()10,9N 中抽取的样本,试求样本均值x 的标准差.解 来自正态分布的样本均值仍服从正态分布,均值保持不变,方差为原来方差的1/n,此处总体方差为9,样本容量为8,因而()9/8,Var x x =的标准差为4 1.06.=15.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而剩下的当中的值来计算样本均值,其计算公式是[][][][](1)(2)()...,2n n n n x x x x n n ααααα++-+++=-其中01/2α<<是切尾系数, (1)(2)()...n x x x ≤≤≤是有序样本。