人教版初中数学七年级下册教学课件第八章 8.3 实际问题与二元一次方程组(第2课时)
合集下载
七年级数学人教版下册课件8.3实际问题与二元一次方程组

题中有哪些等量关系?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
人教版七年级下册8.3 实际问题与二元一次方程组第1课时 实际问题与二元一次方程组(1)课件

①
解:整理,得:
x-3y=-2
②
①+②×3,得11x=11.解得x=1.
把x=1代入②,得1-3y=-2.解得y=1.
x=1 ∴这个方程组的解为:
y=1
3.一支部队第一天行军4h,第二天行军5h,两 天共行军98km,且第一天比第二天少走2km,第一 天和第二天行军的平均速度各是多少?
解:设第一天行军的平均速度为xkm/h,第二天行
种树 3 棵,女生每人种树 2 棵.设男生有 x 人,女生有 y 人,
根据题意,下列方程组正确的是( D )
x+y=52, A.3x+2y=20
B.x2+x+y=3y=52,20
x+y=20, C.2x+3y=52
D.x3+x+y=2y=205,2
2.根据如图提供的信息,可知一个热水瓶的价格是( C )
二、填空题(每小题 7 分,共 28 分) 7.一艘轮船顺水航行的速度是 20 海里/时,逆水航行的速度 是 16 海里/时,则水流的速度是 2 海里/时. 8.一个两位数,它的个位数字是十位数字的 2 倍,且十位数 字与个位数字和的 4 倍等于 36,则这个两位数是 36 . 1 9.a 的相反数是 2b+1,b 的相反数是 3a+1,则 a2+b2= 5 .
练习
某校七年级学生在会议室开会,每排坐12 人,则有11人无座位;每排坐14人,则最后一 排只有1人独坐.这间会议室共有座位多少排? 该校七年级有多少学生?
解:设这间会议室共有座位x排,该校七年级有 y名学生,根据题意,得
12x+11=y 14x-13=y
解得:
x=12 y=155
答:这间会议室共有座位12排,该校七年级有 155名学生.
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。
第八章二元一次方程组课件8.3实际问题与二元一次方程组

聪明的同学们,你能 帮他算算吗?
一船顺水航行45千米需要3小时, 逆水航行65千米需要5小时, 若设
船在静水中的速度为 x 千米/小时,
水流的速度为 y 千米/小时,则所列 方程组为:
从甲地到乙地的路有一段上坡与一段平 路,如果保持上坡每小时行3千米,平路每小时 行4千米,下坡每小时行5千米,那么从甲地到 上坡路与平路分别是多少千米?
1吨1千米
1.5
y吨1千米 1.5×y
y吨10千米 1.5×10×y
制成产品运到B地
名 称 铁路 1吨1千米 1.2 x吨1千米 1.2×x x吨110千米 1.2×110×x
制成产品运到B地
名 称 公路 1吨1千米 1.5 x吨1千米 1.5×x x吨20千米 1.5 ×20×x
设产品重x吨,原料重y 吨。根据题中数量关系填写下表: 产品x吨 原料 y 吨 合计 15000 97200
公路运费(元) 1.5 ×20x 1.5×10y 铁路运费(元) 1.2 ×110x 1.2 ×120y
(2)若原料每吨1000元,制成的产品每吨 8000 元,
这批产品的销售款比原料费与运输费的和多多 少元?
___ ___ ___
分析:销售款=
原料费= 运输费=
哦,那你们家去了几 个大人?几个小孩呢? 成人票5元每人,小 孩3元每人啊! 昨天,我们一家8 个人去红山公园玩, 买门票花了34元。
从A地购买原料后,运回 到化工厂的路线中:铁路是多 长?公路是多长?
把原料加工后,从化工厂 运到B地的路线中:铁路是多 长?公路是多长?
从A地购买一批原料运回工厂
名 称 铁路 1吨1千米 1.2 y吨1千米 1.2×y y吨120千米 1.2 ×120×y
七年级数学下册 第八章 8.3实际问题与二元一次方程组课件1 新人教版

答:小明估计不准确.2米的应取8段,1米的 应取2段.
x+y=10 依题意得 2x+y=18
解得:
x=8 y=2
试一试 :某高校共有5个大餐厅和2个小餐厅,
经过测试:同时开放1个大餐厅和2个小餐厅, 可供1680名学生就餐;同时开放2个大餐厅和1 个小餐厅,可供2280名学生就餐. (1)求1个大餐厅和1个小餐厅分别可供多少 名学生就餐? (2)若7个餐厅同时开放,请估计一下能否供 应全校的5300名学生就餐?请说明理由.
①
你的 答案 对了 吗?
这就是说,每只大牛约需饲料20kg, 每只小牛约需饲料5kg.因此,饲料 员李大叔对大牛的食量估计较准确, 对小牛的食量估计偏高.
练一练: 长18米的钢材,要锯成10段,而 每段的长只能取“1米或2米”两种型号之 一,小明估计2米的有3段,你们认为他估 计的是否准确?为什么呢?那2米和1米的 各应取多少段? 解:设应取2米的x段,1米的y段,
y=5
答:该公司应安排x10天精加工,5天粗加工.
小结
审 列 解 验 答
弄情题目中的数量关系, 设出两个未知数 分析题意,找出两个等量关系 列出方程组 解出方程组,求出未知数的值 检验求得的值是否正确和符合实际情形
写出答案
实际问题
设未知数、找等量关系、列方程(组)
数学问题
[方程(组)]
解 方 程 ( 组 )
2、题目中包含怎样的等量关系?
解:设平均每只大牛和每只小牛1天各约需饲料xkg和ykg.
依题意得
30x 15 y 675 (30 12) x (15 5) y 940
x 20 解得: 2.1x+y=47
人教版七年级数学下册精品课件 第八章 8.3 第1课时 利用二元一次方程组解决实际问题

40 y
370
解得
x 25,
y15.
答:甲种票25张,乙种票15张.
2020/6/11
3.课本中介绍我国古代数学名著《孙子算经》上有这 样的一道题:今有鸡兔同笼,上有三十五头,下有 九十四足,问鸡兔各多少只?
解:设鸡有x只,兔有y只. 则2x xy4y3594
解得
x 23,
y12.
答:鸡有23只,兔有12只.
2020/6/11
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘 请饲养员协助管理现有的42头大牛和20头小牛,已 知甲种饲养员每人可负责8头大牛和4头小牛,乙种 饲养员每人可负责5头大牛和2头小牛,请问李大叔 应聘请甲乙两种饲养员各多少人?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员 y人,则:
根据题意,可列方程组:
x 60
y 80
10
x
y
15.
60 40
解方程组,得
x 300
y400
所以,小明家到学校的距离为700m.
2020/6/11
方法二(间接设元法) 解:设小华下坡路所花时间为xmin,
上坡路所花时间为ymin.
平路 坡路 距离 距离
上学 60(10 x) 80x
放学 60(15 y) 40 y
2020/6/11
02 横着画,把宽分成两段,则长不变
D
200m
C 解:过点E作EF⊥AD,交
BC于点F.
x
甲种作物 200x 100m
设DE=xm,AE=ym.
E y
F
乙种作物 200y
根据题意列方程组为
x+y=100
A
Hale Waihona Puke B200x:400y=3:4
人教版数学七年级下册8.3实际问题与二元一次方程组—工程问题说课稿

3.解题步骤:逐步讲解解决工程问题的步骤,强调关键点和注意事项;
4.课堂示范:在黑板上展示解题过程,让学生跟随教师的思路,加深对知识点的理解。
(三)巩固练习
为了1.课堂练习:设计具有代表性的工程问题习题,让学生独立完成,检验学生对知识点的掌握程度;
3.教师反馈:根据学生的课堂表现和练习情况,给予针对性的反馈和建议,帮助学生找到提高的方向。
(五)作业布置
课后作业布置如下:
1.工程问题习题:布置一定数量的工程问题习题,目的是巩固所学知识,提高解题能力;
2.实践报告:要求学生完成课后实践活动,并撰写实践报告,目的是培养学生的实际操作能力和总结反思能力;
5.定期进行课堂小结,让学生总结所学知识,巩固学习成果。
三、教学方法与手段
(一)教学策略
我将采用探究式教学法和情境教学法作为主要教学方法。探究式教学法鼓励学生在教师的引导下,通过自主探究、合作交流等方式主动发现问题、解决问题,从而培养学生的自主学习能力和合作精神。情境教学法则是通过创设具体、生动、有趣的教学情境,让学生在实际情境中感受数学知识的应用,提高学生的学习兴趣和实际操作能力。选择这些方法的理论依据是建构主义学习理论,该理论认为学习是学习者主动建构知识的过程,而情境和合作是知识建构的重要条件。
3.预习任务:布置下一节课的预习任务,让学生提前了解下节课的知识点,为课堂学习做好准备。
五、板书设计与教学反思
(一)板书设计
我的板书设计将遵循清晰、简洁、结构化的原则。板书布局分为左、中、右三个部分:左侧列出关键概念和公式,中间展示解题步骤和案例分析,右侧用于记录学生的思考过程和答案。
1.主要内容:包括工程问题的定义、二元一次方程组的表示、解题步骤和注意事项;
(二)学习障碍
4.课堂示范:在黑板上展示解题过程,让学生跟随教师的思路,加深对知识点的理解。
(三)巩固练习
为了1.课堂练习:设计具有代表性的工程问题习题,让学生独立完成,检验学生对知识点的掌握程度;
3.教师反馈:根据学生的课堂表现和练习情况,给予针对性的反馈和建议,帮助学生找到提高的方向。
(五)作业布置
课后作业布置如下:
1.工程问题习题:布置一定数量的工程问题习题,目的是巩固所学知识,提高解题能力;
2.实践报告:要求学生完成课后实践活动,并撰写实践报告,目的是培养学生的实际操作能力和总结反思能力;
5.定期进行课堂小结,让学生总结所学知识,巩固学习成果。
三、教学方法与手段
(一)教学策略
我将采用探究式教学法和情境教学法作为主要教学方法。探究式教学法鼓励学生在教师的引导下,通过自主探究、合作交流等方式主动发现问题、解决问题,从而培养学生的自主学习能力和合作精神。情境教学法则是通过创设具体、生动、有趣的教学情境,让学生在实际情境中感受数学知识的应用,提高学生的学习兴趣和实际操作能力。选择这些方法的理论依据是建构主义学习理论,该理论认为学习是学习者主动建构知识的过程,而情境和合作是知识建构的重要条件。
3.预习任务:布置下一节课的预习任务,让学生提前了解下节课的知识点,为课堂学习做好准备。
五、板书设计与教学反思
(一)板书设计
我的板书设计将遵循清晰、简洁、结构化的原则。板书布局分为左、中、右三个部分:左侧列出关键概念和公式,中间展示解题步骤和案例分析,右侧用于记录学生的思考过程和答案。
1.主要内容:包括工程问题的定义、二元一次方程组的表示、解题步骤和注意事项;
(二)学习障碍
实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)

共55元 1束花+2个礼盒=55元 2束花+3个礼盒=90元
共90元
回顾旧知 列方程组解应用题的步骤:
1. 审题 2. 找等量关系 3. 设未知数 4. 列二元一次方程组 5. 解二元一次方程组 6 .检验 7. 答
合作探究
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又 购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估 计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7~8 kg. 你能通过计算检验他的估计吗?
运费表 单位:(元/台)
终点
温州
武汉
起点
北京
400
800
上海
300
500
【分析 】(1 )等量 关系为:400 ×北京运 往温州的 台数+800× 北京运 往武汉的 台数+300
×上海运往温州的台数+500×上海运往武汉的台数=8000,温州需要 6 台,把相关数值
代入求解即可;
(2)本着节约运送资金和分配到温州的仪器不能超过 5 台分析即可得到调配方案.
解:设2米的钢材有x段,1米的钢材有y段,根据题意,得
x+y=10 2x +y =18
解方程组,得
x=8 y =2
答:小明估计不正确. 2米钢材有8段,1米钢材2段.
估算作用
在生产和生活中估算具有一定的实用价值的,同学们应该逐渐 具备这种估算能力,但估算通常会产生一定的误差,通过精准 计算可以对估算的结果进行检验.
(2)由表格中的数据可得出,∵上海运送到温州的费用最低,
设北京运送到温州 x 台,则北京运武汉(10﹣x,总费用为 y,
人教版数学七年级下册+8.3实际问题与二元一次方程组(第1课时)ppt课件

引入新课
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
人级教版义务教ห้องสมุดไป่ตู้课程标准试验教科书
七年下册
湾里二中 周节英
情境引入
悟空顺风探妖踪,千里只行四分钟.
归时四分行六百,风速多少才称雄?
情境引入
解:设悟空在静风中行走的速度为x里/分,风速为y里/分,则
4( x y) 1000 4( x y) 600
或
4 x 4 y 1000 4 x 4 y 600
数学问题的解 (二元一次方程组解)
感悟反思
1、通过这节课的学习,你知道用方程组解决实
际问题有哪些步骤?
①设未知数。
②找等量关系。 ③列方程组。 ④检验并作答。 2、列二元一次方程组解决实际问题的关键是什 么? (找等量关系)
布置课后作业:
课本第101~102页习题8.3第2、4 、5题.
谢 谢!
①从调查中你获得了什么信息?
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
②你能估计出平均每只母牛和每只小牛一天 各需饲料多少千克吗?
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg. ③饲养员李大叔估计平均每只母牛1天约需饲 料18~20kg,每只小牛1天约需饲料7~8kg.你能 否通过计算检验你和他的估计?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识拓展
课堂小结
方程组是解决含有多个未知数问 题的重要工具,用方程组解决问题时, 要根据问题中的数量关系列出方程组 ,求出方程组的解后,应进一步考虑它 是否符合问题的实际意义.
检测反馈
1.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当, 关于比赛结果,甲同学说:“(1)班与(5)班得分之比为6∶5.”乙 同学说:“(1)班得分比(5)班得分的2倍少40分.”若设(1)班得x
分,(5)班得y分,根据题意所列的方程组应为( D )
6 x =5y
A.
x=2y
-
40
6 x =5y
5x=6 y
B. x=2 y+40
C.
x=2
y
40
D.
5x=6 y x=2 y 40
解析:根据(1)班与(5)班得分之比为6∶5,有
x∶y=6∶5,得5x=6y;根据(1)班得分比(5)班得分的2
倍少40分,有x=2y-
40.可列方程组为
5x=6 y, x=2 y
40.
2.我国古代数学巨著《孙子算经》中的“鸡兔同笼”
题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四
足.问雉兔各几何”.正确答案是 ( B )
A.鸡24只,兔11只
B.鸡23只,兔12只
C.鸡11只,兔24只
D.鸡12只,兔23只
解析:设鸡有x只,兔有y只,根据题意得
x 2
+ y = 35, x + 4 y=94.
解得
x =23,
y
=12.
即有鸡23只,兔12只.故选B.
3.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶 底,而1个桶身1个桶底正好配套做1个水桶,现在有 63张这样的铁皮,则需要用多少张做桶身,多少张 做桶底正好配套?解:设用x张铁皮做桶身,Fra bibliotek张铁皮做桶底.
根据题意得
x + y=63,
x=8
y.
解得
x=56, y=7.
答:需要用56张铁皮做桶身,7张铁皮做桶底正好配套.
如图所示,根据划分两块土地的要求,首 先要明确两种作物的面积应该各是多少.因为 这块土地的形状是一个长方形,所以只需要确 定种植甲、乙两种作物区域的边长,就可以按 照要求划分出相应的两块土地.
学习新知
解:设设把长方形土地的长分为x m和y m两部分,分别种植甲、乙两种作物.
x + y=200,
根据题意列方程组得 100x:200 y=3:4.
这个方程组的解是
x =120,
y=80.
根据上述方程组的解,过长方形土地的长边上离一端120 m(或
80 m)处,作这条边的垂线,把这块土地分为两块长方形土地.较
大一块土地种甲种作物,较小一块土地种乙种作物.
想一想
还有别的划分方法吗? 长方形的宽分为两部分,成为两个长方形, 使较大一块土地种甲种作物,较小一块土地种 乙种作物.
第八章 二元一次方程组
8.3 实际问题与二元一次方程组 (第2课时)
学习新知
检测反馈
想一想
据统计资料,甲、乙两种作物的单位面积产量的 比是1∶2.现要把一块长200 m、宽100 m的长方形土 地,分为两块小长方形土地,分别种植这两种作物.怎 样划分这块土地,使甲、乙两种作物的总产量的比是 3∶4?