一元二次方程检测题

合集下载

一元二次方程单元测试题含答案

一元二次方程单元测试题含答案

第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。

2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。

4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。

5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。

6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。

7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。

8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。

10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。

12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。

13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。

14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。

15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。

17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。

18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。

一元二次方程测试题15

一元二次方程测试题15

1.下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.(2008山东潍坊)已知反比例函数y ab x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( )A 7或-1B -7或1C 7D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 2 6.方程0134)2(||=++++m x xm m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±2 7.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c=0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根8.下面是某同学在一次数学测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B 若3x 2=6x ,则x=2 C .02=-+k x x 的一个根是1,则k=2 D .若分式()xx x 2- 的值为零,则x=2 9.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D . 不能确定10.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.11.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.12.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是13.(2008江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p 14.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,ac x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 15.若()()06522222=-+-+y x yx ,则=+22y x __________。

(典型题)初中数学九年级数学上册第二单元《一元二次方程》检测卷(包含答案解析)

(典型题)初中数学九年级数学上册第二单元《一元二次方程》检测卷(包含答案解析)

一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( ) A .k ≥﹣14B .k ≥﹣14且k ≠0 C .k <﹣14D .k >-14且k ≠0 2.一元二次方程x 2=2x 的根是( ). A .0 B .2 C .0和2 D .0和﹣2 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12B .6或12C .8D .64.下列关于x 的方程中,一定是一元二次方程的是( ) A .221x x+B .20ax x +=C .()()121x x -+=D .223250x xy y --=5.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( ) A .2- B .4- C .2 D .4 6.一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2+1的值为( ) A .10B .9C .8D .77.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( ) A .(1612)(36040)1680x x +--= B .(12)(36040)1680x x --=C .(12)[36040(16)]1680x x ---=D .(1612)[36040(16)]1680x x +---=8.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x9.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( ) A .10 B .9 C .8 D .7 10.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是( ) A .10x -=B .20x x +=C .210x -=D .210x +=11.已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为( ) A .18k ≥-B .18k >-C .18k ≥-且0k ≠D .18k <-12.如果关于x 的一元二次方程x 2﹣4x ﹣k =0有两个不相等的实数根,那么k 的取值范围是( ) A .k <﹣4B .k <4 且k ≠0C .k >﹣4D .k >﹣4且k ≠0二、填空题13.若实数a 、b (a ≠b )满足2850a a -+=,2850b b -+=,则+a b 的值_______. 14.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.15.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.16.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.17.等腰ABC 中,4AB AC ==,30BAC ∠=︒,以AC 为边作等边ACD △,则点B 到CD 的距离为________.18.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.19.若关于x 的一元二次方程210(0)ax bx a ++=≠的一个解是1x =,则代数式2020a b --的值为______.20.对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______. 三、解答题21.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门.(1)所围矩形猪舍的长,宽分别为多少米时,猪舍面积为296m ?(2)能否围面积为2100m 的矩形猪舍,若能,求出长和宽;若不能,请说明理由. 23.用适当的方法解方程: (1)(x ﹣1)2=9; (2)x 2+4x ﹣5=0.24.解方程:2(2)3(2)x x +=+25.如图,有长为23m 的篱笆,一面利用墙(墙的最大可用长度a 为10m )围成中间隔有一道篱笆的矩形花圃,并且预留两个各0.5m 的门.如果要围成面积为45m 2的花圃,AB 的长是多少米?26.解一元二次方程(1)22(1)3(1)x x +=+; (2)22980x x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围. 【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B . 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.C解析:C 【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案. 【详解】 移项得,x 2-2x =0, 提公因式得,x (x-2)=0, 解得,x 1=0,x 2=2, 故选:C . 【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.3.D解析:D 【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=, (x-6)(x-2)=0, ∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2, ∴菱形面积为162=62⨯⨯, 故选:D . 【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.C解析:C 【分析】利用一元二次方程定义进行解答即可. 【详解】A.含有分式,不是一元二次方程,故此选项不符合题意;B.当a=0时,不是一元二次方程,故此选项不符合题意;C.由已知方程得到:x²+x-3=0,该方程是一元二次方程,故此选项符合题意;D.含有两个未知数,不是一元二次方程,故此选项不合题意; 故选C . 【点睛】本题考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.5.B解析:B 【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案. 【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0, ()12121x x x x ∴-++<0, ()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B 【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.6.A解析:A 【分析】根据方程的根及根与系数的关系得到x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,将其代入代数式计算即可. 【详解】解:由题意得x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1, ∴x 12+1=3x 1, ∴x 12+3x 2+x 1x 2+1 =3x 1+3x 2+x 1x 2 =3(x 1+x 2)+ x 1x 2 =331⨯+ =10, 故选:A . 【点睛】此题考查一元二次方程的解,根与系数的关系式,求代数式的值,正确掌握根与系数的关系是解题的关键.7.A解析:A 【分析】根据总利润=每盒的利润×销售量,而每盒的利润=售价-进价,再结合“每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份”即可得出答案. 【详解】解:每份盒饭涨价x 元后,利润为(16+x-12)元,销售量为(360-40x)盒,∴可得方程为(1612)(36040)1680x x +--=, 故选A . 【点睛】本题考查了一元二次方程的实际应用.正确理解题意,根据题意找到等量关系是解题的关键.8.D解析:D 【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解. 【详解】解:依题意,得()()30220223020++=⨯⨯x x . 故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.D解析:D 【分析】根据两天后共有128人患上流感,列出方程求解即可. 【详解】解:依题意得2+2x +x (2+2x )=128, 解得x 1=7,x 2=-9(不合题意,舍去). 故x 值为7. 故选:D . 【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.C解析:C 【分析】根据题意一次项系数为0且△>0判断即可. 【详解】解:A 、x-1=0是一次方程,方程有一个实数根,故选项不合题意; B 、∵方程两根互为相反数和为0,一次项的系数为1,故选项不合题意; C 、∵△=0-4×1×(-1)=4>0,且一次项系数为0,故此选项符合题意; D 、∵△=0-4×1×1=-4<0,故此选项不合题意. 故选:C .【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca,也考查了一元二次方程的根的判别式.11.A解析:A【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【详解】解:当k=0时,x-1=0,解得:x=1;当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k-1)=0有实根,∴△=(2k+1)2-4k×(k-1)≥0,解得18k≥-且k≠0,综上:k的取值范围是18 k≥-,故选A.【点睛】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.12.C解析:C【分析】根据根的判别式解答.【详解】根据题意得△=(﹣4)2﹣4(﹣k)>0,解得k>﹣4.故选:C.【点睛】此题考查一元二次方程根与系数的关系:∆>0时方程有两个不相等的实数根,∆=0时方程有两个相等的实数根,∆<0时方程没有实数根.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.8【分析】直接用一元二次方程的韦达定理进行求解即可;【详解】∵a 是的解b 是的解∴ab 是方程的两个解∴故答案为:8【点睛】本题考查了一元二次方程的韦达定理正确理解公式的应用是解题的关键解析:8 【分析】直接用一元二次方程的韦达定理进行求解即可 12bx x a +=- 、12c x x a= ; 【详解】∵ a 是 2850a a -+= 的解,b 是2850b b -+=的解, ∴ a 、b 是方程2850x x -+=的两个解,∴ 881a b -+=-= , 故答案为:8. 【点睛】本题考查了一元二次方程的韦达定理,正确理解公式的应用是解题的关键.14.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0,解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0.【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.15.m >0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n 的任意性构造不等式求解即可【详解】∵关于x 的一元二次方程m ﹣nx ﹣m ﹣3=0对于任意实数n 都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.16.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.17.或【分析】分两种情况讨论利用等边三角形的性质和勾股定理可求解【详解】解:当点D 在AC 的左侧时设AB 与CD 交于点E ∵△ACD 是等边三角形∴AC=AD=CD=4∠DAC=60°又∵∠BAC=30°∴∠D解析:232-或423- 【分析】分两种情况讨论,利用等边三角形的性质和勾股定理可求解. 【详解】解:当点D 在AC 的左侧时,设AB 与CD 交于点E ,∵△ACD 是等边三角形, ∴AC=AD=CD=4,∠DAC=60°, 又∵∠BAC=30°, ∴∠DAE=∠BAC=30°, ∴AB ⊥CD , ∵∠BAC=30°, ∴CE=12AC=2,AE=22224223AC EC -=-=, ∴BE=AB-AE=423-;当点D 在AC 的右侧时,过点B 作BE ⊥CD ,交DC 的延长线于点E ,连接BD ,∵△ACD 是等边三角形, ∴AC=AD=CD=AB=4,∠DAC=60°, ∴∠BAD=90°, ∴22161642AB AD =+=+∵AB=AC ,∠BAC=30°,∴∠ACB=75°,∴∠BCE=180°-∠ACD-∠ACB=45°,∵BE ⊥CE ,∴∠BCE=∠CBE=45°,∴BE=CE ,∵BD 2=BE 2+DE 2,∴32=BE 2+(CE+4)2,∴BE=2-,综上所述:点B 到CD 的距离为2或4-.故答案为:2-或4-【点睛】本题考查了勾股定理,等边三角形的性质,利用分类讨论思想解决问题是本题的关键. 18.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【分析】将x=1代入方程求出a+b=-1再代入代数式计算即可【详解】将x=1代入方程得a+b=-1∴=2020-(a+b )=2020-(-1)=2021故答案为:2021【点睛】此题考查一元二次方程解析:2021【分析】将x=1代入方程求出a+b=-1,再代入代数式计算即可.【详解】将x=1代入方程210(0)ax bx a ++=≠,得a+b=-1,∴2020a b --=2020-(a+b )=2020-(-1)=2021,故答案为:2021.【点睛】此题考查一元二次方程的解,已知式子的值求代数式的值,正确理解方程的解是解题的关键.20.36【分析】根据与40的大小再根据从而确定mn 的值即可得出的值【详解】解:∵∴40≤;∴∴(m+6)2+(n-2)2≤0∵(m+6)2+(n-2)20∴m+6=0n-2=0∴m=-6n=2∴故答案为解析:36【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n-+--=,从而确定m ,n 的值即可得出n m 的值.【详解】解:∵{}22min 40,12440m n m n-+--=,∴40≤22124-+--m n m n ;∴22412400+-≤++m n n m∴(m+6)2+(n-2)2≤0,∵(m+6)2+(n-2)2≥0,∴m+6=0,n-2=0,∴m=-6,n=2,∴()2636=-=n m 故答案为:36.【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.三、解答题21.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案;【详解】(1)解:2450x x --=, (5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y,1)与点Q(-7,x-y)关于原点对称,∴27010x yx y+-=⎧⎨-+=⎩,解得23 xy=⎧⎨=⎩,【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键;22.(1)长为12m、宽为8m;(2)不能,理由见解析【分析】(1)设矩形猪舍垂直于住房墙一边长为xm,根据矩形的面积公式建立方程求出其解即可.(2)根据题意列出方程x(27-2x+1)=100,根据方程的解的情况可得结果.【详解】解:(1)设矩形猪舍垂直于住房墙一边长为xm,可以得出平行于墙的一边的长为(27-2x+1)m,由题意得x(27-2x+1)=96,解得:x1=6,x2=8,当x=6时,27-2x+1=16>15(舍去),当x=8时,27-2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.(2)由题意得:x(27-2x+1)=100,化简得:-2x2+28x-100=0,△=282-4×(-2)×(-100)=-16<0,故方程无解,∴不能围成面积为2100m的矩形猪舍.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.(1)x1=4,x2=﹣2;(2)x1=﹣5,x2=1.【分析】(1)利用直接开平方法解方程;(2)利用因式分解法解方程.【详解】解:(1)(x﹣1)2=9x﹣1=±3,所以x1=4,x2=﹣2;(2)x2+4x﹣5=0(x+5)(x﹣1)=0,x +5=0或x ﹣1=0,所以x 1=﹣5,x 2=1.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法解一元二次方程.24.122,1x x =-=.【分析】利用因式分解法求解即可.【详解】∵2(2)3(2)x x +=+,∴()()22320x x +-+= ∴()()2230x x ++=⎡⎤⎣⎦-∴()()210x x +-=解得:122,1x x =-=.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解法的实质,灵活准确求解是解题的关键.25.要围成面积为45m 2的花圃,AB 的长是5米.【分析】设AB 的长是x 米,BC=(24-3x),根据面积列方程即可.【详解】解:设AB 的长是x 米,BC=(23+0.5+0.5-3x),根据题意列方程得,x(23+0.5+0.5-3x)=45,解得,x 1=3,x 2=5,当x=3时,24-3x=15>10,(舍去),答:要围成面积为45m 2的花圃,AB 的长是5米.【点睛】本题考查了一元二次方程的应用,解题关键是找准题目中的等量关系列方程.26.(1)11x =-,212x =;(2)194x +=,294x -=. 【分析】(1)根据解一元二次方程的方法计算即可;(2)根据解一元二次方程的方法计算即可.【详解】解:(1)22(1)3(1)x x +=+ 22(1)3(1)0x x =-++(x+1)[2(x+1)-3]=0(x+1) [2x+2-3]=0(x+1) (2x-1)=0∴x+1=0或2x-1=0解得:11x =-,212x =; (2)22980x x -+=a=2,b=-9,c=8Δ=24b ac -=81-4×2×8=17>0x=992224b a -±==⨯∴194x =,294x -= 【点睛】本题主要考察了解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,选择适当的方法求解.。

一元二次方程单元检测题)

一元二次方程单元检测题)

为y1,y2, 则y1=x1+x2=-1,y2=(x1-x2)2=x12+x22-2x1x2=11+10=21,
∴y1+y2=20,y1y2=-21,故所求方程是y2-20y-21=0. 点拨:要求k的值,须利用根与系数的关系及条件x12+x22= (x1+x2)2-2 x1·x2,构造关于k的方程,同时,要注意所求出的k值, 应使方程有两个实数根,即先求后检. (2)构造方程时,要利用p=-(y1+y2),q=y1y2,则以y1,y2为根的一元 二次方程为y2+py+q=0. 3.(1)证明:方程x2+2
一元二次方程单元检测题
一、选择题:(每小题3分,共36分)
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x2=8 (a≠3)
B.ax2+bx+c=0
C.(x+3)(x-2)=x+5
D.
2.用配方法将二次三项式
变形的结果是( ) A.
B.
C.
D.
3.若关于x的方程ax2+2(a-b)x+(b-a)=0有两个相等的实数根,则a:b等
;若有一个根
为零,则c=
.
16.从正方形的铁片上截去2厘米宽的一条长方形,余下的面积是48平
方厘米,则原来正方形铁片的面积是
17.三角形两边的长分别是8和6,第三边的长是一元二次方程
的一个实数根,则该三角形的面积是
18.如果关于x的方程x2-2(1-k)+k2=0有实数根α,β,那么α+β的取另一根为3+
. 点拨:根据一元二次方程根与系数的关系, 设方程另一个根为x1 ,则 (3-

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。

(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。

(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。

(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。

3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程检测题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
一元二次方程检测题——
姓名 学号 一、选择题:(2×12=24分)
1、方程x 2=x 的根是( )
A 、x=1
B 、x=0
C 、x 1=0,x 2=1
D 、x 1=0,x 2= —1
2、方程x 2=2的根是( )
A 、x 1=x 2=2
B 、x 1=2,x 2= —2
C 、x 1=x 2=2
D 、x 1=2,x 2=-2
3、不解方程,判别方程x 2-5x=1的根的情况是( )
A 、有两个不相等的实数根;
B 、有两个相等的实数根
C 、没有实数根;
D 、无法确定
4、关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个实数根,则k 的取值范围是( )
A 、k>-1/4
B 、k ≥-1/4
C 、k>-1/4且k ≠0
D 、k ≥-1/4且k ≠0
5、如果x 1、x 2是方程2x 2+3x -1=0的两个根,那么2
111
x x +的值是( )
A 、3
B 、—3
C 、1/3
D 、—1/3
6、若一元二次方程ax 2+bx+c=0(a ≠0)的两个实数根互为倒数,则( )
A 、a=b
B 、a=c
C 、b=c
D 、ac=1
7、如果方程()0121122=-++--mx x m m m 是关于x 的一元二次方程,那么m 的值是(

A 、3或—1
B 、—3或1
C 、3
D 、—1
8、如果二次三项式4x 2+mx+1/9是一个完全平方式,那么m 的值是( )
A 、4/3
B 、-4/3
C 、±4/3
D 、±3/4
9、若实数x 、y 满足(x 2+y 2)(x 2+y 2-1)—6=0,则x 2+y 2的值是( )
A 、3
B 、—2
C 、3或—2
D 、—3或2
10、设a 、b 满足|ab+2|+(a+b -3) 2=0,则以a 、b 为根的一元二次方程是( )
A 、x 2-2x+3=0
B 、x 2+2x+3=0
C 、x 2-3x -2=0
D 、x 2+3x -2=0
11、方程111122-+=-x x
的根是( ) A 、x 1=2,x 2= -1 B 、x= -1 C 、x=2 D 、x=0
12、设y=x 2+x+1,则方程x 2+x+1=x
x +22可变形为( ) A 、y 2-y -2=0 B 、y 2+y+2=0 C 、y 2+y -2=0 D 、y 2-y+2=0
二、填空题:(2×12=24分)
1、方程(x -5)(2x+1)=0的根是 ;方程2)3(-x =3的根是 。

方程02)12(3)12(2=++-+x x 的根是 。

2、当x= 时,分式1
||322---x x x 的值为零。

3、配方:x 2-3x+ =(x - )2
4、若方程x 2+kx+3=0有一个根是—1,则另一个根是 ,k= 。

5、如果一元二次方程x 2+4x+k 2=0有两个相等的实数根,那么k= 。

6、在实数范围内分解因式:2x 2-4x -3= 。

7、如果0和-3是关于x 的一元二次方程x 2-px+g=0的两个根,那么p+g= 。

8、一种商品原价是80元,连续两次都降价x%后的价格是 。

9、当m 时,方程3
31-=--x m x x 无实数根。

10、已知a 、b 、c 为△ABC 的三边,且关于x 的一元二次方程()0)()(22=-+-+-b a x a b x b c 有两个相等的实数根,那么这个三角形是 。

三、解答题:(3×5+4×6=39分)
1、 用配方法解方程:-2x 2-4x+1=0 2 、 用适当方法解方程:(1) (3x -1) 2=(2x+1) 2
(2) x 2+6x+9=7 (3) x 2+x -2=0 (4) 2(3x -2)=(2-3x)(x+1)
3、解方程:(1)
12221442=-+++-x x x x (2)214423222-=--++x x
x x x
(3)01016122=---⎪⎭
⎫ ⎝⎛-x x (4) 03266242222=-+++++x x x x x x
(5) 1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝
⎛+x x x x (6)、设x 1、x 2是方程2x 2+4x-3=0的两根,利用根 与系数的关系求:①两根差的平方;
②两根的平方和与两根积的3倍的差。

四、列方程解应用题:(2×5+3=13分)
1、甲、乙两个车队各运送150吨货物,已知甲队比乙队多5辆车,乙队比甲队平均每辆多装
1吨货,两
队都一次装完,问甲、乙两个车队各有多少辆车。

2、 某工厂二月份生产钢铁500吨,因管理不善,三月份的钢产量减少了10%,从四月份起加强了管理,
产量逐月上升,5月份产量达到648吨,求该厂四、五月份平均增长率。

3、 甲、乙两人分别从A 、B 两地相向而行,乙先行1小时,甲才出发,又经过4小时,两人在途中C 地
相遇,相遇后,两人按原方向继续前进,如果甲由C 地到达B 地比乙由C 地到达A 地早2小时40
分,已知甲比乙每小时多行2千米,求甲、乙两人的速度。

(只列不解....
)。

相关文档
最新文档